Abstract
具有表皮生长因子受体(epidermal growth factor receptor, EGFR)敏感突变的非小细胞肺癌患者对酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)反应良好,但是最终会发生获得性耐药。近来发现EGFR-TKIs耐药机制除了EGFR二次突变、MET扩增、组织学转化等外,基因融合的出现也可以介导TKIs耐药。TKIs耐药后可发生转染重排基因(rearranged during transfection, RET),鼠类肉瘤病毒癌基因同源物B1 (v-raf murine sarcoma viral oncogene homolog B1, BRAF),间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)等多种基因融合,发生率约为1%左右。临床病例及体内体外实验证实基因融合可以介导EGFR-TKI耐药,联合使用EGFR抑制剂和基因融合抑制剂可能是一种有效的治疗方式。对基因融合介导EGFR-TKI耐药的理解有助于后续诊疗策略的制定。
Keywords: 肺肿瘤, 表皮生长因子受体, 基因融合, 获得性耐药
Abstract
Patients with sensitive epidermal growth factor receptor (EGFR) mutations often respond to tyrosine kinase inhibitors (TKIs), but acquired resistance will eventually develop. The most common mechanisms of acquired resistance include secondary EGFR mutation, MET amplification, and histologic transformation. Besides, gene fusions could also mediate the process of acquired resistance. Various gene fusions including rearranged during transfection (RET), v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and anaplastic lymphoma kinase (ALK) could take place after TKIs resistance, the incidence of which is around 1%. The clinical cases and experiments both in vitro and in vivo have proved the role of gene fusions in EGFR-TKI resistance. The combination of EGFR inhibitors and gene fusion inhibitors might be an effective therapeutic method. The understanding of gene fusions at EGFR-TKI resistance may contribute to the subsequent diagnosis and treatment strategy.
Keywords: Lung neoplasms, Epidermal growth factor receptor, Gene fusion, Acquired resistance
肺癌是全球范围内发病率和死亡率最高的肿瘤,其中非小细胞肺癌(non-small cell lung cancer, NSCLC)约占肺癌的80%[1]。具有表皮生长因子受体(epidermal growth factor receptor, EGFR)敏感突变的患者对酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)具有良好反应,一代TKIs的总反应率为55%-80%,无进展生存期(progression-free survival, PFS)为9个月-14个月[2, 3]。一代TKIs最常见的耐药机制是EGFR T790M突变,三代TKI药物奥希替尼对此类突变具有良好疗效[4]。随着耐药后再活检的广泛应用,人们对于耐药机制的理解逐渐深入,EGFR-TKIs耐药机制除了EGFR突变(一代药物的T790M突变,三代药物的C797S突变),肝细胞生长因子受体MET扩增,组织学转化等外[5, 6],近来发现基因融合的出现也是一种少见但确切的耐药机制。本文将EGFR-TKIs耐药后各种基因融合现象综述如下。
1. 耐药融合的发现和发生率
2015年,Klempner等[7]报道2例具有EGFR del19突变的肺癌患者,分别使用厄洛替尼9个月和10个月后耐药,对于耐药前后的组织标本进行全面基因组测序(comprehensive genomic profiling, CGP),发现耐药后标本同时存在EGFR del19突变和卷曲螺旋结构域蛋白6 (coiled coil domain containing 6, CCDC6) -转染重排(rearranged during transfection, RET)原癌基因融合,而没有EGFR T790M突变、MET扩增等其他耐药机制。使用EGFR-TKI之前的标本没有RET融合。这是最早关于基因融合可能介导EGFR-TKI耐药的报道。
