Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 5;76(Pt 6):798–802. doi: 10.1107/S2056989020005939

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-(2,3-di­hydro-1H-perimidin-2-yl)phenol

Ballo Daouda a,b,*, Nanou Tiéba Tuo c, Niameke Jean-Baptiste Kangah c, Tuncer Hökelek d, Charles Guillaume Kodjo c, Pascal Retailleau e, El Mokhtar Essassi a
PMCID: PMC7273993  PMID: 32523742

The asymmetric unit of the title compound contains two independent mol­ecules, consisting of perimidine and phenol units, which are linked through an N—H⋯O hydrogen bond. Intra­molecular O—H⋯N hydrogen bonds are observed in both independent mol­ecules.

Keywords: crystal structure, perimidine, phenol, Hirshfeld surface

Abstract

The asymmetric unit of the title compound, C17H14N2O, contains two independent mol­ecules each consisting of perimidine and phenol units. The tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings adopting envelope conformations with the C atoms of the NCN groups hinged by 44.11 (7) and 48.50 (6)° with respect to the best planes of the other five atoms. Intra­molecular O—H⋯N hydrogen bonds may help to consolidate the mol­ecular conformations. The two independent mol­ecules are linked through an N—H⋯O hydrogen bond. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (39.5%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

Chemical context  

1-H Perimidines are defined as peri-naphtho-fused pyrimidines (Varsha et al., 2010). They were first discovered in 1874 (De Aguiar, 1874) and are characterized either by a binding deficit or an excess of π binding (Woodgate et al., 1987). They are used as inter­mediates in dyes, dyeing and polymerization systems (Watanab et al., 1977) and have been recognized as new carbene ligands (Bazinet et al., 2003), attracting great inter­est (Bu et al., 2001; Starshikoy et al., 1973). 1-H Perimidines also exhibit important biological activities (Zhou et al., 2019), having the potential to act as anti-inflammatory agents (Zhang et al., 2017) and inhibitors of enzymes (Alam et al., 2016) and to have applications in fluorescence (Giani et al., 2016), catalysis (Behbahani et al., 2017), corrosion inhibition (He et al., 2018) and in coordination chemistry (Booysen et al., 2016; Mahapatra et al., 2015).

Perimidines are obtained by the condensation of 1,8-di­aminona­phthalene with various carbonyl groups. As a contin­uation of our research into the development of new perimidine derivatives with potential pharmacological applications, we have studied the reaction of the condensation of salicyl­aldehyde and 1,8- di­aminona­phthalene in ether under agitation at room temperature to give the title compound in good yield. The title compound was obtained for the first time and characterized by single-crystal X-ray diffraction techniques as well as by Hirshfeld surface analysis. The results of the calculations by density functional theory (DFT), carried out at the B3LYP/6-311G (d,p) level, are compared with the experimentally determined mol­ecular structure in the solid state.graphic file with name e-76-00798-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound, I, contains two crystallographically independent mol­ecules each consisting of perimidine and phenol units, where the tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings (Fig. 1). A puckering analysis of the non-planar six-membered C4N2, B (N1A/N2A/C1A/C9A–C11A) and B′ (N1A/N2A/C1A/C9B–C11B) rings gave the parameters q 2 = 0.9280 (12) Å, q 3 = 0.1829 (12) Å, Q T = 0.9459 (13) Å, θ2 = 75.85 (15)° and φ 2= 134.47 (18)° for B and q 2 = 0.5320 (11) Å, q 3 = 0.3791 (11) Å, Q T = 0.6533 (14) Å, θ2 = 54.33 (12)° and φ 2= −5.47 (13)° for B′; both rings adopt envelope conformations, where atoms C1A and C1B are at the flap positions and at distances of 0.6044 (12) and −0.6590 (13) Å, respectively, from the best planes through the other five atoms. The C4N2 rings may alternatively be described as being hinged about the N⋯N vectors with the N1A/C1A/N2A and N1B/C1B/N2B planes being inclined by 44.11 (7) and 48.50 (6)°, respectively, to the best planes through the other five atoms (N1A/N2A/C9A–C11A) and (N1B/N2B/C9B–C11B). Rings A (C2A–C7A), C (C10A–C15A), D (C9A/C10A/C15A–C18A) and A′ (C2B–C7B), C′ (C10B–C15B), D′ (C9B/C10B/C15B–C18B) are oriented at dihedral angles of A/C = 76.78 (4), A/D = 78.49 (4), C/D = 2.09 (3)° and A′/C′ = 88.43 (3), A′/D′ = 88.31 (3), C′/D′ = 3.26 (4)°. Intra­molecular O—H⋯N hydrogen bonds (Table 1) may be effective in consolidating the conformations of the two independent mol­ecules.

Figure 1.

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.86 (2) 2.66 (2) 3.1072 (16) 113.8 (17)
O1A—H1OA⋯N2A 0.86 (2) 2.03 (2) 2.7763 (16) 144.6 (19)
O1B—H1OB⋯N1B 0.84 (2) 2.20 (3) 2.8835 (16) 138 (2)
O1B—H1OB⋯N2B 0.84 (2) 2.47 (2) 3.0196 (16) 123 (2)
N1B—H1NB⋯O1A 0.865 (17) 2.331 (17) 3.1608 (18) 160.8 (14)

Supra­molecular features  

In the crystal, the two mol­ecules in the asymmetric unit are linked through an N—H⋯O hydrogen bond (Table 1, Fig. 1).

