Skip to main content
Current Developments in Nutrition logoLink to Current Developments in Nutrition
. 2020 May 29;4(Suppl 2):703. doi: 10.1093/cdn/nzaa050_026

Maternal Supplementation of Clofibrate Stimulates Hepatic Fatty Acid Oxidation in Newborn Suckling Piglets

Jinan Zhao 1, Brandon Pike 1, Jack Odle 1, Lin Xi 1
PMCID: PMC7258001

Abstract

Objectives

To evaluate effects of maternal feeding of clofibrate, a PPARα agonist, on development of hepatic fatty acid metabolism in offspring using pig as a model.

Methods

Pregnant sows (N = 27) were randomly assigned into three treatment groups. Each group was fed a standard diet (3265 kcal ME/kg) supplemented with either 0, 0.25% or 5% clofibrate (w/w) from d 107 of gestation to d 7 of lactation. Liver tissue was collected from piglets at birth, d1, 7, 14 and 19. Fatty acid oxidation was examined in fresh homogenates using 1 mM [1–14C] oleic acid (9.9 mBq/mmol) as substrate. Oxidation was measured in the absence or presence of in vitro supplemented L-carnitine (1 mM) and/or malonate (5 mM).

Results

Clofibrate was not detected in piglet liver or sow milk. Interactions between clofibrate and postnatal age (P < 0.001) on the 14C accumulation in 14CO2, acid soluble products (14C-ASP) and esterified products (14C-ESP) were observed. Accumulation in 14CO2 was not altered by piglet age in control sows; however, accumulation in 14C-ASP was higher at d14 and lower at d19 compared to d1. In contrast, maternal clofibrate increased 14CO2 by 100% and 14C-ASP by 80% in pigs at d1, and the increase was higher in pigs from sows given 0.5% versus 0.25% clofibrate. Accumulation in 14C-ESP in pigs from control sows increased from d1 to d14, but there was no difference detected between d14 and 19. Assessment of pigs from sows fed the 0.25% clofibrate dose revealed no impact on 14C-ESP, but the 0.5% dose increased 14C-ESP by 31%. No interaction was observed between clofibrate and the in vitro treatments (carnitine and malonate; P = 0.5). In vitro supplementation of carnitine increased radiolabel accumulation in CO2 by 60% and in ASP by 120%, but reduced 14C-ESP by 39% compared to control incubations. Supplementation of malonate reduced 14CO2 by 95% and 14C-ESP by 44%, but had no impact on 14C-ASP.

Conclusions

Maternal clofibrate enhances hepatic fatty acid metabolism in offspring, but the effect fades with postpartum age. The availability of carnitine in the milk could be a key element to support fatty acid oxidation in postnatal pigs.

Funding Sources

USDA National Institute of Food and Agriculture.


Articles from Current Developments in Nutrition are provided here courtesy of American Society for Nutrition

RESOURCES