Skip to main content
NASA Author Manuscripts logoLink to NASA Author Manuscripts
. Author manuscript; available in PMC: 2020 Jun 3.
Published in final edited form as: Minor Planet Bull. 2013 Apr-Jun;40(2):113–117.

LIGHTCURVE PHOTOMETRY OPPORTUNITIES: 2013 APRIL-JUNE

Brian D Warner 1, Alan W Harris 2, Petr Pravec 3, Josef Ďurech 4, Lance AM Benner 5
PMCID: PMC7268914  NIHMSID: NIHMS1569906  PMID: 32494784

Abstract

We present lists of asteroid photometry opportunities for objects reaching a favorable apparition and have no or poorly-defined lightcurve parameters. Additional data on these objects will help with shape and spin axis modeling via lightcurve inversion. We also include lists of objects that will be the target of radar observations. Lightcurves for these objects can help constrain pole solutions and/or remove rotation period ambiguities that might not come from using radar data alone.


We present lists of “targets of opportunity” for the period 2013 April-June. For background on the program details for each of the opportunity lists, refer to previous issues, e.g., Minor Planet Bulletin 36, 188. In the first three sets of tables, “Dec” is the declination and “U” is the quality code of the lightcurve. See the asteroid lightcurve data base (LCDB) documentation for an explanation of the U code:

http://www.minorplanet.info/lightcurvedatabase.html

Objects with U = 1 should be given higher priority over those rated U = 2 or 2+ but not necessarily over those with no period. On the other hand, do not overlook asteroids with U = 2/2+ on the assumption that the period is sufficiently established. Regardless, do not let the existing period influence your analysis since even high quality ratings have been proven wrong at times. Note that the lightcurve amplitude in the tables could be more or less than what’s given. Use the listing only as a guide.

The first list is an abbreviated list of those asteroids reaching V < 14.5 at brightest during the period and have either no or poorly-constrained lightcurve parameters.

The goal for these asteroids is to find a well-determined rotation rate. The target list generator on the CALL web site allows you to create custom lists for objects reaching V ≤ 18.0 during any month in the current year, e.g., limiting the results by magnitude and declination.

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

In a general note, small objects with periods up to 4 hours or even longer are possible binaries. For longer periods (4–6 hours or so), the odds of a binary may be less, but the bonus is that the size of the secondary, if it exists, is likely larger (see Pravec et al. (2010), Nature 466, 1085–1088), thus eclipses, if they occur, will be deeper and easier to detect.

The Low Phase Angle list includes asteroids that reach very low phase angles. The “α” column is the minimum solar phase angle for the asteroid. Getting accurate, calibrated measurements (usually V band) at or very near the day of opposition can provide important information for those studying the “opposition effect.” You will have the best chance of success working objects with low amplitude and periods that allow covering, e.g., a maximum, every night. Objects with large amplitudes and/or long periods are much more difficult for phase angle studies since, for proper analysis, the data have to be reduced to the average magnitude of the asteroid for each night. Without knowing the period and/or the amplitude at the time, that reduction becomes highly uncertain. As an aside, some use the maximum light to find the phase slope parameter (G). However, this can produce a significantly different value for both H and G versus using average light, which is the method used for values listed by the Minor Planet Center.

The third list is of those asteroids needing only a small number of lightcurves to allow spin axis and/or shape modeling. Those doing work for modeling should contact Josef Ďurech at the email address above and/or visit the Database of Asteroid Models from Inversion Techniques (DAMIT) web site for existing data and models:

http://astro.troja.mff.cuni.cz/projects/asteroids3D

The fourth list gives a brief ephemeris for planned radar targets. Supporting optical observations to determine the lightcurve period, amplitude, and shape are needed to supplement the radar data. High-precision work, 0.01–0.02 mag, is preferred, especially if the object is a known or potential binary. Those obtaining lightcurves in support of radar observations should contact Dr. Benner directly at the email given above.

Future radar targets:

http://echo.jpl.nasa.gov/~lance/future.radar.nea.periods.html

Past radar targets:

http://echo.jpl.nasa.gov/~lance/radar.nea.periods.html

Arecibo targets:

http://www.naic.edu/~pradar/sched.shtml

http://www.naic.edu/~pradar

Goldstone targets:

http://echo.jpl.nasa.gov/asteroids/goldstone_asteroid_schedule.html

As always, we encourage observations of asteroids even if they have well-established lightcurve parameters and especially if they are lacking good spin axis and/or shape model solutions. Every lightcurve of sufficient quality supports efforts to resolve a number of questions about the evolution of individual asteroids and the general population. For example, pole directions are known for only about 30 NEAs out of a population of 8000. This is hardly sufficient to make even the most general of statements about NEA pole alignments, including whether or not the thermal YORP effect is forcing pole orientations into a limited number of preferred directions (see La Spina et al., 2004). Data from many apparitions can help determine if an asteroid’s rotation rate is being affected by YORP, which can also cause the rotation rate of a smaller, irregularly-shaped asteroid to increase or decrease. See Lowry et al. (2007) and Kaasalainen et al. (2007).

The ephemeris listings for the optical-radar listings include lunar elongation and phase. Phase values range from 0.0 (new) to 1.0 (full). If the value is positive, the moon is waxing – between new and full. If the value is negative, the moon is waning – between full and new. The listing also includes the galactic latitude. When this value is near 0°, the asteroid is likely in rich star fields and so may be difficult to work. It is important to emphasize that the ephemerides that we provide are only guides for when you might observe a given asteroid. Obviously, you should use your discretion and experience to make your observing program as effective as possible.