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 2), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors.

Figure 2.

Figure 2

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1813 to 1.6330 a.u.

The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 3 clearly suggests that there are no π–π inter­actions in I. The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 4 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 4 bf, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 52.9% to the overall crystal packing, which is reflected in Fig. 4 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at d e = d i = 1.10 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 4 c, (39.5% contribution to the HS) have the tips at d e + d i = 2.50 Å. The scattered points in the pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H (Fig. 4 d, 5.7% contribution) have a symmetrical distribution with the tips at d e + d i = 2.49 Å. The H⋯N/N⋯H contacts (Fig. 4 e, 1.3% contribution) have a distribution of points with the tips at d e + d i = 2.72 Å. Finally, the C⋯C inter­actions (0.5% contribution to the overall crystal packing) are reflected in Fig. 4 f as low density wings with the tips at d e + d i = 3.60 Å.

Figure 3.

Figure 3

Hirshfeld surface of the title compound plotted over shape-index.

Figure 4.

Figure 4

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) O⋯C/C⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 5 ac, respectively.

Figure 5.

Figure 5

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

DFT calculations  

The optimized structure of the title compound, I, in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 2). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. E HOMO and E LUMO, which clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending from the whole 2-(2,3-di­hydro-1H-perimidin-2-yl)phenol ring. The energy band gap [ΔE = E LUMO - E HOMO] of the mol­ecule is 1.4933 eV, the frontier mol­ecular orbital energies E HOMO and E LUMO being −3.2606 and −1.7673 eV, respectively.

Table 2. Comparison of selected X-ray and DFT geometrical parameters (Å, °).

Bonds/angles X-ray B3LYP/6–311G(d,p)
C1A—N1A 1.4597 (17) 1.40941
C1A—N2A 1.4646 (19) 1.35557
C1A—C2A 1.5079 (17) 1.43731
C1A—H1A 0.9800 1.03211
N1A—C9A 1.3944 (17) 1.42420
N1A—H1N1 0.873 (19) 1.00630
O1A—C3A 1.3693 (18) 1.40953
O1A—H1OA 0.86 (2) 0.97032
C2A—C7A 1.388 (2) 1.42763
C2A—C3A 1.3923 (19) 1.42630
N2A—C11A 1.4081 (17) 1.36897
     
N1A—C1A—N2A 106.61 (11) 115.07
N1A—C1A—C2A 110.09 (11) 125.03
N2A—C1A—C2A 109.23 (11) 109.89
N1A—C1A—H1A 110.3 110.17
N2A—C1A—H1A 110.3 110.03
C2A—C1A—H1A 110.3 110.08
C9A—N1A—C1A 117.08 (11) 117.82
C9A—N1A—H1N1 115.0 (12) 114.98
C3A—O1A—H1OA 106.1 (14) 107.84

Table 3. Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound I
Total Energy TE (eV) −22880.3725
E HOMO (eV) −3.2606
E LUMO (eV) −1.7673
Gap, ΔE (eV) 1.4933
Dipole moment, μ (Debye) 3.3491
Ionization potential, I (eV) 3.2606
Electron affinity, A 1.7673
Electronegativity, χ 2.5139
Hardness, η 0.7466
Electrophilicity index, ω 4.2322
Softness, σ 1.3393
Fraction of electron transferred, ΔN 3.0042

Figure 6.

Figure 6

The energy band gap of the title compound.

Database survey  

Similar perimidine derivatives have also been reported in which the groups at position 2 are almost coplanar with the perimidic nucleus. Examples related to the title compound, I, are II (Ghorbani, 2012), III (Fun et al., 2011), IV (Maloney et al., 2013), V (Cucciolito et al., 2013) and VI (Manimekalai et al., 2014), where III and V are most closely related while II, IV and VI are more distant relatives.graphic file with name e-76-00798-scheme2.jpg

Synthesis and crystallization  

0.35 mol (1.48 g) of 1,8-di­aminona­phthalene and 18.8 mmol (2 ml) of salicyl­aldehyde were introduced into a 250 ml flask and 30 ml of ether were added thereto. The mixture was stirred magnetically for 3 days. The grey precipitate that formed was recovered by filtration, washed with ether, rinsed with ethanol and dried under Büchner. The resulting brownish powder was recrystallized several times from ethanol to obtain colourless 2-(2,3-di­hydro-1H-perimidin-2-yl)phenol product (R f = 0.70 in hexa­ne/ethyl acetate (1:0.5), yield: 97% A significant qu­antity of the colourless monocrystalline product was obtained by the slow evaporation of the solvent after 15 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in are summarized in Table 4. The H atoms of OH and NH groups were located in difference-Fourier maps and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms) and 0.98 Å (for methine H atom) and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula C17H14N2O
M r 262.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.0710 (4), 12.0526 (7), 24.6120 (11)
β (°) 95.999 (4)
V3) 2676.1 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.60 × 0.35 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB PRO
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.212, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29344, 6395, 4554
R int 0.042
(sin θ/λ)max−1) 0.690
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.120, 1.03
No. of reflections 6395
No. of parameters 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.21