Piotrowska等[8]使用锚定多重聚合酶链式反应(polymerase chain reaction, PCR)方法回顾性分析起初具有EGFR突变、使用厄洛替尼,吉非替尼或阿法替尼耐药患者的肿瘤组织,发现1例阿法替尼耐药患者具有CCDC6-RET融合,1例化疗/奥希替尼进展后鼠类肉瘤病毒癌基因同源物B1 (v-raf murine sarcoma viral oncogene homolog B1, BRAF)融合,还有1例阿法替尼/西妥昔单抗进展后二代测序(next generation sequencing, NGS)检测到核受体共激活因子4 (nuclear receptor coactivator 4, NCOA4) -RET融合。
对32例使用三代EGFR-TKI奥希替尼耐药后患者的35份组织标本、26份循环肿瘤DNA (circulating tumor DNA, ctDNA)进行检测,1例患者血浆中发现CCDC6-RET和原肌球蛋白3 (tropomyosin 3, TPM3) -神经营养性酪氨酸受体激酶1 (neurotrophic receptor tyrosine kinase 1 gene, NTRK1)融合。锚定多重PCR方法对24例具有足够组织标本的患者进行检测,发现1例CCDC6-RET融合,1例PCBP2-BRAF融合,1例甘油酯激酶(acylglycerol kinase, AGK) -BRAF融合。值得注意的是,这3例同时都伴有T790M突变的丢失,这可能表明了新出现的融合代表了旁路机制的活化[8]。
分析3, 505例具有EGFR突变或接受过EGFR-TKIs治疗的NSCLC患者肿瘤或血液标本,发现31例(0.88%)同时具有融合:包括10例(32%) BRAF,7例(23%)间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK),6例(19%) RET,6例(19%)成纤维细胞生长因子受体3 (fibroblast growth factor receptor 1, FGFR3),1例(3.2%) EGFR,1例(3.2%) NTRK1。其中12例患者具有治疗前后配对标本,在TKI治疗前不存在融合。3例使用奥希替尼耐药者,融合出现的同时伴有T790M丢失,且具有获得性融合的肿瘤,肿瘤突变负荷(tumor mutational burden, TMB)水平较低(中位,3.5突变/Mb)[9]。
3, 014例具有EGFR突变的NSCLC患者进行组织或ctDNA基因组测序,发现28例(0.9%)同时具有活化融合(BRAF 12例,FGFR3 5例,RET 5例,ALK 4例,NTRK1 1例,EGFR 1例),其中25例没有合并其他耐药机制,而21例可追溯病史的患者都使用过EGFR-TKI治疗。10例具有治疗前后配对标本发现TKI治疗前不存在融合,因而确定为获得性融合[FGFR3-转化酸性含卷曲螺旋蛋白3 (transforming, acidic coiled-coil containing protein 3, TACC3) 4例,棘皮动物微管相关蛋白样4 (echinoderm microtubule-associated protein-4, EML4)-ALK 2例,CCDC6-RET 2例,AGK-BRAF 1例,TPM3-NTRK1 1例],其中3例(2例FGFR3和1例BRAF)配对的融合伴有T790M丢失[10]。
综上,EGFR-TKI耐药后可出现RET、BRAF、ALK等多种基因融合。基因融合在EGFR-TKI获得性耐药机制中发生率不足1%,属于介导获得性耐药的少见事件。现将各种基因融合分述如下。
2. RET融合
2.1. 原发性RET融合
RET基因是一种位于10号染色体长臂上的原癌基因(10q11.2),其编码的RET蛋白是一种酪氨酸激酶受体,结合配体后刺激胞内区域发生磷酸化,激活下游信号,进一步参与调节细胞的生长和分化[11]。RET基因自身断裂后与其他基因接合发生重组,成为一个新的融合基因,使RET酪氨酸激酶的活化脱离配体的调控,发生自我磷酸化,从而促使原癌基因的转化,引发肿瘤生成[12]。2011年,1例肺腺癌中发现驱动蛋白家族成员5B (kinesin family member 5B, KIF5B) -RET融合,由KIF5B基因的第16号外显子末端与RET的12外显子起始端融合而成,被认为是部分肺癌的驱动基因[13]。
RET融合在肺癌患者中阳性率为1%-2%[12],并常与EGFR、KRAS、ALK、BRAF等其他基因改变相排斥[13, 14]。Takeuchi等[15]对1, 114例肺腺癌患者进行检测,共发现14例(1.2%)患者具有RET融合,这些患者女性多见,不吸烟或轻吸烟,且EGFR和KRAS阴性。与RET基因发生融合突变的基因包括KIF5B[13]、CCDC6[16]、三基序蛋白33 (tripartite motif containing 33, TRIM33)[17]、NCOA4[18],其中在NSCLC中KIF5B-RET型最常见[18]。
2.2. EGFR-TKI获得性耐药后RET融合
对EGFR-TKIs发生获得性耐药后,RET融合的发生率为0.2%-4.2%[8-10]。但是基因融合出现的确切机制还不清楚。由于未见治疗前EGFR突变和RET融合共存的报道,因此有可能在长期EGFR抑制的诱导下肺癌细胞出现了旁路机制的活化,但是也不能完全除外治疗前即存在RET融合的小克隆,在EGFR抑制后此部分克隆逐渐变成优势的可能。
