Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 29;76(Pt 6):973–976. doi: 10.1107/S2056989020006945

Crystal structure and Hirshfeld surface analysis of 4-bromo­anilinium nitrate

Radhakrishnan Anbarasan a, Palaniyasan Eniya a, Jeyaperumal Kalyana Sundar a, Menberu Mengesha Woldemariam b,*
PMCID: PMC7273990  PMID: 32523775

In the crystal, π-π stacking inter­actions and strong N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into layers parallel to the bc plane. The O⋯H/H⋯O inter­actions between the cation and anion are the major factor determining the crystal packing.

Keywords: crystal structure, Hirshfeld surface, hydrogen bonds, aniline

Abstract

The title compound C4H7BrN+·NO3 crystallizes in the monoclinic crystal system with space group P21/c. In the crystal, π-π stacking inter­actions and strong N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into layers parallel to the bc plane. The O⋯H/H⋯O inter­actions between the cation and anion are the major factor determining the crystal packing.

Chemical context  

In recent years, halogenated anilines and their derivatives have been studied extensively for applications as anti­corrosives, anti­bacterials and in non-linear optical systems (Glidewell et al., 2005; Vivek et al., 2014). The simplest halogenated aniline readily forms metal/non-metal complexes (Hartmann et al., 1990). Strong hydrogen bonding, non-covalent bonding and π–π stacking inter­actions are prominent in the supra­molecular arrangements of this mol­ecule. Here, we report the crystal structure of 4-bromo­anilinium nitrate, a salt complex whose structure is closely related to its 4-iodo analogue regarding the hydrogen-bond networks and π–π inter­actions (Fu et al., 2010) although having significantly different unit-cell parameters.graphic file with name e-76-00973-scheme1.jpg

Structural commentary  

The asymmetric unit consists of two 4-bromo­anilinium cations and two nitrate anions which are associated through N1—H10⋯O4ii, N2—H13⋯O3iv and a bifurcated N1—H9⋯O2i/N1—H9⋯O3i hydrogen bonds (Fig. 1). This motif generates a van der Waals contact (O3⋯O6) of 2.980 (4) Å between the two nitrate ions. The phenyl rings in the independent cations extend in the same direction from the pair of anions with a dihedral angle of only 4.8 (2)° between their mean planes and participate in a π–π stacking inter­action with a centroid⋯centroid distance of 3.932 (2) Å. Meanwhile, one cation is rotated with respect to the other so that the Br1—C2⋯C10—Br2 torsion angle is 50.4 (su?)°.

Figure 1.

Figure 1

The asymmetric unit with labelling scheme and 50% probability ellipsoids. N—H⋯O hydrogen bonds and π-stacking inter­actions are shown, respectively, by blue and orange dashed lines.

Supra­molecular features  

In the crystal, the anions are arranged in coarsely corrugated layers parallel to the bc plane with the hydrogen-bonded cations protruding from each face in an alternating fashion (Fig. 2). The cations containing Br1 are perpendicular to the layers and make close Br1⋯O5 contacts of 3.229 (5) Å (0.14 Å less than the sum of the van der Waals radii) with nitrate ions in adjacent layers (Fig. 2, Table 1).

Figure 2.

Figure 2

Packing viewed along the c-axis direction showing a portion of two coarsely corrugated layers of anions with the cations extending alternately from each side. The N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by blue and black dashed lines. The Br⋯O inter­actions are shown by green dashed lines.

Table 1. ydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H9⋯O2i 0.89 2.19 2.930 (5) 140
N1—H9⋯O3i 0.89 2.15 3.002 (5) 160
N1—H10⋯O4i 0.89 2.08 2.957 (4) 167
N1—H11⋯O2ii 0.89 1.91 2.773 (4) 162
N2—H12⋯O1i 0.89 2.59 3.356 (6) 145
N2—H12⋯O6i 0.89 2.11 2.827 (5) 137
N2—H12⋯O1iii 0.89 2.59 3.158 (5) 122
N2—H13⋯O3iv 0.89 2.12 2.774 (5) 130
N2—H13⋯O6iv 0.89 2.55 3.345 (5) 149
N2—H14⋯O4iii 0.89 2.19 2.831 (5) 129
C4—H3⋯O1iii 0.93 2.41 3.129 (5) 134
C12—H8⋯O3i 0.93 2.59 3.410 (5) 147
C12—H8⋯O6i 0.93 2.58 3.1943 (3) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Hirshfeld surface analysis  

The inter­molecular inter­actions were investigated qu­anti­tatively and visualized with Crystal Explorer 3.1 (Wolff et al., 2012; Spackman et al., 2009). The d norm, curvedness and 2D fingerprint plots are depicted in Figs. 3–5 , respectively. The red spots on the Hirshfeld surface represent N—H⋯O contacts (Br⋯O contacts are not visible as red spots) while the blue regions correspond to weak inter­actions such as C—H⋯O contacts. The two triangles in the curvedness surface clearly illustrate the π–π stacking inter­actions. The O⋯H/H⋯O (51.4%) inter­actions are the major factor in the crystal packing with H⋯H (15.5%) inter­actions representing the next highest contribution. The percentage contributions of other weak inter­actions are: H⋯Br/Br⋯H (10.3%), C⋯H/H⋯C (9.2%), O⋯Br/Br⋯O (4.1%), Br⋯Br (2.7%), N⋯H/H⋯N (1.7%), O⋯O (1.6%), C⋯C (1.5%), C⋯O/O⋯C (0.8%), N⋯Br/Br⋯N (0.4), C⋯Br/Br⋯C (0.4%), N⋯O/O⋯N (0.3%) and N⋯C/C⋯N (0.1%).

Figure 3.

Figure 3

Hirshfeld surface plotted over d norm.

Figure 4.

Figure 4

Curvedness surface of the title compound showing the π–π stacking.

Figure 5.

Figure 5

Fingerprint plots for the title compound

Database survey  

A search of the Cambridge Structural Database (CSD version 5.41, last update April 2020; Groom et al., 2016) for the 4-bromo­anilinium cation gave 22 hits excluding metal complexes. Among these, 13 structures have this cation combined with various acid anions including [PO2(OH)2] (EBEFAV; Yoshii et al., 2015; UGISEI; Zhang et al., 2001; UGISEI01; Yoshii et al., 2015), [HC2O4] (ROBXOY; Radhakrishnan & Jeyaperumal, 2019), [C4H5O6] (ROPTEX; Yoshii et al., 2014) and [p-CH3C6H4SO3] (VUCBAY; Sivakumar et al., 2015). Two more have amide anions [N(SO2 R)2] [R = Me (TAJWOT; Jones et al., 2016), 4-BrC6H4 (DOHSOJ; Lozano et al., 2008)]. The remainder have inorganic anions such as [SiF6]2− (PBANIL; Denne et al., 1971), [PF6] (TUPWUX; Yang & Fu, 2010) and chloride (TAWRAL; Portalone, 2005). Additionally, there is an unpublished structure of the title compound (ROCNOP; Anbarasan & Sundar, 2019) of comparable quality to the present study but without the additional investigations presented here.

Synthesis and crystallization  

The title salt was synthesized by dissolving analytical grade 4-bromo­aniline and nitric acid in a 1:1 stoichiometric ratio in methanol. The solution was stirred continuously for 2 h. Slow evaporation of this solution at room temperature yielded transparent colourless single crystals of the product.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with U iso(H) = 1.2U eq(C) and N—H = 0.86 Å with U iso(H) = 1.2U eq(N). Reflection (100) was obscured by the beam stop and was omitted during the final refinement cycle.

Table 2. Experimental details.

Crystal data
Chemical formula C6H7BrN+·NO3
M r 235.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.7123 (8), 23.4964 (19), 7.6264 (6)
β (°) 97.052 (4)
V3) 1727.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.73
Crystal size (mm) 0.42 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.374, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 16821, 4609, 2355
R int 0.058
(sin θ/λ)max−1) 0.684
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.183, 1.02
No. of reflections 4609
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.84

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXT (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020006945/mw2155sup1.cif

e-76-00973-sup1.cif (22.8KB, cif)