Once you’ve analyzed your data, it’s important to publish your results. Papers appearing in the Minor Planet Bulletin are indexed in the Astrophysical Data System (ADS) and so can be referenced by others in subsequent papers. It’s also important to make the data available at least on a personal website or upon request.

Funding for Warner and Harris in support of this article is provided by NASA grant NNX10AL35G and by National Science Foundation grant AST-1032896.

Lightcurve Opportunities

Brightest LCDB Data
# Name Date Mag Dec Period Amp U
3748 Tatum 04 01.3 14.8 −1 58.21 0.54 2+
530 Turandot 04 01.8 14.4 +5 19.947 0.10–0.16 2+
1128 Astrid 04 04.9 14.4 −5 10.228 0.29 2+
739 Mandeville 04 06.0 11.9 +21 11.931 0.14 2
2896 Preiss 04 06.2 14.8 −2 24. 0.3 2
1418 Fayeta 04 06.5 14.9 −11 63.641 0.15–0.24 2+
1425 Tuorla 04 06.9 14.1 −3 6.97 0.40 2
5468 Hamatonbetsu 04 08.0 15.0 +10 42.02 0.43 2
2038 Bistro 04 08.3 15.0 +14 7.88 0.24 1
1075 Helina 04 09.0 15.0 +8
1279 Uganda 04 09.4 14.7 −14 23.2 0.16 1
871 Amneris 04 09.6 14.2 −2
1242 Zambesia 04 10.7 14.8 −15 17.305 0.24–1.36 2
936 Kunigunde 04 11.5 14.8 −6 8.8 0.25 2
838 Seraphina 04 15.8 14.6 −18 15.67 0.07–0.30 2
3260 Vizbor 04 18.8 14.7 −17 72.12 0.64 2+
5073 Junttura 04 19.1 14.8 −14
978 Aidamina 04 19.6 14.8 −15 10.099 0.10–0.13 2
1594 Danjon 04 19.9 14.2 +0 >12. 0.03 1
2678 Aavasaksa 04 19.9 14.9 −9 >24. 0.4 1
375 Ursula 04 20.7 12.1 −29 16.83 0.04–0.17 2
924 Toni 04 20.8 14.1 −1 21.1 0.1–0.14 1
555 Norma 04 21.0 14.8 −8 19.55 0.06–0.20 2+
1654 Bojeva 04 21.3 14.9 −13 0.1
806 Gyldenia 04 21.6 14.2 −7 14.45 0.10–0.27 2
331 Etheridgea 04 22.4 14.0 −14 0.05 1
605 Juvisia 04 22.5 14.9 −32 15.93 0.24–0.26 2
4710 Wade 04 22.6 15.0 −20
795 Fini 04 22.8 13.0 −21 9.292 0.02–0.06 1+
1989 Tatry 04 23.0 15.0 −14 131.3 0.22– 0.5 2
1366 Piccolo 04 23.1 14.1 −15 16.57 0.24–0.33 2
309 Fraternitas 04 23.7 13.9 −16 13.2 0.10–0.12 2
1506 Xosa 04 23.8 14.3 −20 292. 0.70 2+
248 Lameia 04 24.0 12.9 −16 12. 0.10 2
4904 Makio 04 24.0 14.9 −17 7.83 0.08 2
681 Gorgo 04 24.4 14.9 −2
2830 Greenwich 04 24.8 14.4 +3 >24. 0.5 2
764 Gedania 04 25.5 14.5 −22 24.975 0.09–0.35 2
645 Agrippina 04 26.1 14.8 −19 32.6 0.11–0.18 2
3761 Romanskaya 04 26.3 14.7 −10 15.32 0.34 2
705 Erminia 04 29.4 12.8 −38 53.96 0.05–0.17 2
1926 Demiddelaer 05 02.0 14.2 +2 18.5 0.15 2
242643 2005 NZ6 05 02.0 14.6 +17
3115 Baily 05 02.8 15.0 −24 16.22 0.08–0.14 2+
2448 Sholokhov 05 03.6 14.3 +12 10.065 0.63 2+
498 Tokio 05 04.5 12.8 −4 30. 0.10–0.18 1
1322 Coppernicus 05 04.5 14.9 −37 3.967 0.04–0.22 2
5247 Krylov 05 06.9 13.8 −12 81.5 1.5 2