Rich等[19]分析176例使用EGFR-TKIs后出现RET改变患者中,发现del19比L858R突变患者的RET融合发生率高(0.8% vs 0.2%, P =0.04),在伴有T790M和/或C797S的患者中比没有这两个突变的患者发生率更高(1.1% vs 4.6% vs 0.6%)。RET融合在奥希替尼耐药后发生率(9/184, 4.9%)高于一二代TKI (13/1627, 0.8%, P =0.000, 1)。Offin等[20]同样发现三代TKI后出现RET融合的频率更高。174例厄洛替尼或阿法替尼后未检测到融合,而14例奥希替尼后检出3例。但还不清楚是奥希替尼富集获得性融合的潜力更强,还是多线EGFR抑制后反复筛选的结果。
Piotrowska等[8]检测41例奥希替尼耐药患者,发现2例获得性CCDC6-RET融合。在PC9和MGH134细胞(含有EGFR L858R/T790M突变)中表达CCDC6-RET后,细胞对阿法替尼和奥希替尼等EGFR-TKIs耐药,选择性RET抑制剂BLU-667和卡博替尼则可使之敏感性恢复。2例EGFR突变阳性患者使用阿法替尼和奥希替尼后耐药,分别获得CCDC6-RET和NCOA4-RET融合,接受奥希替尼+BLU-667治疗,耐受性良好且迅速反应。研究在细胞和临床层面证实RET融合介导EGFR抑制剂耐药,且这个旁路可被选择性RET抑制剂有效抑制。另有研究[20]在PC9细胞中表达CCDC6-RET和KIF5B-RET融合,RET融合可以导致具有EGFR突变细胞系奥希替尼耐药,奥希替尼降低母代细胞的EGFR和ERK1/2,而不降低子代细胞的ERK1/2磷酸化。联合卡博替尼后对奥希替尼反应恢复。RET融合不改变奥希替尼抑制EGFR磷酸化,证实确实是旁路机制导致耐药。
3, 505例EGFR突变患者组织活检,发现6例RET融合,包括1例阿法替尼耐药后出现L858R和NCOA4-RET融合患者,使用卡博替尼+阿法替尼稳定7个月,与前文所述细胞实验结果一致[9]。综上,对于EGFR-TKI耐药后出现RET融合的患者,继续EGFR-TKI联合RET抑制剂可能是一种合理的治疗选择。
3. BRAF融合
3.1. 原发性BRAF融合
BRAF基因是1988年由Ikawa等[21]首先在人类尤文氏肉瘤中发现的,该基因位于染色体7q34,编码丝氨酸/苏氨酸蛋白激酶,在恶性肿瘤形成、发展过程中发挥重要作用。BRAF蛋白在丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)/细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK)信号通路中起着关键作用,进而调节细胞内的生物学过程[22]。2005年,首先在甲状腺癌中报道A型激酶锚定蛋白9 (A-kinase anchoring protein9, AKAP9) - BRAF融合为一种激活MAPK信号通路的新机制[23]。而NSCLC中BRAF融合的发生率为4.3%[24]。2017年美国临床肿瘤学会上,有报道通过NGS在17, 128例NSCLC患者中发现42例(0.25%) BRAF融合现象,其中32例(76.19%)为腺癌,融合伴侣以AGK最为常见,占7.14%,其他还包括TRIM24、细胞质分裂付出蛋白4 (dedicator of cytokinesis 4, DOCK4)和犰狳重复含蛋白10 (armadillo repeat containing 10, ARMC10)等[25]。
未经治疗的肺癌患者同时存在BRAF融合和EGFR突变的报道不多,仅在AURA研究中报道1例使用奥希替尼前NGS发现BRAF融合[26]。
3.2. EGFR-TKI获得性耐药后BRAF融合
Yu等[27]检测136例经过TKI治疗的具有EGFR突变患者,发现2例BRAF融合。对比治疗前后标本,BRAF改变分别为1%和5.1%。但研究也只能证实TKI富集了BRAF改变,不能证实融合为获得性。
Vojnic等[28]检测374例转移性EGFR突变肺癌患者,其中174例为TKI治疗后,其中38例有配对TKI前样本。研究共发现4例患者(2例厄洛替尼后,2例厄洛替尼序贯奥希替尼后)具有BRAF融合[3例AGK-BRAF,1例泛素蛋白连接酶Praja-1 (praja ring finger ubiquitin ligase 2 gene, PJA2)-BRAF]。4例患者中2例有TKI前标本,都是BRAF融合阴性。而在200例TKI前的标本中没有检出同时性BRAF融合。
基因编辑将BRAF融合基因导入EGFR突变细胞系(H1975, HCC827, PC9)以及19del+PJA2-BRAF的原代细胞MSK-LX138cl后,细胞对奥希替尼耐药,BRAF、丝裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase, MEK) 1/2、ERK1/2和信号传导及转录激活蛋白(signal transducer and activator of transcription 3, STAT3)的磷酸化增加,奥希替尼可以阻断母代细胞而不阻断子代细胞MEK1/2、ERK1/2和STAT3的磷酸化,BRAF敲除后奥希替尼敏感性恢复。MEK抑制剂曲美替尼和奥希替尼可以协同抑制细胞生长,泛RAF抑制剂单药也可抑制具有突变EGFR和BRAF融合细胞系的生长,因而从细胞水平证实了BRAF融合是EGFR-TKI获得性耐药的机制,联合EGFR和MEK抑制或BRAF抑制可能可以克服耐药[28]。因此,对于此类患者,联合抑制MEK和EGFR以及抑制BRAF融合可能是合适的治疗方案。