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005939/lh5957sup1.cif

e-76-00798-sup1.cif (896.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005939/lh5957Isup2.hkl

e-76-00798-Isup2.hkl (508.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005939/lh5957Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020005939/lh5957Isup4.cml

CCDC reference: 1976884

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Professor Nahossé Ziao is thanked for allowing the synthesis to be undertaken in the Laboratory of Thermodynamics and Physical Chemistry of the Environment (LTPCM), University Nangui, Abrogoua, Côte d’Ivoire.

supplementary crystallographic information

Crystal data

C17H14N2O F(000) = 1104
Mr = 262.30 Dx = 1.302 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.0710 (4) Å Cell parameters from 8291 reflections
b = 12.0526 (7) Å θ = 2.8–29.0°
c = 24.6120 (11) Å µ = 0.08 mm1
β = 95.999 (4)° T = 293 K
V = 2676.1 (2) Å3 Plate, colourless
Z = 8 0.60 × 0.35 × 0.05 mm

Data collection

Rigaku XtaLAB PRO diffractometer 6395 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku micromax 003 4554 reflections with I > 2σ(I)
Rigaku Integrated Confocal MaxFlux double bounce multi-layer mirror optics monochromator Rint = 0.042
Detector resolution: 5.811 pixels mm-1 θmax = 29.4°, θmin = 2.7°
ω scans h = −12→11
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −15→16
Tmin = 0.212, Tmax = 1.000 l = −33→32
29344 measured reflections

Refinement

Refinement on F2 Primary atom site location: other
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.390P] where P = (Fo2 + 2Fc2)/3
6395 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.56889 (14) 0.53907 (11) 0.62210 (5) 0.0396 (3)
H1A 0.638920 0.526271 0.595013 0.047*
N1A 0.41985 (13) 0.50532 (11) 0.60023 (5) 0.0437 (3)
H1N1 0.4106 (19) 0.4334 (16) 0.5970 (7) 0.066*
O1A 0.43505 (13) 0.56864 (10) 0.72308 (4) 0.0584 (3)
H1OA 0.438 (2) 0.6117 (18) 0.6953 (9) 0.088*
C2A 0.61653 (14) 0.47595 (12) 0.67387 (5) 0.0405 (3)
N2A 0.56102 (14) 0.65756 (10) 0.63467 (4) 0.0435 (3)
H1NA 0.646 (2) 0.6821 (15) 0.6495 (7) 0.065*
O1B 0.04282 (12) 0.30406 (13) 0.63319 (5) 0.0708 (4)
H1OB 0.043 (3) 0.318 (2) 0.6666 (10) 0.106*
N1B 0.20034 (13) 0.37845 (10) 0.73446 (4) 0.0411 (3)
H1NB 0.2567 (17) 0.4294 (14) 0.7230 (6) 0.049*
C1B 0.25725 (13) 0.26647 (11) 0.72676 (5) 0.0375 (3)
H1B 0.347428 0.254276 0.751615 0.045*
C3A 0.54903 (15) 0.49467 (12) 0.72131 (5) 0.0443 (3)
C2B 0.28946 (14) 0.24906 (11) 0.66876 (5) 0.0369 (3)
N2B 0.14081 (13) 0.19020 (11) 0.74018 (5) 0.0419 (3)
H2NB 0.1541 (17) 0.1222 (14) 0.7310 (6) 0.050*
C4A 0.59490 (18) 0.43710 (15) 0.76890 (6) 0.0582 (4)
H4A 0.550760 0.450973 0.800663 0.070*
C3B 0.17999 (14) 0.26533 (12) 0.62532 (5) 0.0433 (3)
C5A 0.70642 (19) 0.35908 (16) 0.76890 (7) 0.0661 (5)
H5A 0.736838 0.320194 0.800742 0.079*
C4B 0.20960 (17) 0.24421 (13) 0.57226 (6) 0.0503 (4)
H4B 0.135102 0.252304 0.543578 0.060*
C6A 0.77248 (17) 0.33852 (16) 0.72245 (8) 0.0645 (5)
H6A 0.846957 0.285454 0.722639 0.077*
C5B 0.34887 (19) 0.21132 (14) 0.56196 (6) 0.0568 (4)
H5B 0.368794 0.198052 0.526223 0.068*
C7A 0.72813 (15) 0.39693 (14) 0.67520 (6) 0.0519 (4)
H7A 0.773844 0.383022 0.643784 0.062*
C6B 0.45901 (18) 0.19793 (14) 0.60424 (7) 0.0582 (4)
H6B 0.553804 0.177175 0.597066 0.070*
C9A 0.35196 (14) 0.56636 (11) 0.55642 (5) 0.0378 (3)
C7B 0.42863 (15) 0.21533 (12) 0.65727 (6) 0.0456 (3)
H7B 0.502848 0.204217 0.685787 0.055*
C10A 0.38759 (13) 0.68071 (11) 0.55413 (5) 0.0348 (3)
C9B 0.15927 (15) 0.40010 (13) 0.78695 (5) 0.0444 (3)
C11A 0.49532 (14) 0.72763 (11) 0.59321 (5) 0.0379 (3)
C10B 0.10259 (14) 0.30998 (13) 0.81524 (5) 0.0455 (3)
C12A 0.52565 (18) 0.83872 (12) 0.59224 (6) 0.0494 (4)
H12A 0.597660 0.868995 0.617626 0.059*
C11B 0.09143 (14) 0.20261 (12) 0.79161 (5) 0.0422 (3)
C13A 0.44833 (19) 0.90655 (13) 0.55310 (6) 0.0559 (4)
H13A 0.468574 0.982195 0.553059 0.067*
C12B 0.02694 (16) 0.11725 (16) 0.81762 (6) 0.0578 (4)
H12B 0.018478 0.047355 0.801591 0.069*
C14A 0.34396 (17) 0.86426 (13) 0.51502 (6) 0.0509 (4)
H14A 0.293631 0.911237 0.489454 0.061*
C13B −0.0259 (2) 0.1357 (2) 0.86819 (8) 0.0763 (6)
H13B −0.069782 0.077655 0.885520 0.092*
C15A 0.31142 (14) 0.75013 (12) 0.51393 (5) 0.0407 (3)
C14B −0.0142 (2) 0.2368 (2) 0.89238 (8) 0.0829 (7)
H14B −0.048187 0.246358 0.926437 0.099*
C16A 0.20329 (16) 0.70134 (14) 0.47590 (5) 0.0508 (4)
H16A 0.152944 0.744820 0.448781 0.061*
C15B 0.04892 (18) 0.32860 (18) 0.86688 (6) 0.0644 (5)
C17A 0.17231 (16) 0.59168 (15) 0.47860 (6) 0.0552 (4)
H17A 0.100450 0.561244 0.453204 0.066*
C16B 0.0568 (2) 0.4373 (2) 0.88808 (8) 0.0871 (7)
H16B 0.023178 0.451434 0.921832 0.105*