Supporting information file. DOI: 10.1107/S2056989020006945/mw2155Isup2.cml

CCDC reference: 1909800

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C6H7BrN+·NO3 F(000) = 928
Mr = 235.04 Dx = 1.808 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4609 reflections
a = 9.7123 (8) Å θ = 2.6–29.1°
b = 23.4964 (19) Å µ = 4.73 mm1
c = 7.6264 (6) Å T = 293 K
β = 97.052 (4)° Needle, colorless
V = 1727.2 (2) Å3 0.42 × 0.18 × 0.12 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 2355 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.058
ω and φ scan θmax = 29.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→11
Tmin = 0.374, Tmax = 0.567 k = −29→32
16821 measured reflections l = −8→10
4609 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0927P)2 + 0.2455P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.183 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.68 e Å3
4609 reflections Δρmin = −0.84 e Å3
218 parameters Extinction correction: SHELXL2018/3 (Sheldrick 2015b)
0 restraints Extinction coefficient: 0.0181 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 1.0463 (4) 0.32338 (12) 0.2075 (4) 0.0513 (8)
H10 1.083534 0.351431 0.150589 0.077*
H9 1.063697 0.329131 0.323465 0.077*
H11 1.082988 0.290327 0.180092 0.077*
N2 0.8383 (4) 0.52952 (13) 0.2737 (5) 0.0571 (9)
H14 0.798745 0.556374 0.202137 0.086*
H13 0.880154 0.545557 0.371772 0.086*
H12 0.900523 0.510739 0.219564 0.086*
N3 0.0880 (3) 0.32409 (14) 0.6621 (5) 0.0481 (8)
N4 0.1286 (3) 0.46630 (13) 0.1594 (5) 0.0531 (9)
O2 0.1085 (4) 0.28155 (12) 0.5705 (5) 0.0762 (10)
O3 0.0604 (4) 0.36877 (12) 0.5772 (5) 0.0891 (12)
O4 0.1736 (3) 0.42637 (11) 0.0733 (4) 0.0613 (8)
O5 0.0995 (5) 0.32142 (18) 0.8212 (5) 0.0941 (12)
O6 0.0681 (3) 0.45499 (12) 0.2920 (4) 0.0656 (8)
O1 0.1429 (4) 0.51579 (11) 0.1125 (5) 0.0766 (10)
C1 0.6768 (5) 0.28047 (18) 0.1770 (6) 0.0632 (12)
H1 0.622297 0.253605 0.225586 0.076*
C2 0.6166 (5) 0.31894 (18) 0.0536 (5) 0.0549 (11)
C3 0.6968 (5) 0.35869 (17) −0.0173 (6) 0.0611 (12)
H2 0.655897 0.384689 −0.099684 0.073*
C4 0.8371 (5) 0.36032 (15) 0.0328 (5) 0.0539 (11)
H3 0.891543 0.387124 −0.016287 0.065*
C5 0.8970 (4) 0.32216 (14) 0.1558 (5) 0.0449 (9)
C6 0.8179 (5) 0.28202 (17) 0.2278 (6) 0.0576 (11)
H4 0.859217 0.256095 0.310167 0.069*
C7 0.7319 (4) 0.48981 (15) 0.3193 (5) 0.0466 (9)
C8 0.5964 (5) 0.49725 (19) 0.2493 (6) 0.0638 (12)
H5 0.571499 0.527478 0.173184 0.077*
C9 0.4971 (5) 0.4596 (2) 0.2925 (7) 0.0779 (14)
H6 0.40465 0.463954 0.245794 0.094*
C10 0.5363 (5) 0.4159 (2) 0.4046 (6) 0.0640 (12)
C11 0.6718 (5) 0.40804 (19) 0.4725 (6) 0.0607 (11)
H7 0.696645 0.377689 0.548105 0.073*
C12 0.7710 (4) 0.44517 (19) 0.4285 (5) 0.0562 (11)
H8 0.863752 0.439985 0.472598 0.067*
Br1 0.42315 (6) 0.31590 (3) −0.02005 (7) 0.0826 (3)
Br2 0.40126 (7) 0.36433 (3) 0.47100 (8) 0.1017 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.070 (2) 0.0398 (16) 0.0435 (19) −0.0049 (16) 0.0034 (17) −0.0031 (14)
N2 0.056 (2) 0.0473 (19) 0.065 (2) 0.0020 (16) −0.0038 (17) −0.0121 (17)
N3 0.0476 (19) 0.0412 (18) 0.054 (2) −0.0059 (14) 0.0019 (16) 0.0022 (17)
N4 0.0414 (19) 0.0379 (18) 0.075 (3) −0.0029 (15) −0.0123 (17) 0.0051 (18)
O2 0.113 (3) 0.0430 (17) 0.072 (2) −0.0017 (16) 0.010 (2) −0.0044 (15)
O3 0.119 (3) 0.0353 (16) 0.103 (3) 0.0007 (17) −0.026 (2) 0.0073 (17)
O4 0.0609 (19) 0.0433 (15) 0.079 (2) 0.0103 (14) 0.0043 (15) −0.0019 (14)
O5 0.095 (3) 0.140 (3) 0.047 (2) 0.007 (2) 0.0077 (19) −0.007 (2)
O6 0.067 (2) 0.0597 (18) 0.072 (2) −0.0003 (15) 0.0160 (17) 0.0087 (16)
O1 0.097 (3) 0.0328 (15) 0.099 (3) −0.0081 (15) 0.007 (2) 0.0106 (16)
C1 0.068 (3) 0.065 (3) 0.058 (3) −0.006 (2) 0.012 (2) 0.015 (2)
C2 0.063 (3) 0.060 (3) 0.042 (2) 0.008 (2) 0.0049 (19) −0.007 (2)
C3 0.084 (4) 0.051 (2) 0.048 (3) 0.013 (2) 0.006 (2) 0.010 (2)
C4 0.073 (3) 0.036 (2) 0.053 (3) −0.0020 (19) 0.007 (2) 0.0068 (18)
C5 0.062 (3) 0.0344 (18) 0.038 (2) 0.0014 (17) 0.0056 (18) −0.0034 (16)
C6 0.070 (3) 0.052 (2) 0.050 (2) −0.002 (2) 0.004 (2) 0.0139 (19)
C7 0.047 (2) 0.047 (2) 0.044 (2) 0.0037 (18) 0.0029 (17) −0.0105 (18)
C8 0.054 (3) 0.070 (3) 0.066 (3) 0.013 (2) 0.002 (2) 0.007 (2)
C9 0.042 (3) 0.118 (4) 0.071 (3) 0.004 (3) −0.005 (2) 0.013 (3)
C10 0.060 (3) 0.078 (3) 0.056 (3) −0.013 (2) 0.014 (2) −0.007 (2)
C11 0.063 (3) 0.066 (3) 0.054 (3) −0.002 (2) 0.008 (2) 0.007 (2)
C12 0.048 (2) 0.065 (3) 0.053 (3) 0.009 (2) −0.005 (2) −0.001 (2)
Br1 0.0635 (4) 0.1164 (5) 0.0676 (4) 0.0127 (3) 0.0060 (3) −0.0013 (3)
Br2 0.0876 (5) 0.1390 (6) 0.0825 (5) −0.0422 (4) 0.0262 (3) 0.0036 (3)