4. ALK融合
4.1. 原发性ALK融合
ALK基因位于2p23.2,编码属于胰岛素受体超家族的Ⅰ型跨膜酪氨酸激酶蛋白。2007年,1例27岁肺癌患者中发现ALK-EML4基因重排,患者2号染色体短臂中存在倒位,使EML4 基因和ALK基因的外显子连接,从而形成融合基因ALK-EML4[29]。重排后融合基因编码的嵌合蛋白含有ALK的酪氨酸激酶结构域,结构域的异常表达使得ALK下游信号通路异常活化而具有致癌性。ALK基因重排在NSCLC的总体发生率约为4%[30]。肺癌患者中还存在其他融合伴侣,但以EML4-ALK最为常见[31]。具有ALK融合的肺癌患者,使用克唑替尼、阿来替尼等ALK-TKI治疗有效[32]。
Yang等[33]对977例中国NSCLC患者进行基因检测,发现13例(1.3%)同时存在EGFR突变和ALK融合。Lee等[34]对444例韩国肺腺癌患者进行检测,4例(0.9%)患者同时存在EGFR突变和ALK融合。Dana-Farber癌症研究院检测了50例NSCLC患者,发现3例(6%)同时具有EGFR突变和ALK融合[35]。因此,存在原发性EGFR突变与ALK融合并存的现象,但非常少见。发生双重基因改变的患者多使用一代EGFR-TKI或ALK-TKI单药治疗,各个病例报道反应不一,有效率约为60%[36]。
4.2. EGFR-TKI获得性耐药后ALK融合
2016年,Liang[37]报道1例EGFR del19突变NSCLC患者,检测EML4-ALK阴性。先后使用厄洛替尼HY-15772两种EGFR-TKI治疗8个月后疾病进展。行ctDNA检测,血浆发现EGFR突变和EML4-ALK重排并存,对ALK抑制剂治疗有反应。
对3, 505例使用EGFR-TKI治疗的患者进行检测,发现7例(0.20%) ALK融合[9]。新发ALK的融合伴侣包括EML4 (n =4)、钙调素结合蛋白(striatin, STRN)(n =1)、TRK融合基因(TRK-fused gene, TFG)(n =1)、和含普列克底物同源物域家族A成员7 (pleckstrin homology domain containing A7, PLEKHA7)(n =1)。出现STRN-ALK融合的患者同时伴有T790M丢失,对单药克唑替尼无反应。而奥希替尼耐药后出现新的PLEKHA7-ALK融合患者对奥希替尼联合阿来替尼的治疗有反应。因此,对于EGFR-TKI耐药后出现ALK融合的患者,继续EGFR-TKI联合ALK-TKI可能是一种较好的治疗选择。
5. FGFR3融合
FGFR3-TACC3 融合是膀胱癌等多种肿瘤的常见驱动基因[38],肺腺癌、肺鳞癌和未分类NSCLC中也都报道过。576例肺腺癌患者行NGS检测,发现FGFR3-TACC3融合的总发生率为0.5%。FGFR3-TACC3融合导致Ba/F3细胞白介素-3非依赖性生长,细胞对泛FGFR和选择性FGFR抑制剂敏感,但是对EGFR抑制剂吉非替尼耐药[39]。
FGFR3-TACC3可能介导EGFR-TKI的耐药。一项研究比较136例EGFR-TKI治疗患者耐药前后的标本,发现FGFR3改变在治疗后更为常见(0.5% vs 3.7%, P =0.042)[27]。对17, 319例肺癌组织(141, 701例腺癌,3, 149例非特指型)行CGP分析,发现5例EGFR-TKI耐药后存在FGFR3-TACC3融合并伴有原活化EGFR突变,包括1例使用厄洛替尼后,1例使用阿法替尼后,1例使用奥希替尼后和1例使用三代药物ASP8273后[40]。
细胞和动物实验证实,FGFR3-TACC3融合可以在头颈部鳞癌移植物模型中活化ERK信号通路,逃避EGFR/红白血病病毒癌基因同源物3 (erythroblastic Leukemia Viral Oncogene Homolog 2, ERBB3)阻滞。联合使用阻滞EGFR和ERBB3的抗体时,EGFR阻滞优先抑制ERK活化,而ERBB3阻滞抑制蛋白激酶B (protein kinase B, PKB/AKT)活化。此外,肺癌细胞系NCI-H1975中(EGFR L858R+T790M突变),引入FGFR3-TACC3可导致奥希替尼耐药,而不导致磷脂酰肌醇3-激酶(phosphatidylinositol 3'-kinase, PI3K)突变细胞系的PI3K抑制剂耐药[41]。但是现在还没有获批的抑制FGFR3融合的药物,因此出现FGFR3-TACC3融合后的最佳治疗仍在探索中。
6. NTRK1融合
之前研究报道结直肠癌和甲状腺癌中出现NTRK1和肌凝蛋白磷酸酶Rho相互作用蛋白(myosin phosphatase Rho-interacting protein, MPRIP)、CD74、TPM3或TFG的融合[42]。融合导致结构性TRKA激酶活性增加,可作为癌基因介导肿瘤产生。在3种常用于评估致癌性的非癌症细胞系293T细胞、NIH3T3纤维母细胞和Ba/F3细胞中表达MPRIP-NTRK1和CD74-NTRK1的cDNA,发现表达嵌合蛋白和TRKA自身磷酸化,肿瘤发生锚定非依赖性生长,并导致裸鼠成瘤。而在非肿瘤细胞或对照样本中不存在此种融合。3/91例(3.3%)没有已知癌基因改变的肺癌患者使用NGS或荧光原位杂交检测存在NTRK1基因融合[43]。一些靶向药物,如拉罗替尼、恩曲替尼和Loxo-195等已经获得FDA批准或试验证实对NTRK1融合有效。