C18A 0.24558 (16) 0.52286 (13) 0.51861 (6) 0.0505 (4)
H18A 0.222179 0.447803 0.519553 0.061*
C18B 0.1656 (2) 0.50467 (16) 0.80913 (7) 0.0639 (4)
H18B 0.204313 0.563464 0.790689 0.077*
C17B 0.1125 (3) 0.5215 (2) 0.86015 (8) 0.0844 (6)
H17B 0.115746 0.592467 0.875106 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0369 (6) 0.0440 (8) 0.0368 (6) −0.0004 (6) −0.0008 (5) 0.0035 (5)
N1A 0.0475 (6) 0.0373 (6) 0.0431 (6) −0.0065 (5) −0.0108 (5) 0.0045 (5)
O1A 0.0697 (7) 0.0588 (7) 0.0487 (6) 0.0109 (6) 0.0153 (5) 0.0095 (5)
C2A 0.0347 (6) 0.0438 (8) 0.0409 (7) −0.0056 (6) −0.0055 (5) 0.0066 (6)
N2A 0.0470 (6) 0.0416 (7) 0.0385 (6) −0.0103 (5) −0.0113 (5) 0.0042 (5)
O1B 0.0442 (6) 0.1251 (12) 0.0413 (6) 0.0251 (6) −0.0033 (5) −0.0002 (6)
N1B 0.0451 (6) 0.0392 (7) 0.0390 (6) −0.0011 (5) 0.0046 (5) −0.0005 (5)
C1B 0.0320 (6) 0.0436 (8) 0.0360 (6) 0.0035 (5) −0.0009 (5) 0.0022 (5)
C3A 0.0443 (7) 0.0458 (8) 0.0414 (7) −0.0062 (6) −0.0017 (6) 0.0052 (6)
C2B 0.0372 (6) 0.0352 (7) 0.0383 (6) −0.0002 (5) 0.0039 (5) 0.0013 (5)
N2B 0.0443 (6) 0.0397 (7) 0.0424 (6) −0.0002 (5) 0.0079 (5) 0.0026 (5)
C4A 0.0635 (10) 0.0667 (11) 0.0422 (8) −0.0147 (8) −0.0045 (7) 0.0124 (7)
C3B 0.0396 (7) 0.0510 (9) 0.0392 (7) 0.0017 (6) 0.0038 (5) 0.0024 (6)
C5A 0.0567 (9) 0.0738 (12) 0.0624 (10) −0.0109 (9) −0.0196 (8) 0.0315 (9)
C4B 0.0583 (9) 0.0533 (9) 0.0386 (7) −0.0017 (7) 0.0010 (6) −0.0004 (6)
C6A 0.0413 (8) 0.0676 (11) 0.0809 (12) 0.0057 (8) −0.0115 (8) 0.0250 (9)
C5B 0.0715 (10) 0.0573 (10) 0.0441 (8) 0.0027 (8) 0.0179 (7) −0.0076 (7)
C7A 0.0364 (7) 0.0584 (10) 0.0594 (9) 0.0023 (7) −0.0020 (6) 0.0109 (7)
C6B 0.0520 (9) 0.0632 (11) 0.0622 (9) 0.0089 (8) 0.0195 (7) −0.0082 (8)
C9A 0.0369 (6) 0.0431 (8) 0.0325 (6) −0.0025 (6) −0.0001 (5) 0.0012 (5)
C7B 0.0396 (7) 0.0461 (8) 0.0511 (8) 0.0034 (6) 0.0045 (6) −0.0031 (6)
C10A 0.0343 (6) 0.0415 (7) 0.0288 (6) 0.0002 (5) 0.0048 (5) 0.0022 (5)
C9B 0.0421 (7) 0.0532 (9) 0.0364 (7) 0.0082 (6) −0.0033 (5) −0.0045 (6)
C11A 0.0416 (7) 0.0405 (8) 0.0316 (6) −0.0032 (6) 0.0032 (5) 0.0015 (5)
C10B 0.0359 (7) 0.0647 (10) 0.0349 (6) 0.0115 (6) −0.0008 (5) 0.0031 (6)
C12A 0.0647 (9) 0.0424 (8) 0.0401 (7) −0.0106 (7) 0.0007 (6) −0.0014 (6)
C11B 0.0313 (6) 0.0564 (9) 0.0381 (7) 0.0073 (6) −0.0007 (5) 0.0114 (6)
C13A 0.0798 (11) 0.0378 (8) 0.0506 (8) −0.0022 (8) 0.0099 (8) 0.0058 (6)
C12B 0.0459 (8) 0.0708 (11) 0.0566 (9) 0.0013 (8) 0.0049 (7) 0.0234 (8)
C14A 0.0613 (9) 0.0492 (9) 0.0427 (8) 0.0103 (7) 0.0082 (7) 0.0139 (6)
C13B 0.0614 (11) 0.1090 (18) 0.0607 (11) 0.0030 (11) 0.0162 (8) 0.0329 (11)
C15A 0.0390 (7) 0.0512 (9) 0.0327 (6) 0.0044 (6) 0.0072 (5) 0.0074 (6)
C14B 0.0694 (12) 0.137 (2) 0.0460 (9) 0.0154 (13) 0.0225 (8) 0.0196 (12)
C16A 0.0443 (7) 0.0714 (11) 0.0352 (7) 0.0037 (7) −0.0030 (6) 0.0124 (7)
C15B 0.0549 (9) 0.0997 (15) 0.0388 (8) 0.0167 (9) 0.0057 (7) −0.0008 (8)
C17A 0.0482 (8) 0.0757 (12) 0.0383 (7) −0.0105 (8) −0.0119 (6) 0.0019 (7)
C16B 0.0949 (15) 0.122 (2) 0.0457 (9) 0.0253 (14) 0.0137 (9) −0.0216 (11)
C18A 0.0539 (8) 0.0520 (9) 0.0429 (7) −0.0127 (7) −0.0078 (6) −0.0002 (6)
C18B 0.0766 (11) 0.0603 (11) 0.0528 (9) 0.0090 (9) −0.0019 (8) −0.0138 (8)
C17B 0.1031 (16) 0.0873 (16) 0.0611 (11) 0.0239 (13) 0.0011 (11) −0.0309 (11)