395 Delia 05 07.6 13.6 −20 19.71 0.25 2
2880 Nihondaira 05 08.4 14.1 −19 17.97 0.22–0.75 2
548 Kressida 05 09.0 14.7 −12 11.940 0.44 2
1661 Granule 05 09.0 14.5 −21 >24. 0.15 2
470 Kilia 05 10.2 12.5 −7 290. 0.26 2
4437 Yaroshenko 05 11.5 14.5 −17 30. 0.3 1+
879 Ricarda 05 16.0 14.7 −31 82.9 0.37 2
3109 Machin 05 16.6 14.6 −26 20.3 0.46 2
3152 Jones 05 16.6 14.9 −36 0.09
2862 Vavilov 05 18.1 14.7 −18 >800. 0.4 2
609 Fulvia 05 18.6 14.3 −14 >12. 0.05 1+
3760 Poutanen 05 18.9 14.7 −4
2145 Blaauw 05 20.7 15.0 −29 12.141 0.18 2+
3738 Ots 05 20.8 14.0 −22
784 Pickeringia 05 21.3 12.2 −35 13.17 0.20–0.40 2
1558 Jarnefelt 05 21.4 14.9 −9 18.22 0.40 2
1269 Rollandia 05 23.3 14.1 −17 15.4 0.02–0.08 2
1354 Botha 05 23.4 14.1 −26 4. 0.21 1+
275 Sapientia 05 23.9 12.1 −14 14.766 0.05–0.06 2
2906 Caltech 05 28.8 14.9 −6 11.442 0.17 2
746 Marlu 05 28.9 13.8 −45 7.787 0.23 2
254 Augusta 05 29.9 13.6 −28 6. 0.56 2
14425 Fujimimachi 05 30.2 14.9 −25
791 Ani 05 30.3 13.6 +1 16.72 0.17–0.38 2
1001 Gaussia 05 30.3 14.6 −24 9.17 0.04–0.16 2−
3224 Irkutsk 05 31.6 14.0 −19 19.9 0.49 2
1458 Mineura 06 01.2 14.0 −1 36. 0.04 1
1114 Lorraine 06 01.4 14.7 −9 33. 0.16 1
952 Caia 06 01.6 13.9 −33 7.51 0.03–0.13 2
730 Athanasia 06 02.3 14.9 −19
285263 1998 QE2 06 02.3 10.5 −15
379 Huenna 06 02.5 13.1 −20 14.14 0.07–0.09 2
3973 Ogilvie 06 02.8 14.5 −22
1609 Brenda 06 03.0 13.7 −2 19.46 0.16–0.26 2
2942 Cordie 06 06.8 14.3 −13 80. 1.1 2
70410 1999 SE3 06 06.8 15.0 −15
314 Rosalia 06 06.9 14.6 −4 20.43 0.21–0.40 2
2728 Yatskiv 06 07.6 14.6 −19
5405 Neverland 06 08.2 14.6 −41
1057 Wanda 06 10.1 14.8 −23 28.8 0.14–0.41 2
407 Arachne 06 10.3 12.4 −30 22.62 0.31–0.45 2
3527 McCord 06 15.6 14.7 −16 321. 0.10–0.44 2
619 Triberga 06 17.0 13.5 −1 29.412 0.30–0.45 2
14668 1999 CB67 06 17.9 15.0 −20 2.89 0.06 2
2933 Amber 06 18.4 14.9 −17 13.11 0.32 2
1424 Sundmania 06 18.5 14.2 −33 93.73 0.42 2+
2639 Planman 06 19.2 14.6 −27 89.5 0.40 2+
3716 Petzval 06 19.4 14.7 −19
7021 1992 JN1 06 19.4 14.5 −22
2505 Hebei 06 20.0 14.6 −25
450 Brigitta 06 23.9 14.4 −38 10.75 0.18 2
1182 Ilona 06 24.3 14.6 −38 29.8 0.98– 1.2 2
3783 Morris 06 24.9 14.5 −30
3578 Carestia 06 25.0 13.8 −31 9.93 0.13–0.25 2
1367 Nongoma 06 25.6 13.8 −20 0.3 1
3839 Bogaevskij 06 25.6 14.6 −20
249 Ilse 06 26.3 14.4 −38 85.24 0.27–0.33 1
439 Ohio 06 26.7 14.8 +3 19.2 0.24 2
1551 Argelander 06 26.7 14.6 −22
5248 Scardia 06 27.1 14.7 −24
1029 La Plata 06 28.2 14.7 −27 15.31 0.26–0.58 2
10902 1997 WB22 06 28.7 15.0 −23
1032 Pafuri 06 29.3 13.5 −29 >24. 0.15– 0.3 1+
4157 Izu 06 29.3 14.8 −35
2816 Pien 06 29.4 14.8 −24

Low Phase Angle Opportunities

# Name Date α V Dec Period Amp U
490 Veritas 04 01.4 0.87 13.1 −02 7.930 0.33–0.58 3
203 Pompeja 04 01.5 0.69 12.5 −06 24.052 0.10 3
158 Koronis 04 03.8 0.51 13.2 −07 14.218 0.28–0.43 3
119 Althaea 04 10.3 0.22 12.0 −09 11.484 0.23–0.36 3
340 Eduarda 04 11.5 0.27 13.8 −08 8.0062 0.17–0.32 3
417 Suevia 04 12.6 0.29 12.1 −08 7.034 0.10–0.22 3
204 Kallisto 04 13.2 0.23 11.5 −10 19.489 0.09–0.26 3
33 Polyhymnia 04 21.4 0.32 13.1 −13 18.608 0.13–0.20 3
578 Happelia 04 21.8 0.19 12.4 −12 10.061 0.11–0.16 3
331 Etheridgea 04 22.3 0.48 14.0 −14 0.05 1
912 Maritima 04 23.3 0.19 13.2 −12 1332. 0.18 3−
240 Vanadis 04 25.5 0.97 13.3 −10 10.64 0.34 3
223 Rosa 04 27.1 0.18 13.9 −13 20.283 0.06–0.14 3
77 Frigga 04 28.7 0.75 12.5 −16 9.012 0.07–0.20 3
83 Beatrix 05 02.0 0.97 11.0 −17 10.16 0.06–0.27 3
586 Thekla 05 05.3 0.13 13.3 −16 13.670 0.24–0.30 3
147 Protogeneia 05 11.0 0.28 13.0 −19 7.853 0.28 3
82 Alkmene 05 11.6 0.74 11.8 −20 12.999 0.18–0.54 3
106 Dione 05 12.2 0.33 12.4 −17 16.26 0.08 3
49 Pales 05 16.3 0.91 13.0 −22 10.42 0.18 3
243 Ida 05 17.9 0.58 13.9 −21 4.634 0.40–0.86 3
1909 Alekhin 05 21.0 0.45 13.8 −19 148.6 0.45 3
1277 Dolores 05 23.8 0.49 13.3 −22 17.19 0.45 3
121 Hermione 05 25.5 0.45 12.4 −19 5.551 0.04–0.70 3
62 Erato 05 28.7 0.75 13.7 −19 9.2213 0.12–0.17 3
937 Bethgea 05 29.5 0.36 13.3 −21 7.5390 0.12–0.19 3
379 Huenna 06 02.3 0.79 13.1 −20 14.14 0.09 2
675 Ludmilla 06 09.8 0.34 12.3 −24 7.717 0.16–0.38 3
4353 Onizaki 06 10.0 0.03 14.0 −23
150 Nuwa 06 13.8 0.95 12.2 −20 8.1347 0.08–0.31 3
563 Suleika 06 14.5 0.20 12.9 −23 5.69 0.13–0.28 3
683 Lanzia 06 14.7 0.66 12.8 −21 8.630 0.12–0.20 3
1699 Honkasalo 06 15.8 0.35 13.8 −24 11.159 0.17 3−
348 May 06 19.8 0.17 13.6 −23 7.3812 0.16 3
364 Isara 06 25.2 0.87 12.8 −21 9.156 0.30–0.40 3
598 Octavia 06 28.6 0.64 13.1 −25 10.8903 0.28–0.35 3

Shape/Spin Modeling Opportunities

There are two lists here. The first is for objects for which good occultation profiles are available. These are used to constrain the models obtained from lightcurve inversion, eliminating ambiguous solutions and fixing the size of asteroid. Lightcurves are needed for modeling and/or to establish the rotation phase angle at the time the profile was obtained. The second list is of those objects for which another set of lightcurves from one more apparitions will allow either an initial or a refined solution.

Occultation Profiles Available

Brightest LCDB DATA
# Name Date Mag Dec Period Amp U
490 Veritas 04 01.4 13.1 −02 7.930 0.33–0.58 3
530 Turandot 04 01.8 14.4 +05 19.947 0.10–0.16 2+
70 Panopaea 04 09.7 11.6 +01 15.797 0.06–0.12 3
27 Euterpe 04 10.6 9.8 −06 10.4082 0.13–0.21 3
204 Kallisto 04 13.2 11.4 −10 19.489 0.09–0.26 3
386 Siegena 04 19.4 12.4 +07 9.763 0.11–0.18 3
978 Aidamina 04 19.6 14.8 −15 10.099 0.13 2
375 Ursula 04 20.7 12.1 −29 16.83 0.17 2
578 Happelia 04 21.9 12.4 −12 10.061 0.11–0.16 3
498 Tokio 05 04.5 12.8 −04 30. 0.18 1
144 Vibilia 05 04.6 12.1 −12 13.819 0.13–0.20 3
106 Dione 05 12.2 12.4 −17 16.26 0.08 3
49 Pales 05 16.5 12.9 −22 10.42 0.18 3
25 Phocaea 05 16.7 10.0 −03 9.9341 0.03–0.25 3
334 Chicago 05 18.3 12.9 −14 7.361 0.15–0.67 3
757 Portlandia 05 28.4 13.6 −31 6.5837 0.24–0.45 3
791 Ani 05 30.3 13.6 +01 16.72 0.17–0.38 2

Inversion Modeling Candidates

Brightest LCDB Data
# Name Date Mag Dec Period Amp U
158 Koronis 04 03.8 13.2 −07 14.218 0.28 0.43 3
391 Ingeborg 04 04.9 15.0 −16 26.391 0.22 0.79 3
2896 Preiss 04 06.2 14.8 −02 24. 0.3 2
1307 Cimmeria 04 06.7 14.9 −10 2.820 0.31 3
1860 Barbarossa 04 07.8 15.0 +07 3.255 0.28 3
1378 Leonce 04 09.9 14.1 −05 4.3250 0.49 0.50 3
936 Kunigunde 04 11.5 14.8 −06 8.80 0.25 2
2678 Aavasaksa 04 19.9 14.9 −09 24. 0.4 1
1366 Piccolo 04 23.1 14.1 −15 16.57 0.24 0.33 2
1023 Thomana 04 25.5 14.6 −08 17.56 0.27 0.36 3−
3761 Romanskaya 04 26.3 14.7 −10 15.32 0.34 2
2276 Warck 04 28.0 14.5 −14 4.054 0.20 3
7360 Moberg 04 30.7 14.6 −25 4.5842 0.38 0.41 3
586 Thekla 05 05.3 13.2 −16 13.670 0.22 0.30 3
5247 Krylov 05 06.9 13.8 −12 81.5 1.5 2
461 Saskia 05 10.9 15.0 −16 7.348 0.25 0.36 3
2911 Miahelena 05 11.6 14.9 −03 4.19 0.56 3−
247 Eukrate 05 13.1 13.2 −46 12.093 0.10 0.14 3
1277 Dolores 05 23.9 13.2 −22 17.19 0.45 3
254 Augusta 05 29.9 13.6 −28 6.0 0.56 2
1013 Tombecka 06 03.6 14.3 −36 6.053 0.44 0.50 3
373 Melusina 06 08.6 13.7 −44 12.97 0.20 0.25 3
407 Arachne 06 10.3 12.4 −30 22.62 0.31 0.45 2
1505 Koranna 06 13.4 14.0 −17 4.451 0.55 3
698 Ernestina 06 13.7 15.0 −35 5.0363 0.30 0.69 3
1150 Achaia 06 15.5 14.4 −19 60.99 0.72 3
523 Ada 06 15.6 14.5 −23 10.03 0.52 0.70 3
5754 1992 FR2 06 16.6 14.8 −20 8.898 0.97 3
706 Hirundo 06 18.9 14.6 −44 22.027 0.39 0.9 3
361 Bononia 06 23.4 14.8 −39 13.83 0.25 3
1182 Ilona 06 24.3 14.6 −38 29.8 0.98 1.2 2
364 Isara 06 25.3 12.7 −21 9.156 0.30 0.40 3
480 Hansa 06 25.8 12.3 −02 16.19 0.20 0.58 3
553 Kundry 06 29.1 15.0 −27 12.605 0.41 0.61 3

Radar-Optical Opportunities

Use the ephemerides below as a guide to your best chances for observing, but remember that photometry may be possible before and/or after the ephemerides given below. Some of the targets may be too faint to do accurate photometry with backyard telescopes. However, accurate astrometry using techniques such as “stack and track” is still possible and can be helpful for those asteroids where the position uncertainties are significant. Note that the intervals in the ephemerides are not always the same and that geocentric positions are given. Use these web sites to generate updated and topocentric positions:

MPC: http://www.minorplanetcenter.org/iau/MPEph/MPEph.html JPL: http://ssd.jpl.nasa.gov/?horizons

In the ephemerides below, ED and SD are, respectively, the Earth and Sun distances (AU), V is the estimated Johnson V magnitude, and α is the phase angle. SE and ME are the great circles distances (in degrees) of the Sun and Moon from the asteroid. MP is the lunar phase and GB is the galactic latitude. “PHA” in the header indicates that the object is a “potentially hazardous asteroid”, meaning that at some (long distant) time, its orbit might take it very close to Earth.

Some of the objects below are repeats from the previous issue of the Minor Planet Bulletin and those with opportunities extending into the next quarter may be featured again in the next.

2062 Aten (Mar-May, H = 16.8)

The orbits of the Aten asteroids lie mostly within Earth’s and so are never very far from the Sun in the sky. Therefore, it should be no surprise that the rotation period for the namesake of the group is not well-known. Mottola et al. (1995) reported a period of 40.77 h, but that is the only entry with a period in the Lightcurve Database (Warner et al., 2009; U = 2). Despite the difficulties, a successful campaign would be of enormous benefit to radar and modeling efforts.

DATE RA Dec ED SD V α SE ME MP GB
03/20 04 18.8 +43 17 0.57 0.99 18.1 74.0 72 33 +0.53 −5
03/30 04 43.6 +47 16 0.58 0.96 18.2 77.0 69 140 −0.91 +1
04/09 05 10.0 +50 48 0.57 0.92 18.2 80.6 65 78 −0.02 +6
04/19 05 37.2 +53 51 0.55 0.89 18.2 85.0 62 51 +0.55 +12
04/29 06 03.0 +56 24 0.51 0.86 18.2 90.6 59 143 −0.86 +16
05/09 06 24.3 +58 20 0.47 0.83 18.3 97.8 55 63 −0.01 +19
05/19 06 35.4 +59 27 0.41 0.81 18.4 106.9 50 71 +0.58 +21
05/29 06 28.8 +59 03 0.35 0.80 18.8 118.7 44 132 −0.80 +20

1685 Toro (February-April, H = 14.2)

The rotation period of this NEA is well established at 10.195 h. However, it is a good candidate for YORP spin-up/down, meaning that data from each succeeding apparition can be used to determine if the period is changing slowly over time.

It’s important to note that the shape and amplitude of the curve can change significantly over an apparition, e.g., see Warner, http://www.minorplanetobserver.com/pdolc/A1685_2012.HTM, which also shows that the synodic period can change over a relatively short time. If you plan a protracted campaign, it would be good to subdivide data into blocks of dates, each having a relatively small range of phase angles and treating them as stand-alone sets. Putting all the data into a single set may not only affect the final solution but hide critical data about the lightcurve shape and amplitude vital to good modeling.

DATE RA Dec ED SD V α SE ME MP GB
04/01 12 16.2 −24 21 0.82 1.79 15.8 11.5 159 62 −0.74 +38
04/11 11 58.8 −21 38 0.86 1.82 15.9 12.6 157 154 +0.00 +40
04/21 11 46.2 −18 48 0.92 1.85 16.3 16.6 148 37 +0.74 +41
05/01 11 38.8 −16 14 1.00 1.88 16.6 21.0 138 110 −0.66 +43
05/11 11 36.2 −14 10 1.10 1.90 17.0 24.7 128 118 +0.01 +45
05/21 11 37.8 −12 38 1.21 1.92 17.3 27.4 119 11 +0.78 +46
05/31 11 42.7 −11 37 1.33 1.93 17.6 29.4 111 149 −0.59 +48
06/10 11 50.3 −11 03 1.45 1.95 17.8 30.6 103 88 +0.02 +49

14 Irene (Apr-Jun, H = 6.30)

Despite its low number, the rotation period for this inner main-belt asteroid wasn’t firmly established until the work by Pilcher (2009) found 15.028 h. A shape model has been developed (Hanus et al., 2011) but additional observations at this apparition and beyond will serve to refine that model. In any event, having a lightcurve from around the same time as radar observations helps with analysis of the radar data.

DATE RA Dec ED SD V α SE ME MP GB
04/01 12 14.5 +16 24 1.20 2.16 9.0 9.9 158 76 −0.74 + 76
04/11 12 06.8 +16 33 1.23 2.16 9.2 13.6 150 143 +0.00 +75
04/21 12 01.1 +16 12 1.29 2.16 9.4 17.3 140 31 +0.74 +74
05/01 11 58.2 +15 24 1.36 2.16 9.7 20.5 131 116 −0.66 +73
05/11 11 58.1 +14 13 1.45 2.16 9.9 23.1 123 112 +0.01 +72
05/21 12 00.9 +12 44 1.54 2.17 10.1 25.1 115 18 +0.78 +71
05/31 12 06.2 +11 01 1.65 2.17 10.3 26.5 107 149 −0.59 +71
06/10 12 13.7 +09 09 1.76 2.18 10.4 27.3 100 86 +0.02 +70

2002 TR190 (Apr-May, H = 19.4)

There is no rotation period given in the LCDB for this near-Earth asteroid (NEA). The estimated size is about 400 meters. As with many objects during the middle of a year, observers in the Southern Hemisphere will have the best observing circumstances.

DATE RA Dec ED SD V α SE ME MP GB
04/01 19 09.9 +01 01 0.13 0.99 18.2 89.6 83 41 −0.74 −4
04/06 19 13.8 −15 50 0.12 1.00 17.7 85.0 88 35 −0.20 −12
04/11 19 19.3 −36 01 0.11 1.02 17.4 79.2 95 102 + 0.00 −21
04/16 19 27.2 −55 30 0.12 1.03 17.4 73.8 100 140 + 0.27 −27
04/21 19 39.9 −70 56 0.14 1.04 17.7 70.1 102 112 +0.74 −29
04/26 20 09.9 −81 57 0.17 1.06 18.0 67.8 103 75 −1.00 −30
05/01 01 20.7 −88 30 0.20 1.07 18.3 66.2 104 73 −0.66 −29
05/06 06 38.4 −84 15 0.23 1.08 18.7 65.0 103 95 −0.15 −27

(7888) 1993 UC (Apr-Jun, H = 15.2)

Pravec et al. (1996) found a period of 2.340 h for this asteroid along with an amplitude of 0.10 mag. This makes it a good candidate for being a binary asteroid, so extended higher-precision observations should be made over at least three nights to look for signs of eclipse or occultation events. The estimated diameter of the NEA is 2.7 km.

DATE RA Dec ED SD V α SE ME MP GB
04/01 14 09.9 +82 06 0.19 1.03 14.4 76.3 93 104 −0.74 +35
04/11 14 14.1 +65 44 0.29 1.12 14.9 60.0 105 102 + 0.00 +49
04/21 14 12.7 +56 51 0.40 1.21 15.5 50.6 111 70 +0.74 +57
05/01 14 11.7 +50 32 0.52 1.31 16.1 44.6 114 97 −0.66 +62
05/11 14 11.9 +45 14 0.64 1.41 16.5 40.4 116 111 + 0.01 +66
05/21 14 13.8 +40 26 0.76 1.50 17.0 37.5 115 54 +0.78 +68
05/31 14 17.4 +35 57 0.89 1.60 17.4 35.4 114 115 −0.59 +70
06/10 14 22.7 +31 45 1.03 1.69 17.8 33.8 112 104 + 0.02 +70

4034 Vishnu (Apr-May, H = 18.3)

The diameter is about 650 meters for this NEA. The period is about 13.5 hours Mottola (2011).

DATE RA Dec ED SD V α SE ME MP GB
04/01 20 47.1 +31 39 0.15 0.93 18.3 110.7 61 78 −0.74 −7
04/08 19 26.8 +38 47 0.16 0.99 17.4 89.2 82 65 −0.06 +10
04/15 18 06.9 +41 49 0.17 1.04 17.1 71.5 99 116 + 0.19 +26
04/22 16 59.1 +41 22 0.20 1.10 17.1 58.0 112 90 + 0.82 +38
04/29 16 07.7 +38 51 0.23 1.14 17.2 48.5 122 62 −0.86 +48
05/06 15 30.7 +35 24 0.27 1.19 17.5 42.4 127 116 −0.15 +55
05/13 15 04.9 +31 37 0.31 1.23 17.8 38.9 130 116 + 0.08 +61
05/20 14 47.5 +27 49 0.36 1.27 18.1 37.4 130 57 + 0.68 +64

(242643) 2005 NZ6 (May, H = 17.6, PHA)

The JPL NEO site gives a close approach of about 25 lunar distances (LD) on April 29. There is no rotation period in the LCDB for the 900 meter NEA. Given the size, it’s unlikely this is a superfast rotator, i.e., P < 2 h.

DATE RA Dec ED SD V α SE ME MP GB
04/30 08 09.9 +28 21 0.06 1.00 15.1 97.3 79 155 −0.77 +29
05/01 09 13.3 +22 32 0.07 1.01 14.8 82.7 93 155 −0.66 +41
05/02 10 00.5 +16 45 0.08 1.03 14.7 70.9 105 157 −0.55 +49
05/03 10 34.3 +11 56 0.09 1.05 14.7 62.2 113 162 −0.44 +54
05/04 10 58.8 +08 09 0.11 1.06 14.9 55.7 119 168 −0.33 +57
05/05 11 17.0 +05 14 0.12 1.08 15.1 51.0 124 175 −0.24 +59
05/06 11 31.0 +02 58 0.14 1.10 15.3 47.5 127 172 −0.15 +59
05/07 11 41.9 +01 10 0.16 1.11 15.5 44.8 129 163 −0.09 +59

(163364) 2002 OD20 (May-Jun, H = 18.8, PHA)

This NEA has an estimated diameter of about 500 meters. A close approach of about 15 LD comes on May 23. The closest approach through 2200 is in 2131 May at about 10 LD. The rotation rate is not known.

DATE RA Dec ED SD V α SE ME MP GB
05/15 06 55.3 −09 51 0.06 0.98 17.5 118.0 59 28 +0.21 −4
05/20 08 21.9 −22 28 0.04 1.00 15.6 98.1 79 48 +0.68 +8
05/25 11 20.2 −34 53 0.04 1.03 14.1 61.6 116 63 +1.00 +24
05/30 13 55.4 −31 42 0.05 1.06 14.0 33.4 145 99 −0.69 +29
06/04 15 04.4 −26 03 0.08 1.09 14.5 22.1 156 150 −0.19 +28
06/09 15 37.6 −22 26 0.11 1.12 15.1 19.0 159 155 +0.00 +26
06/14 15 56.8 −20 12 0.14 1.14 15.7 19.1 158 100 +0.24 +25
06/19 16 09.8 −18 47 0.17 1.17 16.3 20.4 156 38 +0.74 +24

(285263) 1998 QE2 (Apr-Jun, H = 16.4, PHA)

Of three close approaches through 2200, this is the closest, but it’s hardly a near-miss. On May 31 it will be about 15 LD from Earth. The rotation period for the 1.5 km NEA is not known.

DATE RA Dec ED SD V α SE ME MP GB
04/01 09 04.5 −34 17 0.33 1.21 16.2 44.9 122 98 −0.74 +8
04/11 08 55.1 −34 43 0.28 1.15 16.0 52.5 115 112 +0.00 +7
04/21 08 52.5 −34 59 0.23 1.10 15.7 59.9 108 45 +0.74 +6
05/01 08 58.7 −35 28 0.18 1.07 15.3 66.5 104 123 −0.66 +7
05/11 09 19.5 −36 25 0.13 1.05 14.7 70.9 102 94 +0.01 +9
05/21 10 22.7 −37 56 0.08 1.04 13.4 67.7 108 41 +0.78 +16
05/31 14 17.1 −24 36 0.04 1.05 10.9 29.8 149 110 −0.59 +34
06/10 17 45.2 +11 32 0.07 1.07 12.2 33.3 145 148 +0.02 +20

(152756) 1999 JV3 (May-Jun, H = 18.8)

There is no rotation period in the LCDB for this 500 meter NEA. The next close approach is not until 2088 and even then at the safe distance of 34 LD. Others before 2200 are 25 LD or more.

DATE RA Dec ED SD V α SE ME MP GB
05/10 17 08.2 −15 21 0.27 1.25 17.5 23.1 151 151 +0.00 +15
05/15 17 15.0 −09 22 0.23 1.22 17.1 22.8 152 149 +0.21 +17
05/20 17 22.4 −01 19 0.19 1.18 16.8 25.2 150 91 +0.68 +19
05/25 17 31.2 +09 20 0.17 1.15 16.6 31.6 143 37 +1.00 +22
05/30 17 42.1 +22 43 0.15 1.12 16.6 42.3 132 60 −0.69 +25
06/04 17 57.1 +37 55 0.14 1.09 16.8 55.8 118 99 −0.19 +26
06/09 18 19.6 +52 55 0.15 1.06 17.2 69.6 103 106 +0.00 +26
06/14 18 57.8 +65 42 0.16 1.03 17.7 81.7 89 100 +0.24 +24

(17188) 1999 WC2 (May-Jul, H = 16.4)

To repeat a common refrain, there is no period in the LCDB for this asteroid, a 1.6 km NEA that comes no closer than about 30 LD through 2200.