3, 505例具有EGFR突变的NSCLC患者,发现1例(0.03%)同时具有NTRK1融合,但不确定融合是使用TKI之前还是耐药后出现[9]。EGFR-TKI耐药后也可出现NTRK融合。32例TKI耐药患者,1例血检发现同时具有CCDC6-RET和TPM3-NTRK1融合[8]。由于报道例数较少,NTRK1介导EGFR的具体机制还未证实,TKI耐药后发生NTRK1 融合的最佳治疗也未可知。
7. 结论
之前未发现融合是介导EGFR-TKI耐药的机制,可能是由于当时使用的基因检测平台未包括融合的检测,而易位断裂点经常发生在内含子区域,聚焦的NGS只检测外显子,因而可能错过这些异常。因此,推荐EGFR-TKI耐药后再活检和使用能够发现激酶融合的基因组测序平台。
一代TKI和三代TKI获得性耐药后基因融合的检出率似有不同,三代药物耐药后融合的发生率高于一代药物(二者分别是3.1%-12.5%和不足1%)[8, 9, 19, 20],但是不能确定是由于三代药物对于基因融合的诱导能力更强,还是EGFR-TKIs序贯使用反复筛选的结果。大部分时候,T790M突变丢失和替代途径耐药机制相关,因此三代TKI耐药后出现T790M丢失的患者应格外注意融合的检测。另外发生获得性融合后TMB水平较低,因此免疫治疗不一定具有良好效果,而无论对于一代还是三代药物来说,联合使用EGFR-TKI和融合抑制剂可能是合理的治疗选择,但是应注意联合用药的毒性。
总之,获得性激酶融合是EGFR-TKIs罕见但是肯定的获得性耐药机制。在EGFR抑制过程中,需要在进展时使用能够检测包括融合在内的各种基因变化,以明确耐药机制,提供治疗决策。
Funding Statement
本文受天津市自然科学基金(No.18JCQNJC12700)资助
This paper was supported by the grant from Tianjin Natural Science Foundation (to Yi SHAO)(No.18JCQNJC12700)
References
- 1.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492. [DOI] [PubMed] [Google Scholar]
- 2.Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–967. doi: 10.1056/NEJMoa0904554. [DOI] [PubMed] [Google Scholar]
- 3.Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–957. doi: 10.1056/NEJMoa0810699. [DOI] [PubMed] [Google Scholar]
- 4.Yang JC, Ahn MJ, Kim DW, et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase Ⅱ extension component. J Clin Oncol. 2017;35(12):1288–1296. doi: 10.1200/JCO.2016.70.3223. [DOI] [PubMed] [Google Scholar]
- 5.Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26. doi: 10.1126/scitranslmed.3002003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–562. doi: 10.1038/nm.3854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Klempner SJ, Bazhenova LA, Braiteh FS, et al. Emergence of RET rearrangement co-existing with activated EGFR mutation in EGFR-mutated NSCLC patients who had progressed on first- or second-generation EGFR-TKI. Lung Cancer. 2015;89(3):357–359. doi: 10.1016/j.lungcan.2015.06.021. [DOI] [PubMed] [Google Scholar]
- 8.Piotrowska Z, Isozaki H, Lennerz JK, et al. Landscape of acquired resistance to osimertinib in EGFR -mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 2018;8(12):1529–1539. doi: 10.1158/2159-8290.CD-18-1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Schrock AB, Zhu VW, Hsieh WS, et al. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2018;13(9):1312–1323. doi: 10.1016/j.jtho.2018.05.027. [DOI] [PubMed] [Google Scholar]
- 10.Ou S, Klempner S, Creelan B, et al. Kinase fusions as recurrent mechanisms of acquired resistance in EGFR-mutated non-small cell lung cancer (NSCLC) J Thorac Oncol. 2017;12(11):S1848. doi: 10.1016/j.jtho.2017.09.553. [DOI] [Google Scholar]
- 11.Frank-Raue K, Rondot S, Raue F. Molecular genetics and phenomics of RET mutations: Impact on prognosis of MTC. Mol Cell Endocrinol. 2010;322(1-2):2–7. doi: 10.1016/j.mce.2010.01.012. [DOI] [PubMed] [Google Scholar]
- 12.Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–377. doi: 10.1038/nm.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Ju YS, Lee WC, Shin JY, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22(3):436–445. doi: 10.1101/gr.133645.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Okamoto I, Sakai K, Morita S, et al. Multiplex genomic profiling of non-small cell lung cancers from the LETS phase Ⅲ trial of first-line S-1/carboplatin versus paclitaxel/carboplatin: results of a West Japan Oncology Group study. Oncotarget. 2014;5(8):2293–2304. doi: 10.18632/oncotarget.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–381. doi: 10.1038/nm.2658. [DOI] [PubMed] [Google Scholar]
- 16.Matsubara D, Kanai Y, Ishikawa S, et al. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol. 2012;7(12):1872–1876. doi: 10.1097/JTO.0b013e3182721ed1. [DOI] [PubMed] [Google Scholar]
- 17.Drilon A, Wang L, Hasanovic A, et al. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 2013;3(6):630–635. doi: 10.1158/2159-8290.CD-13-0035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist. 2013;18(7):865–875. doi: 10.1634/theoncologist.2013-0095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Rich TA, Reckamp KL, Chae YK, et al. Analysis of cell-free DNA from 32, 989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin Cancer Res. 2019;25(19):5832–5842. doi: 10.1158/1078-0432.CCR-18-4049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Offin M, Somwar R, Rekhtman N, et al. Acquired ALK and RET gene fusions as mechanisms of resistance to osimertinib in EGFR-mutant lung cancers. JCO Precis Oncol. 2018:2. doi: 10.1200/PO.18.00126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Ikawa S, Fukui M, Ueyama Y, et al. B-raf, a new member of the RAF family, is activated by DNA rearrangement. Mol Cell Biol. 1988;8(6):2651–2654. doi: 10.1128/mcb.8.6.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Ji H, Wang Z, Perera SA, et al. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007;67(10):4933–4939. doi: 10.1158/0008-5472.CAN-06-4592. [DOI] [PubMed] [Google Scholar]