Geometric parameters (Å, º)

C1A—N1A 1.4597 (17) C6B—C7B 1.378 (2)
C1A—N2A 1.4646 (19) C6B—H6B 0.9300
C1A—C2A 1.5079 (17) C9A—C18A 1.3728 (18)
C1A—H1A 0.9800 C9A—C10A 1.4181 (19)
N1A—C9A 1.3944 (17) C7B—H7B 0.9300
N1A—H1N1 0.873 (19) C10A—C11A 1.4154 (17)
O1A—C3A 1.3693 (18) C10A—C15A 1.4189 (18)
O1A—H1OA 0.86 (2) C9B—C18B 1.372 (2)
C2A—C7A 1.388 (2) C9B—C10B 1.416 (2)
C2A—C3A 1.3923 (19) C11A—C12A 1.368 (2)
N2A—C11A 1.4081 (17) C10B—C11B 1.418 (2)
N2A—H1NA 0.870 (19) C10B—C15B 1.426 (2)
O1B—C3B 1.3616 (17) C12A—C13A 1.395 (2)
O1B—H1OB 0.84 (2) C12A—H12A 0.9300
N1B—C9B 1.4059 (17) C11B—C12B 1.374 (2)
N1B—C1B 1.4644 (18) C13A—C14A 1.360 (2)
N1B—H1NB 0.865 (17) C13A—H13A 0.9300
C1B—N2B 1.4638 (17) C12B—C13B 1.397 (3)
C1B—C2B 1.5013 (17) C12B—H12B 0.9300
C1B—H1B 0.9800 C14A—C15A 1.406 (2)
C3A—C4A 1.387 (2) C14A—H14A 0.9300
C2B—C7B 1.3833 (18) C13B—C14B 1.356 (3)
C2B—C3B 1.3949 (18) C13B—H13B 0.9300
N2B—C11B 1.3942 (17) C15A—C16A 1.412 (2)
N2B—H2NB 0.862 (17) C14B—C15B 1.421 (3)
C4A—C5A 1.381 (3) C14B—H14B 0.9300
C4A—H4A 0.9300 C16A—C17A 1.354 (2)
C3B—C4B 1.3840 (19) C16A—H16A 0.9300
C5A—C6A 1.368 (3) C15B—C16B 1.410 (3)
C5A—H5A 0.9300 C17A—C18A 1.401 (2)
C4B—C5B 1.373 (2) C17A—H17A 0.9300
C4B—H4B 0.9300 C16B—C17B 1.353 (3)
C6A—C7A 1.383 (2) C16B—H16B 0.9300
C6A—H6A 0.9300 C18A—H18A 0.9300
C5B—C6B 1.375 (2) C18B—C17B 1.406 (3)
C5B—H5B 0.9300 C18B—H18B 0.9300
C7A—H7A 0.9300 C17B—H17B 0.9300
N1A—C1A—N2A 106.61 (11) N1A—C9A—C10A 117.35 (11)
N1A—C1A—C2A 110.09 (11) C6B—C7B—C2B 121.03 (13)
N2A—C1A—C2A 109.23 (11) C6B—C7B—H7B 119.5
N1A—C1A—H1A 110.3 C2B—C7B—H7B 119.5
N2A—C1A—H1A 110.3 C11A—C10A—C9A 120.35 (11)
C2A—C1A—H1A 110.3 C11A—C10A—C15A 119.31 (12)
C9A—N1A—C1A 117.08 (11) C9A—C10A—C15A 120.30 (11)
C9A—N1A—H1N1 115.0 (12) C18B—C9B—N1B 122.14 (15)
C1A—N1A—H1N1 112.7 (12) C18B—C9B—C10B 120.75 (14)
C3A—O1A—H1OA 106.1 (14) N1B—C9B—C10B 117.02 (13)
C7A—C2A—C3A 118.36 (13) C12A—C11A—N2A 121.94 (12)
C7A—C2A—C1A 120.67 (13) C12A—C11A—C10A 120.34 (12)
C3A—C2A—C1A 120.97 (12) N2A—C11A—C10A 117.56 (12)
C11A—N2A—C1A 117.26 (10) C9B—C10B—C11B 120.84 (12)
C11A—N2A—H1NA 112.9 (12) C9B—C10B—C15B 119.55 (15)
C1A—N2A—H1NA 111.1 (12) C11B—C10B—C15B 119.53 (15)
C3B—O1B—H1OB 107.7 (17) C11A—C12A—C13A 119.88 (14)
C9B—N1B—C1B 114.90 (11) C11A—C12A—H12A 120.1
C9B—N1B—H1NB 113.0 (10) C13A—C12A—H12A 120.1
C1B—N1B—H1NB 112.5 (10) C12B—C11B—N2B 122.37 (15)
N2B—C1B—N1B 106.09 (10) C12B—C11B—C10B 120.51 (14)
N2B—C1B—C2B 110.09 (11) N2B—C11B—C10B 117.02 (12)
N1B—C1B—C2B 110.99 (10) C14A—C13A—C12A 121.31 (14)
N2B—C1B—H1B 109.9 C14A—C13A—H13A 119.3
N1B—C1B—H1B 109.9 C12A—C13A—H13A 119.3
C2B—C1B—H1B 109.9 C11B—C12B—C13B 119.89 (19)
O1A—C3A—C4A 117.37 (13) C11B—C12B—H12B 120.1
O1A—C3A—C2A 122.12 (12) C13B—C12B—H12B 120.1
C4A—C3A—C2A 120.50 (14) C13A—C14A—C15A 120.62 (13)
C7B—C2B—C3B 118.45 (12) C13A—C14A—H14A 119.7
C7B—C2B—C1B 120.52 (11) C15A—C14A—H14A 119.7
C3B—C2B—C1B 121.02 (11) C14B—C13B—C12B 121.03 (18)
C11B—N2B—C1B 116.45 (11) C14B—C13B—H13B 119.5
C11B—N2B—H2NB 114.1 (10) C12B—C13B—H13B 119.5
C1B—N2B—H2NB 114.4 (10) C14A—C15A—C16A 123.37 (13)
C5A—C4A—C3A 119.71 (16) C14A—C15A—C10A 118.52 (12)
C5A—C4A—H4A 120.1 C16A—C15A—C10A 118.08 (13)
C3A—C4A—H4A 120.1 C13B—C14B—C15B 121.50 (16)
O1B—C3B—C4B 117.87 (12) C13B—C14B—H14B 119.3
O1B—C3B—C2B 121.81 (12) C15B—C14B—H14B 119.3
C4B—C3B—C2B 120.30 (12) C17A—C16A—C15A 120.50 (13)
C6A—C5A—C4A 120.55 (14) C17A—C16A—H16A 119.8
C6A—C5A—H5A 119.7 C15A—C16A—H16A 119.8
C4A—C5A—H5A 119.7 C16B—C15B—C14B 124.57 (18)
C5B—C4B—C3B 120.04 (14) C16B—C15B—C10B 117.87 (18)
C5B—C4B—H4B 120.0 C14B—C15B—C10B 117.52 (18)
C3B—C4B—H4B 120.0 C16A—C17A—C18A 121.78 (13)