Geometric parameters (Å, º)

N1—C5 1.456 (5) C2—Br1 1.895 (5)
N1—H10 0.89 C3—C4 1.369 (6)
N1—H9 0.89 C3—H2 0.93
N1—H11 0.89 C4—C5 1.375 (5)
N2—C7 1.465 (5) C4—H3 0.93
N2—H14 0.89 C5—C6 1.373 (6)
N2—H13 0.89 C6—H4 0.93
N2—H12 0.89 C7—C12 1.364 (6)
N3—O5 1.207 (5) C7—C8 1.370 (6)
N3—O3 1.245 (4) C8—C9 1.379 (7)
N3—O2 1.249 (4) C8—H5 0.93
N4—O1 1.229 (4) C9—C10 1.360 (7)
N4—O4 1.254 (4) C9—H6 0.93
N4—O6 1.258 (4) C10—C11 1.366 (6)
C1—C6 1.378 (7) C10—Br2 1.900 (4)
C1—C2 1.382 (6) C11—C12 1.372 (6)
C1—H1 0.93 C11—H7 0.93
C2—C3 1.369 (6) C12—H8 0.93
C5—N1—H10 109.5 C3—C4—C5 119.7 (4)
C5—N1—H9 109.5 C3—C4—H3 120.2
H10—N1—H9 109.5 C5—C4—H3 120.2
C5—N1—H11 109.5 C6—C5—C4 120.7 (4)
H10—N1—H11 109.5 C6—C5—N1 119.5 (3)
H9—N1—H11 109.5 C4—C5—N1 119.8 (4)
C7—N2—H14 109.5 C5—C6—C1 119.4 (4)
C7—N2—H13 109.5 C5—C6—H4 120.3
H14—N2—H13 109.5 C1—C6—H4 120.3
C7—N2—H12 109.5 C12—C7—C8 121.2 (4)
H14—N2—H12 109.5 C12—C7—N2 118.9 (4)
H13—N2—H12 109.5 C8—C7—N2 119.9 (4)
O5—N3—O3 123.7 (4) C7—C8—C9 119.5 (4)
O5—N3—O2 121.3 (4) C7—C8—H5 120.3
O3—N3—O2 115.0 (4) C9—C8—H5 120.3
O1—N4—O4 119.8 (4) C10—C9—C8 119.0 (4)
O1—N4—O6 120.9 (4) C10—C9—H6 120.5
O4—N4—O6 119.3 (3) C8—C9—H6 120.5
C6—C1—C2 119.8 (4) C9—C10—C11 121.5 (4)
C6—C1—H1 120.1 C9—C10—Br2 120.0 (4)
C2—C1—H1 120.1 C11—C10—Br2 118.5 (4)
C3—C2—C1 120.1 (5) C10—C11—C12 119.6 (4)
C3—C2—Br1 120.0 (3) C10—C11—H7 120.2
C1—C2—Br1 119.9 (4) C12—C11—H7 120.2
C2—C3—C4 120.3 (4) C7—C12—C11 119.2 (4)
C2—C3—H2 119.9 C7—C12—H8 120.4
C4—C3—H2 119.9 C11—C12—H8 120.4
C6—C1—C2—C3 −0.4 (7) C12—C7—C8—C9 1.2 (7)
C6—C1—C2—Br1 178.7 (3) N2—C7—C8—C9 179.8 (4)
C1—C2—C3—C4 0.4 (6) C7—C8—C9—C10 0.2 (7)
Br1—C2—C3—C4 −178.7 (3) C8—C9—C10—C11 −1.1 (8)
C2—C3—C4—C5 −0.6 (6) C8—C9—C10—Br2 178.5 (4)
C3—C4—C5—C6 0.7 (6) C9—C10—C11—C12 0.6 (7)
C3—C4—C5—N1 179.2 (3) Br2—C10—C11—C12 −179.1 (3)
C4—C5—C6—C1 −0.6 (6) C8—C7—C12—C11 −1.8 (6)
N1—C5—C6—C1 −179.2 (4) N2—C7—C12—C11 179.6 (4)
C2—C1—C6—C5 0.4 (7) C10—C11—C12—C7 0.9 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H9···O2i 0.89 2.19 2.930 (5) 140
N1—H9···O3i 0.89 2.15 3.002 (5) 160
N1—H10···O4i 0.89 2.08 2.957 (4) 167
N1—H11···O2ii 0.89 1.91 2.773 (4) 162
N2—H12···O1i 0.89 2.59 3.356 (6) 145
N2—H12···O6i 0.89 2.11 2.827 (5) 137
N2—H12···O1iii 0.89 2.59 3.158 (5) 122
N2—H13···O3iv 0.89 2.12 2.774 (5) 130
N2—H13···O6iv 0.89 2.55 3.345 (5) 149
N2—H14···O4iii 0.89 2.19 2.831 (5) 129
C4—H3···O1iii 0.93 2.41 3.129 (5) 134
C12—H8···O3i 0.93 2.59 3.410 (5) 147
C12—H8···O6i 0.93 2.58 3.1943 (3) 124

Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Periyar University grant .

References

  1. Anbarasan, R. & Sundar, J. K. (2019). CSD Communication (refcode ROCNOP). CCDC, Cambridge, England.
  2. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Denne, W. A., Mathieson, A. & Mackay, M. F. (1971). J. Cryst. Mol. Struct. 1, 55–62.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Fu, X. (2010). Acta Cryst. E66, o1326. [DOI] [PMC free article] [PubMed]
  6. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hartmann, J., Dou, S.-Q. & Weiss, A. (1990). Berichte der Bunsengesellschaft für physikalische Chemie, 94, 1110–1121.
  9. Jones, P. G., Blaschette, A. & Moers, O. (2016). CSD Communication (refcode TAJWOT). CCDC, Cambridge, England.
  10. Lozano, V., Freytag, M., Jones, P. G. & Blaschette, A. (2008). Z. Naturforsch. B, 63, 954–962.
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Portalone, G. (2005). Acta Cryst. E61, o3083–o3085.
  13. Radhakrishnan, A. & Jeyaperumal, K. S. (2019). CSD Communication (refcode ROBXOY). CCDC, Cambridge, England.
  14. Sheldrick, G. M. (1996). SADABS.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Sivakumar, P. K., Kumar, M. K., Kumar, R. M., Chakkaravarthi, G. & Kanagadurai, R. (2015). Acta Cryst. E71, o163–o164. [DOI] [PMC free article] [PubMed]
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  20. Vivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139–1146.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
  23. Yang, Y. & Fu, X. (2010). Acta Cryst. E66, o1430. [DOI] [PMC free article] [PubMed]
  24. Yoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845–20854.
  25. Yoshii, Y., Hoshino, N., Takeda, T., Moritomo, H., Kawamata, J., Nakamura, T. & Akutagawa, T. (2014). Chem. Eur. J. 20, 16279–16285. [DOI] [PubMed]
  26. Zhang, B.-G., Gou, S.-H., Duan, C.-Y. & You, X.-Z. (2001). Wuhan Dax. Xuebao, Zir. Kex. 47, 425–427.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020006945/mw2155sup1.cif

e-76-00973-sup1.cif (22.8KB, cif)

Supporting information file. DOI: 10.1107/S2056989020006945/mw2155Isup2.cml

CCDC reference: 1909800

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES