Abstract
We present lists of asteroid photometry opportunities for objects reaching a favorable apparition and have no or poorly-defined lightcurve parameters. Additional data on these objects will help with shape and spin axis modeling via lightcurve inversion. We also include lists of objects that will be the target of radar observations. Lightcurves for these objects can help constrain pole solutions and/or remove rotation period ambiguities that might not come from using radar data alone.
We present lists of “targets of opportunity” for the period 2013 April-June. For background on the program details for each of the opportunity lists, refer to previous issues, e.g., Minor Planet Bulletin 36, 188. In the first three sets of tables, “Dec” is the declination and “U” is the quality code of the lightcurve. See the asteroid lightcurve data base (LCDB) documentation for an explanation of the U code:
http://www.minorplanet.info/lightcurvedatabase.html
Objects with U = 1 should be given higher priority over those rated U = 2 or 2+ but not necessarily over those with no period. On the other hand, do not overlook asteroids with U = 2/2+ on the assumption that the period is sufficiently established. Regardless, do not let the existing period influence your analysis since even high quality ratings have been proven wrong at times. Note that the lightcurve amplitude in the tables could be more or less than what’s given. Use the listing only as a guide.
The first list is an abbreviated list of those asteroids reaching V < 14.5 at brightest during the period and have either no or poorly-constrained lightcurve parameters.
The goal for these asteroids is to find a well-determined rotation rate. The target list generator on the CALL web site allows you to create custom lists for objects reaching V ≤ 18.0 during any month in the current year, e.g., limiting the results by magnitude and declination.
http://www.minorplanet.info/PHP/call_OppLCDBQuery.php
In a general note, small objects with periods up to 4 hours or even longer are possible binaries. For longer periods (4–6 hours or so), the odds of a binary may be less, but the bonus is that the size of the secondary, if it exists, is likely larger (see Pravec et al. (2010), Nature 466, 1085–1088), thus eclipses, if they occur, will be deeper and easier to detect.
The Low Phase Angle list includes asteroids that reach very low phase angles. The “α” column is the minimum solar phase angle for the asteroid. Getting accurate, calibrated measurements (usually V band) at or very near the day of opposition can provide important information for those studying the “opposition effect.” You will have the best chance of success working objects with low amplitude and periods that allow covering, e.g., a maximum, every night. Objects with large amplitudes and/or long periods are much more difficult for phase angle studies since, for proper analysis, the data have to be reduced to the average magnitude of the asteroid for each night. Without knowing the period and/or the amplitude at the time, that reduction becomes highly uncertain. As an aside, some use the maximum light to find the phase slope parameter (G). However, this can produce a significantly different value for both H and G versus using average light, which is the method used for values listed by the Minor Planet Center.
The third list is of those asteroids needing only a small number of lightcurves to allow spin axis and/or shape modeling. Those doing work for modeling should contact Josef Ďurech at the email address above and/or visit the Database of Asteroid Models from Inversion Techniques (DAMIT) web site for existing data and models:
http://astro.troja.mff.cuni.cz/projects/asteroids3D
The fourth list gives a brief ephemeris for planned radar targets. Supporting optical observations to determine the lightcurve period, amplitude, and shape are needed to supplement the radar data. High-precision work, 0.01–0.02 mag, is preferred, especially if the object is a known or potential binary. Those obtaining lightcurves in support of radar observations should contact Dr. Benner directly at the email given above.
Future radar targets:
http://echo.jpl.nasa.gov/~lance/future.radar.nea.periods.html
Past radar targets:
http://echo.jpl.nasa.gov/~lance/radar.nea.periods.html
Arecibo targets:
http://www.naic.edu/~pradar/sched.shtml
Goldstone targets:
http://echo.jpl.nasa.gov/asteroids/goldstone_asteroid_schedule.html
As always, we encourage observations of asteroids even if they have well-established lightcurve parameters and especially if they are lacking good spin axis and/or shape model solutions. Every lightcurve of sufficient quality supports efforts to resolve a number of questions about the evolution of individual asteroids and the general population. For example, pole directions are known for only about 30 NEAs out of a population of 8000. This is hardly sufficient to make even the most general of statements about NEA pole alignments, including whether or not the thermal YORP effect is forcing pole orientations into a limited number of preferred directions (see La Spina et al., 2004). Data from many apparitions can help determine if an asteroid’s rotation rate is being affected by YORP, which can also cause the rotation rate of a smaller, irregularly-shaped asteroid to increase or decrease. See Lowry et al. (2007) and Kaasalainen et al. (2007).
The ephemeris listings for the optical-radar listings include lunar elongation and phase. Phase values range from 0.0 (new) to 1.0 (full). If the value is positive, the moon is waxing – between new and full. If the value is negative, the moon is waning – between full and new. The listing also includes the galactic latitude. When this value is near 0°, the asteroid is likely in rich star fields and so may be difficult to work. It is important to emphasize that the ephemerides that we provide are only guides for when you might observe a given asteroid. Obviously, you should use your discretion and experience to make your observing program as effective as possible.
Once you’ve analyzed your data, it’s important to publish your results. Papers appearing in the Minor Planet Bulletin are indexed in the Astrophysical Data System (ADS) and so can be referenced by others in subsequent papers. It’s also important to make the data available at least on a personal website or upon request.
Funding for Warner and Harris in support of this article is provided by NASA grant NNX10AL35G and by National Science Foundation grant AST-1032896.
Lightcurve Opportunities
Brightest | LCDB Data | |||||||
---|---|---|---|---|---|---|---|---|
# | Name | Date | Mag | Dec | Period | Amp | U | |
3748 | Tatum | 04 | 01.3 | 14.8 | −1 | 58.21 | 0.54 | 2+ |
530 | Turandot | 04 | 01.8 | 14.4 | +5 | 19.947 | 0.10–0.16 | 2+ |
1128 | Astrid | 04 | 04.9 | 14.4 | −5 | 10.228 | 0.29 | 2+ |
739 | Mandeville | 04 | 06.0 | 11.9 | +21 | 11.931 | 0.14 | 2 |
2896 | Preiss | 04 | 06.2 | 14.8 | −2 | 24. | 0.3 | 2 |
1418 | Fayeta | 04 | 06.5 | 14.9 | −11 | 63.641 | 0.15–0.24 | 2+ |
1425 | Tuorla | 04 | 06.9 | 14.1 | −3 | 6.97 | 0.40 | 2 |
5468 | Hamatonbetsu | 04 | 08.0 | 15.0 | +10 | 42.02 | 0.43 | 2 |
2038 | Bistro | 04 | 08.3 | 15.0 | +14 | 7.88 | 0.24 | 1 |
1075 | Helina | 04 | 09.0 | 15.0 | +8 | |||
1279 | Uganda | 04 | 09.4 | 14.7 | −14 | 23.2 | 0.16 | 1 |
871 | Amneris | 04 | 09.6 | 14.2 | −2 | |||
1242 | Zambesia | 04 | 10.7 | 14.8 | −15 | 17.305 | 0.24–1.36 | 2 |
936 | Kunigunde | 04 | 11.5 | 14.8 | −6 | 8.8 | 0.25 | 2 |
838 | Seraphina | 04 | 15.8 | 14.6 | −18 | 15.67 | 0.07–0.30 | 2 |
3260 | Vizbor | 04 | 18.8 | 14.7 | −17 | 72.12 | 0.64 | 2+ |
5073 | Junttura | 04 | 19.1 | 14.8 | −14 | |||
978 | Aidamina | 04 | 19.6 | 14.8 | −15 | 10.099 | 0.10–0.13 | 2 |
1594 | Danjon | 04 | 19.9 | 14.2 | +0 | >12. | 0.03 | 1 |
2678 | Aavasaksa | 04 | 19.9 | 14.9 | −9 | >24. | 0.4 | 1 |
375 | Ursula | 04 | 20.7 | 12.1 | −29 | 16.83 | 0.04–0.17 | 2 |
924 | Toni | 04 | 20.8 | 14.1 | −1 | 21.1 | 0.1–0.14 | 1 |
555 | Norma | 04 | 21.0 | 14.8 | −8 | 19.55 | 0.06–0.20 | 2+ |
1654 | Bojeva | 04 | 21.3 | 14.9 | −13 | 0.1 | ||
806 | Gyldenia | 04 | 21.6 | 14.2 | −7 | 14.45 | 0.10–0.27 | 2 |
331 | Etheridgea | 04 | 22.4 | 14.0 | −14 | 0.05 | 1 | |
605 | Juvisia | 04 | 22.5 | 14.9 | −32 | 15.93 | 0.24–0.26 | 2 |
4710 | Wade | 04 | 22.6 | 15.0 | −20 | |||
795 | Fini | 04 | 22.8 | 13.0 | −21 | 9.292 | 0.02–0.06 | 1+ |
1989 | Tatry | 04 | 23.0 | 15.0 | −14 | 131.3 | 0.22– 0.5 | 2 |
1366 | Piccolo | 04 | 23.1 | 14.1 | −15 | 16.57 | 0.24–0.33 | 2 |
309 | Fraternitas | 04 | 23.7 | 13.9 | −16 | 13.2 | 0.10–0.12 | 2 |
1506 | Xosa | 04 | 23.8 | 14.3 | −20 | 292. | 0.70 | 2+ |
248 | Lameia | 04 | 24.0 | 12.9 | −16 | 12. | 0.10 | 2 |
4904 | Makio | 04 | 24.0 | 14.9 | −17 | 7.83 | 0.08 | 2 |
681 | Gorgo | 04 | 24.4 | 14.9 | −2 | |||
2830 | Greenwich | 04 | 24.8 | 14.4 | +3 | >24. | 0.5 | 2 |
764 | Gedania | 04 | 25.5 | 14.5 | −22 | 24.975 | 0.09–0.35 | 2 |
645 | Agrippina | 04 | 26.1 | 14.8 | −19 | 32.6 | 0.11–0.18 | 2 |
3761 | Romanskaya | 04 | 26.3 | 14.7 | −10 | 15.32 | 0.34 | 2 |
705 | Erminia | 04 | 29.4 | 12.8 | −38 | 53.96 | 0.05–0.17 | 2 |
1926 | Demiddelaer | 05 | 02.0 | 14.2 | +2 | 18.5 | 0.15 | 2 |
242643 | 2005 NZ6 | 05 | 02.0 | 14.6 | +17 | |||
3115 | Baily | 05 | 02.8 | 15.0 | −24 | 16.22 | 0.08–0.14 | 2+ |
2448 | Sholokhov | 05 | 03.6 | 14.3 | +12 | 10.065 | 0.63 | 2+ |
498 | Tokio | 05 | 04.5 | 12.8 | −4 | 30. | 0.10–0.18 | 1 |
1322 | Coppernicus | 05 | 04.5 | 14.9 | −37 | 3.967 | 0.04–0.22 | 2 |
5247 | Krylov | 05 | 06.9 | 13.8 | −12 | 81.5 | 1.5 | 2 |
395 | Delia | 05 | 07.6 | 13.6 | −20 | 19.71 | 0.25 | 2 |
2880 | Nihondaira | 05 | 08.4 | 14.1 | −19 | 17.97 | 0.22–0.75 | 2 |
548 | Kressida | 05 | 09.0 | 14.7 | −12 | 11.940 | 0.44 | 2 |
1661 | Granule | 05 | 09.0 | 14.5 | −21 | >24. | 0.15 | 2 |
470 | Kilia | 05 | 10.2 | 12.5 | −7 | 290. | 0.26 | 2 |
4437 | Yaroshenko | 05 | 11.5 | 14.5 | −17 | 30. | 0.3 | 1+ |
879 | Ricarda | 05 | 16.0 | 14.7 | −31 | 82.9 | 0.37 | 2 |
3109 | Machin | 05 | 16.6 | 14.6 | −26 | 20.3 | 0.46 | 2 |
3152 | Jones | 05 | 16.6 | 14.9 | −36 | 0.09 | ||
2862 | Vavilov | 05 | 18.1 | 14.7 | −18 | >800. | 0.4 | 2 |
609 | Fulvia | 05 | 18.6 | 14.3 | −14 | >12. | 0.05 | 1+ |
3760 | Poutanen | 05 | 18.9 | 14.7 | −4 | |||
2145 | Blaauw | 05 | 20.7 | 15.0 | −29 | 12.141 | 0.18 | 2+ |
3738 | Ots | 05 | 20.8 | 14.0 | −22 | |||
784 | Pickeringia | 05 | 21.3 | 12.2 | −35 | 13.17 | 0.20–0.40 | 2 |
1558 | Jarnefelt | 05 | 21.4 | 14.9 | −9 | 18.22 | 0.40 | 2 |
1269 | Rollandia | 05 | 23.3 | 14.1 | −17 | 15.4 | 0.02–0.08 | 2 |
1354 | Botha | 05 | 23.4 | 14.1 | −26 | 4. | 0.21 | 1+ |
275 | Sapientia | 05 | 23.9 | 12.1 | −14 | 14.766 | 0.05–0.06 | 2 |
2906 | Caltech | 05 | 28.8 | 14.9 | −6 | 11.442 | 0.17 | 2 |
746 | Marlu | 05 | 28.9 | 13.8 | −45 | 7.787 | 0.23 | 2 |
254 | Augusta | 05 | 29.9 | 13.6 | −28 | 6. | 0.56 | 2 |
14425 | Fujimimachi | 05 | 30.2 | 14.9 | −25 | |||
791 | Ani | 05 | 30.3 | 13.6 | +1 | 16.72 | 0.17–0.38 | 2 |
1001 | Gaussia | 05 | 30.3 | 14.6 | −24 | 9.17 | 0.04–0.16 | 2− |
3224 | Irkutsk | 05 | 31.6 | 14.0 | −19 | 19.9 | 0.49 | 2 |
1458 | Mineura | 06 | 01.2 | 14.0 | −1 | 36. | 0.04 | 1 |
1114 | Lorraine | 06 | 01.4 | 14.7 | −9 | 33. | 0.16 | 1 |
952 | Caia | 06 | 01.6 | 13.9 | −33 | 7.51 | 0.03–0.13 | 2 |
730 | Athanasia | 06 | 02.3 | 14.9 | −19 | |||
285263 | 1998 QE2 | 06 | 02.3 | 10.5 | −15 | |||
379 | Huenna | 06 | 02.5 | 13.1 | −20 | 14.14 | 0.07–0.09 | 2 |
3973 | Ogilvie | 06 | 02.8 | 14.5 | −22 | |||
1609 | Brenda | 06 | 03.0 | 13.7 | −2 | 19.46 | 0.16–0.26 | 2 |
2942 | Cordie | 06 | 06.8 | 14.3 | −13 | 80. | 1.1 | 2 |
70410 | 1999 SE3 | 06 | 06.8 | 15.0 | −15 | |||
314 | Rosalia | 06 | 06.9 | 14.6 | −4 | 20.43 | 0.21–0.40 | 2 |
2728 | Yatskiv | 06 | 07.6 | 14.6 | −19 | |||
5405 | Neverland | 06 | 08.2 | 14.6 | −41 | |||
1057 | Wanda | 06 | 10.1 | 14.8 | −23 | 28.8 | 0.14–0.41 | 2 |
407 | Arachne | 06 | 10.3 | 12.4 | −30 | 22.62 | 0.31–0.45 | 2 |
3527 | McCord | 06 | 15.6 | 14.7 | −16 | 321. | 0.10–0.44 | 2 |
619 | Triberga | 06 | 17.0 | 13.5 | −1 | 29.412 | 0.30–0.45 | 2 |
14668 | 1999 CB67 | 06 | 17.9 | 15.0 | −20 | 2.89 | 0.06 | 2 |
2933 | Amber | 06 | 18.4 | 14.9 | −17 | 13.11 | 0.32 | 2 |
1424 | Sundmania | 06 | 18.5 | 14.2 | −33 | 93.73 | 0.42 | 2+ |
2639 | Planman | 06 | 19.2 | 14.6 | −27 | 89.5 | 0.40 | 2+ |
3716 | Petzval | 06 | 19.4 | 14.7 | −19 | |||
7021 | 1992 JN1 | 06 | 19.4 | 14.5 | −22 | |||
2505 | Hebei | 06 | 20.0 | 14.6 | −25 | |||
450 | Brigitta | 06 | 23.9 | 14.4 | −38 | 10.75 | 0.18 | 2 |
1182 | Ilona | 06 | 24.3 | 14.6 | −38 | 29.8 | 0.98– 1.2 | 2 |
3783 | Morris | 06 | 24.9 | 14.5 | −30 | |||
3578 | Carestia | 06 | 25.0 | 13.8 | −31 | 9.93 | 0.13–0.25 | 2 |
1367 | Nongoma | 06 | 25.6 | 13.8 | −20 | 0.3 1 | ||
3839 | Bogaevskij | 06 | 25.6 | 14.6 | −20 | |||
249 | Ilse | 06 | 26.3 | 14.4 | −38 | 85.24 | 0.27–0.33 | 1 |
439 | Ohio | 06 | 26.7 | 14.8 | +3 | 19.2 | 0.24 | 2 |
1551 | Argelander | 06 | 26.7 | 14.6 | −22 | |||
5248 | Scardia | 06 | 27.1 | 14.7 | −24 | |||
1029 | La Plata | 06 | 28.2 | 14.7 | −27 | 15.31 | 0.26–0.58 | 2 |
10902 | 1997 WB22 | 06 | 28.7 | 15.0 | −23 | |||
1032 | Pafuri | 06 | 29.3 | 13.5 | −29 | >24. | 0.15– 0.3 | 1+ |
4157 | Izu | 06 | 29.3 | 14.8 | −35 | |||
2816 | Pien | 06 | 29.4 | 14.8 | −24 |
Low Phase Angle Opportunities
# | Name | Date | α | V | Dec | Period | Amp | U | |
---|---|---|---|---|---|---|---|---|---|
490 | Veritas | 04 | 01.4 | 0.87 | 13.1 | −02 | 7.930 | 0.33–0.58 | 3 |
203 | Pompeja | 04 | 01.5 | 0.69 | 12.5 | −06 | 24.052 | 0.10 | 3 |
158 | Koronis | 04 | 03.8 | 0.51 | 13.2 | −07 | 14.218 | 0.28–0.43 | 3 |
119 | Althaea | 04 | 10.3 | 0.22 | 12.0 | −09 | 11.484 | 0.23–0.36 | 3 |
340 | Eduarda | 04 | 11.5 | 0.27 | 13.8 | −08 | 8.0062 | 0.17–0.32 | 3 |
417 | Suevia | 04 | 12.6 | 0.29 | 12.1 | −08 | 7.034 | 0.10–0.22 | 3 |
204 | Kallisto | 04 | 13.2 | 0.23 | 11.5 | −10 | 19.489 | 0.09–0.26 | 3 |
33 | Polyhymnia | 04 | 21.4 | 0.32 | 13.1 | −13 | 18.608 | 0.13–0.20 | 3 |
578 | Happelia | 04 | 21.8 | 0.19 | 12.4 | −12 | 10.061 | 0.11–0.16 | 3 |
331 | Etheridgea | 04 | 22.3 | 0.48 | 14.0 | −14 | 0.05 | 1 | |
912 | Maritima | 04 | 23.3 | 0.19 | 13.2 | −12 | 1332. | 0.18 | 3− |
240 | Vanadis | 04 | 25.5 | 0.97 | 13.3 | −10 | 10.64 | 0.34 | 3 |
223 | Rosa | 04 | 27.1 | 0.18 | 13.9 | −13 | 20.283 | 0.06–0.14 | 3 |
77 | Frigga | 04 | 28.7 | 0.75 | 12.5 | −16 | 9.012 | 0.07–0.20 | 3 |
83 | Beatrix | 05 | 02.0 | 0.97 | 11.0 | −17 | 10.16 | 0.06–0.27 | 3 |
586 | Thekla | 05 | 05.3 | 0.13 | 13.3 | −16 | 13.670 | 0.24–0.30 | 3 |
147 | Protogeneia | 05 | 11.0 | 0.28 | 13.0 | −19 | 7.853 | 0.28 | 3 |
82 | Alkmene | 05 | 11.6 | 0.74 | 11.8 | −20 | 12.999 | 0.18–0.54 | 3 |
106 | Dione | 05 | 12.2 | 0.33 | 12.4 | −17 | 16.26 | 0.08 | 3 |