C5A—C6A—C7A 119.76 (16) C16A—C17A—H17A 119.1
C5A—C6A—H6A 120.1 C18A—C17A—H17A 119.1
C7A—C6A—H6A 120.1 C17B—C16B—C15B 121.10 (17)
C4B—C5B—C6B 120.27 (13) C17B—C16B—H16B 119.4
C4B—C5B—H5B 119.9 C15B—C16B—H16B 119.4
C6B—C5B—H5B 119.9 C9A—C18A—C17A 119.91 (14)
C6A—C7A—C2A 121.10 (15) C9A—C18A—H18A 120.0
C6A—C7A—H7A 119.4 C17A—C18A—H18A 120.0
C2A—C7A—H7A 119.4 C9B—C18B—C17B 118.95 (19)
C5B—C6B—C7B 119.85 (14) C9B—C18B—H18B 120.5
C5B—C6B—H6B 120.1 C17B—C18B—H18B 120.5
C7B—C6B—H6B 120.1 C16B—C17B—C18B 121.76 (19)
C18A—C9A—N1A 123.03 (13) C16B—C17B—H17B 119.1
C18A—C9A—C10A 119.42 (12) C18B—C17B—H17B 119.1
N2A—C1A—N1A—C9A 53.40 (15) C1A—N2A—C11A—C10A 27.40 (17)
C2A—C1A—N1A—C9A 171.78 (12) C9A—C10A—C11A—C12A −177.51 (12)
N1A—C1A—C2A—C7A 110.84 (15) C15A—C10A—C11A—C12A 0.02 (18)
N2A—C1A—C2A—C7A −132.41 (14) C9A—C10A—C11A—N2A −1.84 (18)
N1A—C1A—C2A—C3A −68.59 (16) C15A—C10A—C11A—N2A 175.69 (11)
N2A—C1A—C2A—C3A 48.16 (16) C18B—C9B—C10B—C11B 177.89 (14)
N1A—C1A—N2A—C11A −50.96 (15) N1B—C9B—C10B—C11B 1.32 (18)
C2A—C1A—N2A—C11A −169.89 (11) C18B—C9B—C10B—C15B 1.2 (2)
C9B—N1B—C1B—N2B 57.04 (13) N1B—C9B—C10B—C15B −175.39 (12)
C9B—N1B—C1B—C2B 176.61 (11) N2A—C11A—C12A—C13A −174.43 (13)
C7A—C2A—C3A—O1A −177.96 (13) C10A—C11A—C12A—C13A 1.0 (2)
C1A—C2A—C3A—O1A 1.5 (2) C1B—N2B—C11B—C12B −155.68 (12)
C7A—C2A—C3A—C4A 1.3 (2) C1B—N2B—C11B—C10B 27.86 (16)
C1A—C2A—C3A—C4A −179.23 (13) C9B—C10B—C11B—C12B −175.50 (12)
N2B—C1B—C2B—C7B −118.22 (14) C15B—C10B—C11B—C12B 1.21 (19)
N1B—C1B—C2B—C7B 124.63 (13) C9B—C10B—C11B—N2B 1.03 (18)
N2B—C1B—C2B—C3B 61.14 (16) C15B—C10B—C11B—N2B 177.74 (12)
N1B—C1B—C2B—C3B −56.01 (16) C11A—C12A—C13A—C14A −0.9 (2)
N1B—C1B—N2B—C11B −55.21 (14) N2B—C11B—C12B—C13B −177.43 (13)
C2B—C1B—N2B—C11B −175.37 (11) C10B—C11B—C12B—C13B −1.1 (2)
O1A—C3A—C4A—C5A 178.05 (14) C12A—C13A—C14A—C15A −0.3 (2)
C2A—C3A—C4A—C5A −1.3 (2) C11B—C12B—C13B—C14B −0.3 (3)
C7B—C2B—C3B—O1B −176.49 (14) C13A—C14A—C15A—C16A 179.26 (14)
C1B—C2B—C3B—O1B 4.1 (2) C13A—C14A—C15A—C10A 1.3 (2)
C7B—C2B—C3B—C4B 2.2 (2) C11A—C10A—C15A—C14A −1.20 (18)
C1B—C2B—C3B—C4B −177.14 (13) C9A—C10A—C15A—C14A 176.34 (12)
C3A—C4A—C5A—C6A 0.3 (3) C11A—C10A—C15A—C16A −179.24 (11)
O1B—C3B—C4B—C5B 176.17 (15) C9A—C10A—C15A—C16A −1.70 (18)
C2B—C3B—C4B—C5B −2.6 (2) C12B—C13B—C14B—C15B 1.5 (3)
C4A—C5A—C6A—C7A 0.5 (3) C14A—C15A—C16A—C17A −176.90 (14)
C3B—C4B—C5B—C6B 0.8 (2) C10A—C15A—C16A—C17A 1.0 (2)
C5A—C6A—C7A—C2A −0.4 (3) C13B—C14B—C15B—C16B 176.13 (19)
C3A—C2A—C7A—C6A −0.5 (2) C13B—C14B—C15B—C10B −1.3 (3)
C1A—C2A—C7A—C6A −179.92 (14) C9B—C10B—C15B—C16B −0.9 (2)
C4B—C5B—C6B—C7B 1.4 (3) C11B—C10B—C15B—C16B −177.64 (15)
C1A—N1A—C9A—C18A 153.25 (13) C9B—C10B—C15B—C14B 176.72 (14)
C1A—N1A—C9A—C10A −31.88 (17) C11B—C10B—C15B—C14B 0.0 (2)
C5B—C6B—C7B—C2B −1.7 (2) C15A—C16A—C17A—C18A −0.2 (2)
C3B—C2B—C7B—C6B −0.1 (2) C14B—C15B—C16B—C17B −176.93 (19)
C1B—C2B—C7B—C6B 179.29 (14) C10B—C15B—C16B—C17B 0.5 (3)
C18A—C9A—C10A—C11A 179.05 (12) N1A—C9A—C18A—C17A 174.10 (13)
N1A—C9A—C10A—C11A 3.99 (17) C10A—C9A—C18A—C17A −0.7 (2)
C18A—C9A—C10A—C15A 1.53 (19) C16A—C17A—C18A—C9A 0.0 (2)
N1A—C9A—C10A—C15A −173.53 (11) N1B—C9B—C18B—C17B 175.37 (15)
C1B—N1B—C9B—C18B 151.26 (14) C10B—C9B—C18B—C17B −1.0 (2)
C1B—N1B—C9B—C10B −32.21 (16) C15B—C16B—C17B—C18B −0.4 (3)
C1A—N2A—C11A—C12A −157.00 (13) C9B—C18B—C17B—C16B 0.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1OA···N1A 0.86 (2) 2.66 (2) 3.1072 (16) 113.8 (17)
O1A—H1OA···N2A 0.86 (2) 2.03 (2) 2.7763 (16) 144.6 (19)
O1B—H1OB···N1B 0.84 (2) 2.20 (3) 2.8835 (16) 138 (2)
O1B—H1OB···N2B 0.84 (2) 2.47 (2) 3.0196 (16) 123 (2)
N1B—H1NB···O1A 0.865 (17) 2.331 (17) 3.1608 (18) 160.8 (14)

Funding Statement

This work was funded by Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.

References

  1. Alam, M. & Lee, D.-U. (2016). Comput. Biol. Chem. 64, 185–201. [DOI] [PubMed]
  2. Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 13314–13315. [DOI] [PubMed]
  3. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  4. Behbahani, F. K. & Golchin, F. M. (2017). J. Taibah Univ. Sci. 11, 85–89.
  5. Booysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755–760.
  6. Bu, X., Deady, L. W., Finlay, G. J., Baguley, B. C. & Denny, W. A. (2001). J. Med. Chem. 44, 2004–2014. [DOI] [PubMed]
  7. Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Acta Cryst. E69, o1133–o1134. [DOI] [PMC free article] [PubMed]
  8. De Aguiar, A. (1874). Ber. Dtsch. Chem. Ges. 7, 309–319.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US
  11. Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o715–o716. [DOI] [PMC free article] [PubMed]
  12. Ghorbani, M. H. (2012). Acta Cryst. E68, o2605. [DOI] [PMC free article] [PubMed]
  13. Giani, A. M., Lamperti, M., Maspero, A., Cimino, A., Negri, R., Giovenzana, G. B., Palmisano, G. & Nardo, L. (2016). J. Lumin. 179, 384–392.
  14. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  15. He, X., Mao, J., Ma, Q. & Tang, Y. (2018). J. Mol. Liq. 269, 260–268.
  16. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  17. Mahapatra, A. K., Maji, R., Maiti, K., Manna, S. K., Mondal, S., Das Mukhopadhyay, C., Goswami, S., Sarkar, D., Mondal, T. K., Quah, C. K. & Fun, H. K. (2015). Sens. Actuators B Chem. 207, 878–886.
  18. Maloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246. [DOI] [PMC free article] [PubMed]
  19. Manimekalai, A., Vijayalakshmi, N. & Selvanayagam, S. (2014). Acta Cryst. E70, o959. [DOI] [PMC free article] [PubMed]
  20. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  21. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  25. Starshikoy, N. M. & Pozharskii, F. T. (1973). Chem. Heterocycl. Compd. 9, 922–924.
  26. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  27. Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. M. M. (2010). Tetrahedron Lett. 51, 2174–2177.
  28. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  29. Watanab, K. & Hareda, H. (1977). Chem. Abstr. 8499.
  30. Woodgate, P. D., Herbert, J. M. & Denny, W. A. (1987). Heterocycles, 26, 1029–1036.
  31. Zhang, H. G., Wang, X. Z., Cao, Q., Gong, G. H. & Quan, Z. S. (2017). Bioorg. Med. Chem. Lett. 27, 4409–4414. [DOI] [PubMed]
  32. Zhou, D. C., Lu, Y. T., Mai, Y. W., Zhang, C., Xia, J., Yao, P. F., Wang, H. G., Huang, S. L. & Huang, Z. S. (2019). Bioorg. Chem. 91, 103131. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005939/lh5957sup1.cif

e-76-00798-sup1.cif (896.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005939/lh5957Isup2.hkl

e-76-00798-Isup2.hkl (508.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005939/lh5957Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989020005939/lh5957Isup4.cml

CCDC reference: 1976884

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES