SUMMARY
Coronavirus disease 2019 (COVID-19) is a viral pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is predominantly defined by respiratory symptoms, but cardiac complications including arrhythmias, heart failure, and viral myocarditis are also prevalent. Although the systemic ischemic and inflammatory responses caused by COVID-19 can detrimentally affect cardiac function, the direct impact of SARS-CoV-2 infection on human cardiomyocytes is not well-understood. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model system to examine the mechanisms of cardiomyocyte-specific infection by SARS-CoV-2. Microscopy and immunofluorescence demonstrated that SARS-CoV-2 can enter and replicate within hiPSC-CMs, localizing at perinuclear locations within the cytoplasm. Viral cytopathic effect induced hiPSC-CM apoptosis and cessation of beating after 72 hours of infection. These studies show that SARS-CoV-2 can infect hiPSC-CMs in vitro , establishing a model for elucidating the mechanisms of infection and potentially a cardiac-specific antiviral drug screening platform.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.