49 | Pales | 05 | 16.3 | 0.91 | 13.0 | −22 | 10.42 | 0.18 | 3 |
243 | Ida | 05 | 17.9 | 0.58 | 13.9 | −21 | 4.634 | 0.40–0.86 | 3 |
1909 | Alekhin | 05 | 21.0 | 0.45 | 13.8 | −19 | 148.6 | 0.45 | 3 |
1277 | Dolores | 05 | 23.8 | 0.49 | 13.3 | −22 | 17.19 | 0.45 | 3 |
121 | Hermione | 05 | 25.5 | 0.45 | 12.4 | −19 | 5.551 | 0.04–0.70 | 3 |
62 | Erato | 05 | 28.7 | 0.75 | 13.7 | −19 | 9.2213 | 0.12–0.17 | 3 |
937 | Bethgea | 05 | 29.5 | 0.36 | 13.3 | −21 | 7.5390 | 0.12–0.19 | 3 |
379 | Huenna | 06 | 02.3 | 0.79 | 13.1 | −20 | 14.14 | 0.09 | 2 |
675 | Ludmilla | 06 | 09.8 | 0.34 | 12.3 | −24 | 7.717 | 0.16–0.38 | 3 |
4353 | Onizaki | 06 | 10.0 | 0.03 | 14.0 | −23 | |||
150 | Nuwa | 06 | 13.8 | 0.95 | 12.2 | −20 | 8.1347 | 0.08–0.31 | 3 |
563 | Suleika | 06 | 14.5 | 0.20 | 12.9 | −23 | 5.69 | 0.13–0.28 | 3 |
683 | Lanzia | 06 | 14.7 | 0.66 | 12.8 | −21 | 8.630 | 0.12–0.20 | 3 |
1699 | Honkasalo | 06 | 15.8 | 0.35 | 13.8 | −24 | 11.159 | 0.17 | 3− |
348 | May | 06 | 19.8 | 0.17 | 13.6 | −23 | 7.3812 | 0.16 | 3 |
364 | Isara | 06 | 25.2 | 0.87 | 12.8 | −21 | 9.156 | 0.30–0.40 | 3 |
598 | Octavia | 06 | 28.6 | 0.64 | 13.1 | −25 | 10.8903 | 0.28–0.35 | 3 |
Shape/Spin Modeling Opportunities
There are two lists here. The first is for objects for which good occultation profiles are available. These are used to constrain the models obtained from lightcurve inversion, eliminating ambiguous solutions and fixing the size of asteroid. Lightcurves are needed for modeling and/or to establish the rotation phase angle at the time the profile was obtained. The second list is of those objects for which another set of lightcurves from one more apparitions will allow either an initial or a refined solution.
Occultation Profiles Available
Brightest | LCDB DATA | |||||||
---|---|---|---|---|---|---|---|---|
# | Name | Date | Mag | Dec | Period | Amp | U | |
490 | Veritas | 04 | 01.4 | 13.1 | −02 | 7.930 | 0.33–0.58 | 3 |
530 | Turandot | 04 | 01.8 | 14.4 | +05 | 19.947 | 0.10–0.16 | 2+ |
70 | Panopaea | 04 | 09.7 | 11.6 | +01 | 15.797 | 0.06–0.12 | 3 |
27 | Euterpe | 04 | 10.6 | 9.8 | −06 | 10.4082 | 0.13–0.21 | 3 |
204 | Kallisto | 04 | 13.2 | 11.4 | −10 | 19.489 | 0.09–0.26 | 3 |
386 | Siegena | 04 | 19.4 | 12.4 | +07 | 9.763 | 0.11–0.18 | 3 |
978 | Aidamina | 04 | 19.6 | 14.8 | −15 | 10.099 | 0.13 | 2 |
375 | Ursula | 04 | 20.7 | 12.1 | −29 | 16.83 | 0.17 | 2 |
578 | Happelia | 04 | 21.9 | 12.4 | −12 | 10.061 | 0.11–0.16 | 3 |
498 | Tokio | 05 | 04.5 | 12.8 | −04 | 30. | 0.18 | 1 |
144 | Vibilia | 05 | 04.6 | 12.1 | −12 | 13.819 | 0.13–0.20 | 3 |
106 | Dione | 05 | 12.2 | 12.4 | −17 | 16.26 | 0.08 | 3 |
49 | Pales | 05 | 16.5 | 12.9 | −22 | 10.42 | 0.18 | 3 |
25 | Phocaea | 05 | 16.7 | 10.0 | −03 | 9.9341 | 0.03–0.25 | 3 |
334 | Chicago | 05 | 18.3 | 12.9 | −14 | 7.361 | 0.15–0.67 | 3 |
757 | Portlandia | 05 | 28.4 | 13.6 | −31 | 6.5837 | 0.24–0.45 | 3 |
791 | Ani | 05 | 30.3 | 13.6 | +01 | 16.72 | 0.17–0.38 | 2 |
Inversion Modeling Candidates
Brightest | LCDB Data | ||||||||
---|---|---|---|---|---|---|---|---|---|
# | Name | Date | Mag | Dec | Period | Amp | U | ||
158 | Koronis | 04 | 03.8 | 13.2 | −07 | 14.218 | 0.28 | 0.43 | 3 |
391 | Ingeborg | 04 | 04.9 | 15.0 | −16 | 26.391 | 0.22 | 0.79 | 3 |
2896 | Preiss | 04 | 06.2 | 14.8 | −02 | 24. | 0.3 | 2 | |
1307 | Cimmeria | 04 | 06.7 | 14.9 | −10 | 2.820 | 0.31 | 3 | |
1860 | Barbarossa | 04 | 07.8 | 15.0 | +07 | 3.255 | 0.28 | 3 | |
1378 | Leonce | 04 | 09.9 | 14.1 | −05 | 4.3250 | 0.49 | 0.50 | 3 |
936 | Kunigunde | 04 | 11.5 | 14.8 | −06 | 8.80 | 0.25 | 2 | |
2678 | Aavasaksa | 04 | 19.9 | 14.9 | −09 | 24. | 0.4 | 1 | |
1366 | Piccolo | 04 | 23.1 | 14.1 | −15 | 16.57 | 0.24 | 0.33 | 2 |
1023 | Thomana | 04 | 25.5 | 14.6 | −08 | 17.56 | 0.27 | 0.36 | 3− |
3761 | Romanskaya | 04 | 26.3 | 14.7 | −10 | 15.32 | 0.34 | 2 | |
2276 | Warck | 04 | 28.0 | 14.5 | −14 | 4.054 | 0.20 | 3 | |
7360 | Moberg | 04 | 30.7 | 14.6 | −25 | 4.5842 | 0.38 | 0.41 | 3 |
586 | Thekla | 05 | 05.3 | 13.2 | −16 | 13.670 | 0.22 | 0.30 | 3 |
5247 | Krylov | 05 | 06.9 | 13.8 | −12 | 81.5 | 1.5 | 2 | |
461 | Saskia | 05 | 10.9 | 15.0 | −16 | 7.348 | 0.25 | 0.36 | 3 |
