Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Jun 1;28(9):835–843. doi: 10.1007/s13233-020-8109-x

Porous Poly(3-hydroxybutyrate) Scaffolds Prepared by Non-Solvent-Induced Phase Separation for Tissue Engineering

Jiseon Kang 1, Ji-Young Hwang 2, Mongyoung Huh 2, Seok Il Yun 1,
PMCID: PMC7265872  PMID: 32837462

Abstract

Highly porous poly(3-hydroxybutyrate) (PHB) scaffolds were fabricated using non-solvent-induced phase separation with chloroform as the solvent and tetrahydrofuran as the non-solvent. The microporosity, nanofiber morphology, and mechanical strength of the scaffolds were adjusted by varying the fabrication parameters, such as the polymer concentration and solvent composition. The influence of these parameters on the structure and morphology of PHB organogels and scaffolds was elucidated using small-angle neutron scattering and scanning electron microscopy. The organogels and scaffolds in this study have a complex hierarchical structure, extending over a wide range of length scales. In vitro viability assays were performed using the human keratinocyte cell line (HaCaT), and all PHB scaffolds demonstrated the excellent cell viability. Microporosity had the greatest impact on HaCaT cell proliferation on PHB scaffolds, which was determined after a 3-day incubation period with scaffolds of different morphologies and mechanical properties. The superior cell viability and the controlled scaffold properties and morphologies suggested PHB scaffolds fabricated by non-solvent-induced phase separation using chloroform and tetrahydrofuran as promising biomaterials for the applications of tissue engineering, particularly of epidermal engineering.

graphic file with name 13233_2020_8109_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material is available in the online version of this article at 10.1007/s13233-020-8109-x.

Keywords: PHB, non-solvent-induced phase separation, scaffold, cell viability, micropores, nanofibers

Supporting Information

13233_2020_8109_MOESM1_ESM.pdf (1.2MB, pdf)

Supplementary material, approximately 228 KB.