DATE RA Dec ED SD V α SE ME MP GB
05/15 04 35.5 −32 42 0.34 0.86 17.7 107.2 54 64 +0.21 −42
05/25 04 00.8 −38 53 0.24 0.92 17.1 107.3 60 122 +1.00 −49
06/04 02 15.8 −46 45 0.14 0.99 15.5 94.7 77 59 −0.19 −64
06/14 21 34.1 −32 50 0.10 1.08 13.5 49.7 126 157 +0.24 −47
06/24 19 15.6 −02 24 0.17 1.17 14.0 22.6 154 18 −0.99 −6
07/04 18 33.1 +07 42 0.28 1.26 15.3 24.4 149 129 −0.16 +8
07/14 18 15.8 +10 50 0.41 1.36 16.3 27.2 142 99 +0.28 +13
07/24 18 09.0 +11 30 0.54 1.45 17.1 28.9 136 52 −0.98 +15

(163249) 2002 GT (May-Jul, H = 18.5)

In 2172 October, this NEA will be about 8 LD from Earth. That’s the closest approach through 2200. Remember that establishing YORP spin up/down requires having good lightcurves over many apparitions, so use this opportunity to start building the data set for some future modeler. The estimated size is 600 meters. No period has been recorded in the LCDB.

DATE RA Dec ED SD V α SE ME MP GB
05/01 17 12.5 −11 05 0.37 1.32 18.2 28.8 141 34 −0.66 +16
05/11 17 22.9 −05 51 0.30 1.27 17.6 26.7 146 155 +0.01 +17
05/21 17 31.9 +01 47 0.23 1.21 17.0 27.0 147 81 +0.78 +18
05/31 17 40.7 +12 51 0.18 1.16 16.5 33.0 141 67 −0.59 +21
06/10 17 51.7 +28 36 0.14 1.11 16.3 46.5 128 131 +0.02 +25
06/20 18 12.6 +49 20 0.12 1.06 16.4 66.4 107 81 +0.83 +26
06/30 19 22.6 +71 51 0.12 1.01 17.1 88.5 85 80 −0.52 +23
07/10 01 50.9 +79 38 0.14 0.97 18.0 106.0 67 78 +0.03 +17

Contributor Information

Brian D. Warner, Palmer Divide Observatory/MoreData! 17995 Bakers Farm Rd. Colorado Springs, CO 80908 USA

Alan W. Harris, MoreData! La Cañada, CA 91011-3364 USA

Petr Pravec, Astronomical Institute CZ-25165 Ondřejov, CZECH REPUBLIC.

Josef Ďurech, Astronomical Institute Charles University in Prague 18000 Prague, CZECH REPUBLIC.

Lance A.M. Benner, Jet Propulsion Laboratory Pasadena, CA 91109-8099 USA

References

  1. Hanuš J, Brož M, Durech J, Warner BD, Brinsfield J, Durkee R, Higgins D, Koff RA, Oey J, Pilcher F, Stephens R, Strabla LP, Ulisse Q, Girelli R (2011). “An anisotropic distribution of spin vectors in asteroid families.” Astron. Astrophys 559, A134. [Google Scholar]
  2. Kaasalainen M; Ďurech J; Warner BD; Krugly Yu.N.; Gaftonyuk NM (2007). “Acceleration of the rotation of asteroid 1862 Apollo by radiation torques.” Nature 446, 420–422. [DOI] [PubMed] [Google Scholar]
  3. La Spina A; Paolicchi P; Kryszczyńska A; Pravec P (2004). “Retrograde spins of near-Earth asteroids from the Yarkovsky effect.” Nature 428, 400–401 [DOI] [PubMed] [Google Scholar]
  4. Lowry SC; Fitzsimmons A; Pravec P; Vokrouhlický D; Boehnhardt H; Taylor PA; Margot J−.; Galád A; Irwin M; Irwin J; Kusnirák P (2007). “Direct Detection of the Asteroidal YORP Effect.” Science 316, 272–274 [DOI] [PubMed] [Google Scholar]
  5. Mottola S; De Angelis G; Di Martino M; Erikson A; Hahn G; Neukum G (1995). “The near-earth objects follow-up program: First results.” Icarus 117, 62–70 [Google Scholar]
  6. Mottola S; Di Martino M; Erikson A; Gonano-Beurer M; Carbognani A; Carsenty U; Hahn G; Schober H-J; Lahulla F; Delbò M; Lagerkvist C-I (2011). “Rotational Properties of Jupiter Trojans. I. Light Curves of 80 Objects.” Astron. J 141, A170. [Google Scholar]
  7. Pilcher F (2009). “New Lightcurves of 8 Flora, 13 Egeria, 14 Irene, 25 Phocaea 40 Harmonia, 74 Galatea, and 122 Gerda.” Minor Planet Bull. 36, 133–136. [Google Scholar]
  8. Pravec P; Sarounova L; Wolf M (1996). “Lightcurves of 7 Near-Earth Asteroids.” Icarus 124, 471–482. [Google Scholar]
  9. Pravec P, Vokrouhlicky D, Polishook D, Scheeres DJ, Harris AW, Galad A, Vaduvescu O, Pozo F, Barr A, Longa P, and 16 coauthors. (2010). “Formation of asteroid pairs by rotational fission,” Nature 466, 1085–1088. [DOI] [PubMed] [Google Scholar]
  10. Warner BD, Harris AW, Pravec P (2009). “The Asteroid Lightcurve Database.” Icarus 202, 134–146. Updated 2013 Feb. http://www.minorplanet.info/lightcurvedatabase.html [Google Scholar]

RESOURCES