- 23.Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94–101. doi: 10.1172/JCI23237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Ross JS, Wang K, Chmielecki J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881–890. doi: 10.1002/ijc.29825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Reddy VP, Gay LM, Elvin JA, et al. BRAF fusions in clinically advanced non-small cell lung cancer : An emerging target for anti-BRAF therapies. J Clin Oncol. 2017;35(15suppl):Abstr 9072. [Google Scholar]
- 26.Oxnard GR, Hu Y, Mileham KF, et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 2018;4(11):1527–1534. doi: 10.1001/jamaoncol.2018.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Yu HA, Suzawa K, Jordan E, et al. Concurrent alterations in EGFR-mutant lung cancers associated with resistance to EGFR kinase inhibitors and characterization of MTOR as a mediator of resistance. Clin Cancer Res. 2018;24(13):3108–3118. doi: 10.1158/1078-0432.CCR-17-2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Vojnic M, Kubota D, Kurzatkowski C, et al. Acquired BRAF rearrangements induce secondary resistance to EGFR therapy in EGFR-mutated lung cancers. J Thorac Oncol. 2019;14(5):802–815. doi: 10.1016/j.jtho.2018.12.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–566. doi: 10.1038/nature05945. [DOI] [PubMed] [Google Scholar]
- 30.Thunnissen E, Bubendorf L, Dietel M, et al. EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations. Virchows Arch. 2012;461(3):245–257. doi: 10.1007/s00428-012-1281-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Takeuchi K, Choi YL, Togashi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15(9):3143–3149. doi: 10.1158/1078-0432.CCR-08-3248. [DOI] [PubMed] [Google Scholar]
- 32.Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–838. doi: 10.1056/NEJMoa1704795. [DOI] [PubMed] [Google Scholar]
- 33.Yang JJ, Zhang XC, Su J, et al. Lung cancers with concomitant EGFR mutations and ALK rearrangements: diverse responses to EGFR-TKI and crizotinib in relation to diverse receptors phosphorylation. Clin Cancer Res. 2014;20(5):1383–1392. doi: 10.1158/1078-0432.CCR-13-0699. [DOI] [PubMed] [Google Scholar]
- 34.Lee JK, Kim TM, Koh Y, et al. Differential sensitivities to tyrosine kinase inhibitors in NSCLC harboring EGFR mutation and ALK translocation. Lung Cancer. 2012;77(2):460–463. doi: 10.1016/j.lungcan.2012.04.012. [DOI] [PubMed] [Google Scholar]
- 35.Sasaki T1, Koivunen J, Ogino A, et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71(18):6051–6060. doi: 10.1158/0008-5472.CAN-11-1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Wang X, Zhong DS. Advances in double mutations of EGFR and ALK gene in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2018;21(9):686–691. doi: 10.3779/j.issn.1009-3419.2018.09.07. [DOI] [PMC free article] [PubMed] [Google Scholar]; 王 鑫, 钟 殿胜. 非小细胞肺癌EGFR和ALK基因双突变研究进展. 中国肺癌杂志. 2018;21(9):686–691. doi: 10.3779/j.issn.1009-3419.2018.09.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Liang W, He Q, Chen Y, et al. Metastatic EML4-ALK fusion detected by circulating DNA genotyping in an EGFR-mutated NSCLC patient and successful management by adding ALK inhibitors: a case report. BMC Cancer. 2016;16:62. doi: 10.1186/s12885-016-2088-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Wu YM, Su F, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3(6):636–647. doi: 10.1158/2159-8290.CD-13-0050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Capelletti M, Dodge ME, Ercan D, et al. Identification of recurrent FGFR3-TACC3 fusion oncogenes from lung adenocarcinoma. Clin Cancer Res. 2014;20(24):6551–6558. doi: 10.1158/1078-0432.CCR-14-1337. [DOI] [PubMed] [Google Scholar]
- 40.Ou SI, Horn L, Cruz M, et al. Emergence of FGFR3-TACC3 fusions as a potential by-pass resistance mechanism to EGFR tyrosine kinase inhibitors in EGFR mutated NSCLC patients. Lung Cancer. 2017;111:61–64. doi: 10.1016/j.lungcan.2017.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Daly C, Castanaro C, Zhang W, et al. FGFR3-TACC3 fusion proteins act as naturally occurring drivers of tumor resistance by functionally substituting for EGFR/ERK signaling. Oncogene. 2017;36(4):471–481. doi: 10.1038/onc.2016.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Alberti L, Carniti C, Miranda C, et al. RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol. 2003;195(2):168–186. doi: 10.1002/jcp.10252. [DOI] [PubMed] [Google Scholar]
- 43.Vaishnavi A, Capelletti M, Le AT, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469–1472. doi: 10.1038/nm.3352. [DOI] [PMC free article] [PubMed] [Google Scholar]