2911 | Miahelena | 05 | 11.6 | 14.9 | −03 | 4.19 | 0.56 | 3− | |
247 | Eukrate | 05 | 13.1 | 13.2 | −46 | 12.093 | 0.10 | 0.14 | 3 |
1277 | Dolores | 05 | 23.9 | 13.2 | −22 | 17.19 | 0.45 | 3 | |
254 | Augusta | 05 | 29.9 | 13.6 | −28 | 6.0 | 0.56 | 2 | |
1013 | Tombecka | 06 | 03.6 | 14.3 | −36 | 6.053 | 0.44 | 0.50 | 3 |
373 | Melusina | 06 | 08.6 | 13.7 | −44 | 12.97 | 0.20 | 0.25 | 3 |
407 | Arachne | 06 | 10.3 | 12.4 | −30 | 22.62 | 0.31 | 0.45 | 2 |
1505 | Koranna | 06 | 13.4 | 14.0 | −17 | 4.451 | 0.55 | 3 | |
698 | Ernestina | 06 | 13.7 | 15.0 | −35 | 5.0363 | 0.30 | 0.69 | 3 |
1150 | Achaia | 06 | 15.5 | 14.4 | −19 | 60.99 | 0.72 | 3 | |
523 | Ada | 06 | 15.6 | 14.5 | −23 | 10.03 | 0.52 | 0.70 | 3 |
5754 | 1992 FR2 | 06 | 16.6 | 14.8 | −20 | 8.898 | 0.97 | 3 | |
706 | Hirundo | 06 | 18.9 | 14.6 | −44 | 22.027 | 0.39 | 0.9 | 3 |
361 | Bononia | 06 | 23.4 | 14.8 | −39 | 13.83 | 0.25 | 3 | |
1182 | Ilona | 06 | 24.3 | 14.6 | −38 | 29.8 | 0.98 | 1.2 | 2 |
364 | Isara | 06 | 25.3 | 12.7 | −21 | 9.156 | 0.30 | 0.40 | 3 |
480 | Hansa | 06 | 25.8 | 12.3 | −02 | 16.19 | 0.20 | 0.58 | 3 |
553 | Kundry | 06 | 29.1 | 15.0 | −27 | 12.605 | 0.41 | 0.61 | 3 |
Radar-Optical Opportunities
Use the ephemerides below as a guide to your best chances for observing, but remember that photometry may be possible before and/or after the ephemerides given below. Some of the targets may be too faint to do accurate photometry with backyard telescopes. However, accurate astrometry using techniques such as “stack and track” is still possible and can be helpful for those asteroids where the position uncertainties are significant. Note that the intervals in the ephemerides are not always the same and that geocentric positions are given. Use these web sites to generate updated and topocentric positions:
MPC: http://www.minorplanetcenter.org/iau/MPEph/MPEph.html JPL: http://ssd.jpl.nasa.gov/?horizons
In the ephemerides below, ED and SD are, respectively, the Earth and Sun distances (AU), V is the estimated Johnson V magnitude, and α is the phase angle. SE and ME are the great circles distances (in degrees) of the Sun and Moon from the asteroid. MP is the lunar phase and GB is the galactic latitude. “PHA” in the header indicates that the object is a “potentially hazardous asteroid”, meaning that at some (long distant) time, its orbit might take it very close to Earth.
Some of the objects below are repeats from the previous issue of the Minor Planet Bulletin and those with opportunities extending into the next quarter may be featured again in the next.
2062 Aten (Mar-May, H = 16.8)
The orbits of the Aten asteroids lie mostly within Earth’s and so are never very far from the Sun in the sky. Therefore, it should be no surprise that the rotation period for the namesake of the group is not well-known. Mottola et al. (1995) reported a period of 40.77 h, but that is the only entry with a period in the Lightcurve Database (Warner et al., 2009; U = 2). Despite the difficulties, a successful campaign would be of enormous benefit to radar and modeling efforts.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
03/20 | 04 | 18.8 | +43 | 17 | 0.57 | 0.99 | 18.1 | 74.0 | 72 | 33 | +0.53 | −5 |
03/30 | 04 | 43.6 | +47 | 16 | 0.58 | 0.96 | 18.2 | 77.0 | 69 | 140 | −0.91 | +1 |
04/09 | 05 | 10.0 | +50 | 48 | 0.57 | 0.92 | 18.2 | 80.6 | 65 | 78 | −0.02 | +6 |
04/19 | 05 | 37.2 | +53 | 51 | 0.55 | 0.89 | 18.2 | 85.0 | 62 | 51 | +0.55 | +12 |
04/29 | 06 | 03.0 | +56 | 24 | 0.51 | 0.86 | 18.2 | 90.6 | 59 | 143 | −0.86 | +16 |
05/09 | 06 | 24.3 | +58 | 20 | 0.47 | 0.83 | 18.3 | 97.8 | 55 | 63 | −0.01 | +19 |
05/19 | 06 | 35.4 | +59 | 27 | 0.41 | 0.81 | 18.4 | 106.9 | 50 | 71 | +0.58 | +21 |
05/29 | 06 | 28.8 | +59 | 03 | 0.35 | 0.80 | 18.8 | 118.7 | 44 | 132 | −0.80 | +20 |
1685 Toro (February-April, H = 14.2)
The rotation period of this NEA is well established at 10.195 h. However, it is a good candidate for YORP spin-up/down, meaning that data from each succeeding apparition can be used to determine if the period is changing slowly over time.
It’s important to note that the shape and amplitude of the curve can change significantly over an apparition, e.g., see Warner, http://www.minorplanetobserver.com/pdolc/A1685_2012.HTM, which also shows that the synodic period can change over a relatively short time. If you plan a protracted campaign, it would be good to subdivide data into blocks of dates, each having a relatively small range of phase angles and treating them as stand-alone sets. Putting all the data into a single set may not only affect the final solution but hide critical data about the lightcurve shape and amplitude vital to good modeling.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/01 | 12 | 16.2 | −24 | 21 | 0.82 | 1.79 | 15.8 | 11.5 | 159 | 62 | −0.74 | +38 |
04/11 | 11 | 58.8 | −21 | 38 | 0.86 | 1.82 | 15.9 | 12.6 | 157 | 154 | +0.00 | +40 |
04/21 | 11 | 46.2 | −18 | 48 | 0.92 | 1.85 | 16.3 | 16.6 | 148 | 37 | +0.74 | +41 |
05/01 | 11 | 38.8 | −16 | 14 | 1.00 | 1.88 | 16.6 | 21.0 | 138 | 110 | −0.66 | +43 |
05/11 | 11 | 36.2 | −14 | 10 | 1.10 | 1.90 | 17.0 | 24.7 | 128 | 118 | +0.01 | +45 |
05/21 | 11 | 37.8 | −12 | 38 | 1.21 | 1.92 | 17.3 | 27.4 | 119 | 11 | +0.78 | +46 |
05/31 | 11 | 42.7 | −11 | 37 | 1.33 | 1.93 | 17.6 | 29.4 | 111 | 149 | −0.59 | +48 |
06/10 | 11 | 50.3 | −11 | 03 | 1.45 | 1.95 | 17.8 | 30.6 | 103 | 88 | +0.02 | +49 |
14 Irene (Apr-Jun, H = 6.30)
Despite its low number, the rotation period for this inner main-belt asteroid wasn’t firmly established until the work by Pilcher (2009) found 15.028 h. A shape model has been developed (Hanus et al., 2011) but additional observations at this apparition and beyond will serve to refine that model. In any event, having a lightcurve from around the same time as radar observations helps with analysis of the radar data.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/01 | 12 | 14.5 | +16 | 24 | 1.20 | 2.16 | 9.0 | 9.9 | 158 | 76 | −0.74 | + 76 |
04/11 | 12 | 06.8 | +16 | 33 | 1.23 | 2.16 | 9.2 | 13.6 | 150 | 143 | +0.00 | +75 |
04/21 | 12 | 01.1 | +16 | 12 | 1.29 | 2.16 | 9.4 | 17.3 | 140 | 31 | +0.74 | +74 |
05/01 | 11 | 58.2 | +15 | 24 | 1.36 | 2.16 | 9.7 | 20.5 | 131 | 116 | −0.66 | +73 |
05/11 | 11 | 58.1 | +14 | 13 | 1.45 | 2.16 | 9.9 | 23.1 | 123 | 112 | +0.01 | +72 |
05/21 | 12 | 00.9 | +12 | 44 | 1.54 | 2.17 | 10.1 | 25.1 | 115 | 18 | +0.78 | +71 |
05/31 | 12 | 06.2 | +11 | 01 | 1.65 | 2.17 | 10.3 | 26.5 | 107 | 149 | −0.59 | +71 |
06/10 | 12 | 13.7 | +09 | 09 | 1.76 | 2.18 | 10.4 | 27.3 | 100 | 86 | +0.02 | +70 |
2002 TR190 (Apr-May, H = 19.4)
There is no rotation period given in the LCDB for this near-Earth asteroid (NEA). The estimated size is about 400 meters. As with many objects during the middle of a year, observers in the Southern Hemisphere will have the best observing circumstances.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/01 | 19 | 09.9 | +01 | 01 | 0.13 | 0.99 | 18.2 | 89.6 | 83 | 41 | −0.74 | −4 |
04/06 | 19 | 13.8 | −15 | 50 | 0.12 | 1.00 | 17.7 | 85.0 | 88 | 35 | −0.20 | −12 |
04/11 | 19 | 19.3 | −36 | 01 | 0.11 | 1.02 | 17.4 | 79.2 | 95 | 102 | + 0.00 | −21 |
04/16 | 19 | 27.2 | −55 | 30 | 0.12 | 1.03 | 17.4 | 73.8 | 100 | 140 | + 0.27 | −27 |
04/21 | 19 | 39.9 | −70 | 56 | 0.14 | 1.04 | 17.7 | 70.1 | 102 | 112 | +0.74 | −29 |
04/26 | 20 | 09.9 | −81 | 57 | 0.17 | 1.06 | 18.0 | 67.8 | 103 | 75 | −1.00 | −30 |
05/01 | 01 | 20.7 | −88 | 30 | 0.20 | 1.07 | 18.3 | 66.2 | 104 | 73 | −0.66 | −29 |
05/06 | 06 | 38.4 | −84 | 15 | 0.23 | 1.08 | 18.7 | 65.0 | 103 | 95 | −0.15 | −27 |
(7888) 1993 UC (Apr-Jun, H = 15.2)
Pravec et al. (1996) found a period of 2.340 h for this asteroid along with an amplitude of 0.10 mag. This makes it a good candidate for being a binary asteroid, so extended higher-precision observations should be made over at least three nights to look for signs of eclipse or occultation events. The estimated diameter of the NEA is 2.7 km.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/01 | 14 | 09.9 | +82 | 06 | 0.19 | 1.03 | 14.4 | 76.3 | 93 | 104 | −0.74 | +35 |
04/11 | 14 | 14.1 | +65 | 44 | 0.29 | 1.12 | 14.9 | 60.0 | 105 | 102 | + 0.00 | +49 |
04/21 | 14 | 12.7 | +56 | 51 | 0.40 | 1.21 | 15.5 | 50.6 | 111 | 70 | +0.74 | +57 |
05/01 | 14 | 11.7 | +50 | 32 | 0.52 | 1.31 | 16.1 | 44.6 | 114 | 97 | −0.66 | +62 |
05/11 | 14 | 11.9 | +45 | 14 | 0.64 | 1.41 | 16.5 | 40.4 | 116 | 111 | + 0.01 | +66 |
05/21 | 14 | 13.8 | +40 | 26 | 0.76 | 1.50 | 17.0 | 37.5 | 115 | 54 | +0.78 | +68 |
05/31 | 14 | 17.4 | +35 | 57 | 0.89 | 1.60 | 17.4 | 35.4 | 114 | 115 | −0.59 | +70 |
06/10 | 14 | 22.7 | +31 | 45 | 1.03 | 1.69 | 17.8 | 33.8 | 112 | 104 | + 0.02 | +70 |
4034 Vishnu (Apr-May, H = 18.3)
The diameter is about 650 meters for this NEA. The period is about 13.5 hours Mottola (2011).
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/01 | 20 | 47.1 | +31 | 39 | 0.15 | 0.93 | 18.3 | 110.7 | 61 | 78 | −0.74 | −7 |
04/08 | 19 | 26.8 | +38 | 47 | 0.16 | 0.99 | 17.4 | 89.2 | 82 | 65 | −0.06 | +10 |
04/15 | 18 | 06.9 | +41 | 49 | 0.17 | 1.04 | 17.1 | 71.5 | 99 | 116 | + 0.19 | +26 |
04/22 | 16 | 59.1 | +41 | 22 | 0.20 | 1.10 | 17.1 | 58.0 | 112 | 90 | + 0.82 | +38 |
04/29 | 16 | 07.7 | +38 | 51 | 0.23 | 1.14 | 17.2 | 48.5 | 122 | 62 | −0.86 | +48 |
05/06 | 15 | 30.7 | +35 | 24 | 0.27 | 1.19 | 17.5 | 42.4 | 127 | 116 | −0.15 | +55 |
05/13 | 15 | 04.9 | +31 | 37 | 0.31 | 1.23 | 17.8 | 38.9 | 130 | 116 | + 0.08 | +61 |
05/20 | 14 | 47.5 | +27 | 49 | 0.36 | 1.27 | 18.1 | 37.4 | 130 | 57 | + 0.68 | +64 |
(242643) 2005 NZ6 (May, H = 17.6, PHA)
The JPL NEO site gives a close approach of about 25 lunar distances (LD) on April 29. There is no rotation period in the LCDB for the 900 meter NEA. Given the size, it’s unlikely this is a superfast rotator, i.e., P < 2 h.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/30 | 08 | 09.9 | +28 | 21 | 0.06 | 1.00 | 15.1 | 97.3 | 79 | 155 | −0.77 | +29 |
05/01 | 09 | 13.3 | +22 | 32 | 0.07 | 1.01 | 14.8 | 82.7 | 93 | 155 | −0.66 | +41 |
05/02 | 10 | 00.5 | +16 | 45 | 0.08 | 1.03 | 14.7 | 70.9 | 105 | 157 | −0.55 | +49 |
05/03 | 10 | 34.3 | +11 | 56 | 0.09 | 1.05 | 14.7 | 62.2 | 113 | 162 | −0.44 | +54 |
05/04 | 10 | 58.8 | +08 | 09 | 0.11 | 1.06 | 14.9 | 55.7 | 119 | 168 | −0.33 | +57 |
05/05 | 11 | 17.0 | +05 | 14 | 0.12 | 1.08 | 15.1 | 51.0 | 124 | 175 | −0.24 | +59 |
05/06 | 11 | 31.0 | +02 | 58 | 0.14 | 1.10 | 15.3 | 47.5 | 127 | 172 | −0.15 | +59 |
05/07 | 11 | 41.9 | +01 | 10 | 0.16 | 1.11 | 15.5 | 44.8 | 129 | 163 | −0.09 | +59 |
(163364) 2002 OD20 (May-Jun, H = 18.8, PHA)
This NEA has an estimated diameter of about 500 meters. A close approach of about 15 LD comes on May 23. The closest approach through 2200 is in 2131 May at about 10 LD. The rotation rate is not known.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
05/15 | 06 | 55.3 | −09 | 51 | 0.06 | 0.98 | 17.5 | 118.0 | 59 | 28 | +0.21 | −4 |
05/20 | 08 | 21.9 | −22 | 28 | 0.04 | 1.00 | 15.6 | 98.1 | 79 | 48 | +0.68 | +8 |
05/25 | 11 | 20.2 | −34 | 53 | 0.04 | 1.03 | 14.1 | 61.6 | 116 | 63 | +1.00 | +24 |
05/30 | 13 | 55.4 | −31 | 42 | 0.05 | 1.06 | 14.0 | 33.4 | 145 | 99 | −0.69 | +29 |
06/04 | 15 | 04.4 | −26 | 03 | 0.08 | 1.09 | 14.5 | 22.1 | 156 | 150 | −0.19 | +28 |
06/09 | 15 | 37.6 | −22 | 26 | 0.11 | 1.12 | 15.1 | 19.0 | 159 | 155 | +0.00 | +26 |
06/14 | 15 | 56.8 | −20 | 12 | 0.14 | 1.14 | 15.7 | 19.1 | 158 | 100 | +0.24 | +25 |
06/19 | 16 | 09.8 | −18 | 47 | 0.17 | 1.17 | 16.3 | 20.4 | 156 | 38 | +0.74 | +24 |
(285263) 1998 QE2 (Apr-Jun, H = 16.4, PHA)
Of three close approaches through 2200, this is the closest, but it’s hardly a near-miss. On May 31 it will be about 15 LD from Earth. The rotation period for the 1.5 km NEA is not known.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
04/01 | 09 | 04.5 | −34 | 17 | 0.33 | 1.21 | 16.2 | 44.9 | 122 | 98 | −0.74 | +8 |
04/11 | 08 | 55.1 | −34 | 43 | 0.28 | 1.15 | 16.0 | 52.5 | 115 | 112 | +0.00 | +7 |
04/21 | 08 | 52.5 | −34 | 59 | 0.23 | 1.10 | 15.7 | 59.9 | 108 | 45 | +0.74 | +6 |
05/01 | 08 | 58.7 | −35 | 28 | 0.18 | 1.07 | 15.3 | 66.5 | 104 | 123 | −0.66 | +7 |
05/11 | 09 | 19.5 | −36 | 25 | 0.13 | 1.05 | 14.7 | 70.9 | 102 | 94 | +0.01 | +9 |
05/21 | 10 | 22.7 | −37 | 56 | 0.08 | 1.04 | 13.4 | 67.7 | 108 | 41 | +0.78 | +16 |
05/31 | 14 | 17.1 | −24 | 36 | 0.04 | 1.05 | 10.9 | 29.8 | 149 | 110 | −0.59 | +34 |
06/10 | 17 | 45.2 | +11 | 32 | 0.07 | 1.07 | 12.2 | 33.3 | 145 | 148 | +0.02 | +20 |
(152756) 1999 JV3 (May-Jun, H = 18.8)
There is no rotation period in the LCDB for this 500 meter NEA. The next close approach is not until 2088 and even then at the safe distance of 34 LD. Others before 2200 are 25 LD or more.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
05/10 | 17 | 08.2 | −15 | 21 | 0.27 | 1.25 | 17.5 | 23.1 | 151 | 151 | +0.00 | +15 |
05/15 | 17 | 15.0 | −09 | 22 | 0.23 | 1.22 | 17.1 | 22.8 | 152 | 149 | +0.21 | +17 |
05/20 | 17 | 22.4 | −01 | 19 | 0.19 | 1.18 | 16.8 | 25.2 | 150 | 91 | +0.68 | +19 |
05/25 | 17 | 31.2 | +09 | 20 | 0.17 | 1.15 | 16.6 | 31.6 | 143 | 37 | +1.00 | +22 |
05/30 | 17 | 42.1 | +22 | 43 | 0.15 | 1.12 | 16.6 | 42.3 | 132 | 60 | −0.69 | +25 |
06/04 | 17 | 57.1 | +37 | 55 | 0.14 | 1.09 | 16.8 | 55.8 | 118 | 99 | −0.19 | +26 |
06/09 | 18 | 19.6 | +52 | 55 | 0.15 | 1.06 | 17.2 | 69.6 | 103 | 106 | +0.00 | +26 |
06/14 | 18 | 57.8 | +65 | 42 | 0.16 | 1.03 | 17.7 | 81.7 | 89 | 100 | +0.24 | +24 |
(17188) 1999 WC2 (May-Jul, H = 16.4)
To repeat a common refrain, there is no period in the LCDB for this asteroid, a 1.6 km NEA that comes no closer than about 30 LD through 2200.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
05/15 | 04 | 35.5 | −32 | 42 | 0.34 | 0.86 | 17.7 | 107.2 | 54 | 64 | +0.21 | −42 |
05/25 | 04 | 00.8 | −38 | 53 | 0.24 | 0.92 | 17.1 | 107.3 | 60 | 122 | +1.00 | −49 |
06/04 | 02 | 15.8 | −46 | 45 | 0.14 | 0.99 | 15.5 | 94.7 | 77 | 59 | −0.19 | −64 |
06/14 | 21 | 34.1 | −32 | 50 | 0.10 | 1.08 | 13.5 | 49.7 | 126 | 157 | +0.24 | −47 |
06/24 | 19 | 15.6 | −02 | 24 | 0.17 | 1.17 | 14.0 | 22.6 | 154 | 18 | −0.99 | −6 |
07/04 | 18 | 33.1 | +07 | 42 | 0.28 | 1.26 | 15.3 | 24.4 | 149 | 129 | −0.16 | +8 |
07/14 | 18 | 15.8 | +10 | 50 | 0.41 | 1.36 | 16.3 | 27.2 | 142 | 99 | +0.28 | +13 |
07/24 | 18 | 09.0 | +11 | 30 | 0.54 | 1.45 | 17.1 | 28.9 | 136 | 52 | −0.98 | +15 |
(163249) 2002 GT (May-Jul, H = 18.5)
In 2172 October, this NEA will be about 8 LD from Earth. That’s the closest approach through 2200. Remember that establishing YORP spin up/down requires having good lightcurves over many apparitions, so use this opportunity to start building the data set for some future modeler. The estimated size is 600 meters. No period has been recorded in the LCDB.
DATE | RA | Dec | ED | SD | V | α | SE | ME | MP | GB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
05/01 | 17 | 12.5 | −11 | 05 | 0.37 | 1.32 | 18.2 | 28.8 | 141 | 34 | −0.66 | +16 |
05/11 | 17 | 22.9 | −05 | 51 | 0.30 | 1.27 | 17.6 | 26.7 | 146 | 155 | +0.01 | +17 |
05/21 | 17 | 31.9 | +01 | 47 | 0.23 | 1.21 | 17.0 | 27.0 | 147 | 81 | +0.78 | +18 |
05/31 | 17 | 40.7 | +12 | 51 | 0.18 | 1.16 | 16.5 | 33.0 | 141 | 67 | −0.59 | +21 |
06/10 | 17 | 51.7 | +28 | 36 | 0.14 | 1.11 | 16.3 | 46.5 | 128 | 131 | +0.02 | +25 |
06/20 | 18 | 12.6 | +49 | 20 | 0.12 | 1.06 | 16.4 | 66.4 | 107 | 81 | +0.83 | +26 |
06/30 | 19 | 22.6 | +71 | 51 | 0.12 | 1.01 | 17.1 | 88.5 | 85 | 80 | −0.52 | +23 |
07/10 | 01 | 50.9 | +79 | 38 | 0.14 | 0.97 | 18.0 | 106.0 | 67 | 78 | +0.03 | +17 |
Contributor Information
Brian D. Warner, Palmer Divide Observatory/MoreData! 17995 Bakers Farm Rd. Colorado Springs, CO 80908 USA
Alan W. Harris, MoreData! La Cañada, CA 91011-3364 USA
Petr Pravec, Astronomical Institute CZ-25165 Ondřejov, CZECH REPUBLIC.
Josef Ďurech, Astronomical Institute Charles University in Prague 18000 Prague, CZECH REPUBLIC.
Lance A.M. Benner, Jet Propulsion Laboratory Pasadena, CA 91109-8099 USA
References
- Hanuš J, Brož M, Durech J, Warner BD, Brinsfield J, Durkee R, Higgins D, Koff RA, Oey J, Pilcher F, Stephens R, Strabla LP, Ulisse Q, Girelli R (2011). “An anisotropic distribution of spin vectors in asteroid families.” Astron. Astrophys 559, A134. [Google Scholar]
- Kaasalainen M; Ďurech J; Warner BD; Krugly Yu.N.; Gaftonyuk NM (2007). “Acceleration of the rotation of asteroid 1862 Apollo by radiation torques.” Nature 446, 420–422. [DOI] [PubMed] [Google Scholar]
- La Spina A; Paolicchi P; Kryszczyńska A; Pravec P (2004). “Retrograde spins of near-Earth asteroids from the Yarkovsky effect.” Nature 428, 400–401 [DOI] [PubMed] [Google Scholar]
- Lowry SC; Fitzsimmons A; Pravec P; Vokrouhlický D; Boehnhardt H; Taylor PA; Margot J−.; Galád A; Irwin M; Irwin J; Kusnirák P (2007). “Direct Detection of the Asteroidal YORP Effect.” Science 316, 272–274 [DOI] [PubMed] [Google Scholar]
- Mottola S; De Angelis G; Di Martino M; Erikson A; Hahn G; Neukum G (1995). “The near-earth objects follow-up program: First results.” Icarus 117, 62–70 [Google Scholar]
- Mottola S; Di Martino M; Erikson A; Gonano-Beurer M; Carbognani A; Carsenty U; Hahn G; Schober H-J; Lahulla F; Delbò M; Lagerkvist C-I (2011). “Rotational Properties of Jupiter Trojans. I. Light Curves of 80 Objects.” Astron. J 141, A170. [Google Scholar]
- Pilcher F (2009). “New Lightcurves of 8 Flora, 13 Egeria, 14 Irene, 25 Phocaea 40 Harmonia, 74 Galatea, and 122 Gerda.” Minor Planet Bull. 36, 133–136. [Google Scholar]
- Pravec P; Sarounova L; Wolf M (1996). “Lightcurves of 7 Near-Earth Asteroids.” Icarus 124, 471–482. [Google Scholar]
- Pravec P, Vokrouhlicky D, Polishook D, Scheeres DJ, Harris AW, Galad A, Vaduvescu O, Pozo F, Barr A, Longa P, and 16 coauthors. (2010). “Formation of asteroid pairs by rotational fission,” Nature 466, 1085–1088. [DOI] [PubMed] [Google Scholar]
- Warner BD, Harris AW, Pravec P (2009). “The Asteroid Lightcurve Database.” Icarus 202, 134–146. Updated 2013 Feb. http://www.minorplanet.info/lightcurvedatabase.html [Google Scholar]