Footnotes

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • (1).Kobayashi M, Yoshinori T, Kozasa T, Tashiro K, Suzuki J, Funahashi S, Izumi Y. Macromolecules. 1994;27:1349. [Google Scholar]
  • (2).Lin K-Y, Wang D-M, Lai J-Y. Macromolecules. 2002;35:6697. [Google Scholar]
  • (3).Muthukumar M. Adv. Chem. Phys. 2004;128:1. [Google Scholar]
  • (4).Wang X, Zhang H, Jana S C. J. Mater. Chem. A. 2013;1:13989. [Google Scholar]
  • (5).Xing Q, Dong X, Li R, Yang H, Han C C, Wang D. Polymer. 2013;54:5965. [Google Scholar]
  • (6).Xin Y, Fujimoto T, Uyama H. Polymer. 2012;53:2847. [Google Scholar]
  • (7).Wang D M, Lai J Y. Curr. Opin. Chem. Eng. 2013;2:229. [Google Scholar]
  • (8).Rezabeigi E, Wood-Adams P M, Drew R A L. Polymer. 2014;55:6743. [Google Scholar]
  • (9).He L, Zhang Y, Zeng X, Quan D, Liao S, Zeng Y, Lu J, Ramakrishna S. Polymer. 2009;50:4128. [Google Scholar]
  • (10).Kang J, Gi H, Choe R, Yun S I. Polymer. 2016;104:61. [Google Scholar]
  • (11).Cesaro A, Fabril D, Sussichl F, Paradossi G. Macromol. Symp. 1999;138:165. [Google Scholar]
  • (12).Li X-T, Zhang Y, Chen G-Q. Biomaterials. 2008;29:3720. doi: 10.1016/j.biomaterials.2008.06.004. [DOI] [PubMed] [Google Scholar]
  • (13).Jack K S, Velayudhan S, Luckman P, Trau M, Grøndahl L, Cooper-White J. Acta Biomater. 2009;5:2657. doi: 10.1016/j.actbio.2009.03.017. [DOI] [PubMed] [Google Scholar]
  • (14).Xu X-Y, Li X-T, Peng S-W, Xiao J-F, Liu C, Fang G, Chen K C, Chen G-Q. Biomaterials. 2010;31:3967. doi: 10.1016/j.biomaterials.2010.01.132. [DOI] [PubMed] [Google Scholar]
  • (15).Khorasani M T, Mirmohammadi S A, Irani S. Int. J. Polym. Mater. Polym. Biomater. 2011;60:562. [Google Scholar]
  • (16).Guzman D, Kirsebom H, Solano C, Quillaguaman J, Hatti-Kaul R. J. Bioact. Compat. Polym. 2011;26:452. [Google Scholar]
  • (17).Woo K M, Chen V J, Ma P X. J. Biomed. Mater. Res. Part A. 2003;67:531. doi: 10.1002/jbm.a.10098. [DOI] [PubMed] [Google Scholar]
  • (18).Boccaccini A R, Maquet V. Compos. Sci. Technol. 2003;63:2417. [Google Scholar]
  • (19).Liu X, Smith L A, Hu J, Ma P X. Biomaterials. 2009;30:2252. doi: 10.1016/j.biomaterials.2008.12.068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (20).Liu X, Ma P X. Biomaterials. 2009;30:4094. doi: 10.1016/j.biomaterials.2009.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (21).Chen J-S, Tu S-L, Tsay R-Y. J. Taiwan Inst. Chem. Eng. 2010;41:229. [Google Scholar]
  • (22).Hsu S-H, Huang S, Wang Y-C, Kuo Y-C. Acta Biomater. 2013;9:6915. doi: 10.1016/j.actbio.2013.02.012. [DOI] [PubMed] [Google Scholar]
  • (23).Buzarovska A, Gualandi C, Parrilli A, Scandola M. Compos. Part B. 2015;81:189. [Google Scholar]
  • (24).Reuver J, Altena F W, Smolders C A. J. Polym. Sci. Part B: Polym. Phys. 1986;24:793. [Google Scholar]
  • (25).Burghard W R, Yilmaz L, McHugh A J. Polymer. 1987;28:2085. [Google Scholar]
  • (26).Daniel C, Deluca M D, Guenet J-M, Brulet A, Menelle A. Polymer. 1996;37:1273. [Google Scholar]
  • (27).He C, Nie W, Feng W. J. Mater. Chem. B. 2014;2:7828. doi: 10.1039/c4tb01464b. [DOI] [PubMed] [Google Scholar]
  • (28).Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Expert Rev. Med. Devic. 2019;16:467. doi: 10.1080/17434440.2019.1615439. [DOI] [PubMed] [Google Scholar]
  • (29).Ke Y, Zhang X Y, Ramakrishna S, He L M, Wu G. Mater. Sci. Eng. C: Mater. Biol. Appl. 2017;70:1107. doi: 10.1016/j.msec.2016.03.114. [DOI] [PubMed] [Google Scholar]
  • (30).Butt F I, Muhammad N, Hamid A, Moniruzzaman M, Sharif F. Int. J. Biol., Macromol. 2018;120:1294. doi: 10.1016/j.ijbiomac.2018.09.002. [DOI] [PubMed] [Google Scholar]
  • (31).Goonoo N, Bhaw-Luximon A, Passanha P, Esteves S R, Jhurry D. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2017;105:1667. doi: 10.1002/jbm.b.33674. [DOI] [PubMed] [Google Scholar]
  • (32).Lim J, You M, Li J, Li Z. Mater. Sci. Eng. C: Mater. Biol. Appl. 2017;79:917. doi: 10.1016/j.msec.2017.05.132. [DOI] [PubMed] [Google Scholar]
  • (33).Dariš B, Knez Ž. Acta Pharm. 2020;70:1. doi: 10.2478/acph-2020-0007. [DOI] [PubMed] [Google Scholar]
  • (34).Liu Q, Chen G-Q. J. Biomater. Sci. Polymer Edn. 2008;19:1521. doi: 10.1163/156856208786140391. [DOI] [PubMed] [Google Scholar]
  • (35).Ji Y, Li X-T, Chen G-Q. Biomaterials. 2008;29:3807. doi: 10.1016/j.biomaterials.2008.06.008. [DOI] [PubMed] [Google Scholar]
  • (36).Sundaramurthi D, Krishnan U M, Sethuraman S. J. Biomed. Nanotechnol. 2013;9:1383. doi: 10.1166/jbn.2013.1618. [DOI] [PubMed] [Google Scholar]
  • (37).Gilbert E P, Schulz J C, Noakes T J. Physica B. 2006;385–386:1180. [Google Scholar]
  • (38).Kline S R. J. Appl. Crystallogr. 2006;39:895. [Google Scholar]
  • (39).Kanaya T, Ohkura M, Kaji K, Furusaka M, Misawa M. Macromolecules. 1994;27:5609. [Google Scholar]
  • (40).Kanaya T, Ohkura M, Takeshita H, Kaji K, Furusaka M, Yamaoka H, Wignall G D. Macromolecules. 1995;28:3168. [Google Scholar]
  • (41).Takeshita H, Kanaya T, Nishida K, Kaji K. Physica B. 2002;311:78. [Google Scholar]
  • (42).R. J. Roe, in Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, 2000, pp 188–193.
  • (43).Shibayama M. Soft Matter. 2012;8:8030. [Google Scholar]
  • (44).Neamnark A, Sanchavanakit N, Pavasant P, Rujiravanit R, Supaphol P. Eur. Polym. J. 2008;44:2060. [Google Scholar]
  • (45).Feng B, Duan H C, Fu W, Cao Y L, Zhang W J, Zhang Z. J. Biomed. Mater. Res. 2015;103A:431. doi: 10.1002/jbm.a.35184. [DOI] [PubMed] [Google Scholar]
  • (46).Ramanathan G, Singaravelu S, Raja M D, Nagiah N, Padmapriya P, Ruban K, Kaveri K, Natarajan T S, Sivagnanam U T, Perumal P T. RSC Adv. 2016;6:7914. doi: 10.1016/j.ijbiomac.2016.02.021. [DOI] [PubMed] [Google Scholar]
  • (47).Bhowmick S, Rother S, Zimmermann H, Lee P S, Moeller S, Schnabelrauch M, Koul V, Jordan R, Hintze V, Scharnweber D. Mater. Sci. Eng. C: Mater. Biol. Appl. 2017;79:15. doi: 10.1016/j.msec.2017.05.005. [DOI] [PubMed] [Google Scholar]
  • (48).Bacakova M, Pajorova J, Stranska D, Hadraba D, Lopot F, Riedel T, Brynda E, Zaloudkova M, Bacakova L. Int. J. Nanomed. 2017;12:1143. doi: 10.2147/IJN.S121299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (49).Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W. J. Biomed. Mater. Res. 2002;62:438. doi: 10.1002/jbm.10318. [DOI] [PubMed] [Google Scholar]
  • (50).Peschel G, Dahse H-M, Konrad A, Wieland G D, Mueller P-J, Martin D P, Roth M. J. Biomed. Mater. Res. 2008;85A:1072. doi: 10.1002/jbm.a.31666. [DOI] [PubMed] [Google Scholar]
  • (51).Ratheesh G, Venugopal J R, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S. ACS Biomater. Sci. Eng. 2017;3:1175. doi: 10.1021/acsbiomaterials.6b00370. [DOI] [PubMed] [Google Scholar]
  • (52).Khan S, Ul-Islam M, Ikram M, Islam S U, Ullah M W, Israr M, Jang J H, Yoon S, Park J K. Int. J. Biol., Macromol. 2018;117:1200. doi: 10.1016/j.ijbiomac.2018.06.044. [DOI] [PubMed] [Google Scholar]

Articles from Macromolecular Research are provided here courtesy of Nature Publishing Group

RESOURCES