Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 29;76(Pt 6):958–961. doi: 10.1107/S2056989020006830

Crystal structure of a cadmium sulfate coordination polymer based on the 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine ligand

Suwadee Jiajaroen a, Kittipong Chainok a,*
PMCID: PMC7273994  PMID: 32523772

In the title compound, polymeric (100) sheets consisting of [Cd(SO4)(H2O)] units are linked by H2bmtz [H2bmtz is 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine] into a three-dimensional structure.

Keywords: crystal structure, coordination polymers, cadmium(II), bis-bidentate coordination mode, tetra­zine

Abstract

The polymeric title compound, poly[aqua­hemi[μ2-3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine](μ3-sulfato)­cadmium(II)], [Cd(SO4)(C10H8N8)0.5(H2O)]n, (I), represents an example of a three-dimensional coordination polymer resulting from the reaction of CdSO4·8/3H2O with 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine (H2bmtz, C10H8N8) under hydro­thermal conditions. The CdII atom has a distorted octa­hedral coordination environment defined by two nitro­gen atoms from one H2bmtz ligand, three oxygen atoms from three different sulfate anions, and one oxygen atom from a coordinating water mol­ecule. The 1,4-di­hydro-1,2,4,5-tetra­zine ring of the H2bmtz ligand is located about an inversion center, with the NH group being equally disordered over two sites. The sulfate anion acts as a μ3-bridging ligand to connect three CdII atoms, resulting in the formation of [Cd(SO4)(H2O)] sheets propagating parallel to the bc plane. Adjacent sheets are inter­connected across the H2bmtz ligands, which coordinate the CdII atoms in a bis-bidentate coordination mode, to form a three-dimensional framework structure. The framework is further stabilized by classical O—H⋯O hydrogen bonds involving the coordinating water mol­ecules and the sulfate groups, and by N—H⋯O hydrogen bonds between the disordered tetra­zine NH groups and sulfate oxygen atom, along with C—H⋯π and π–π stacking [centroid-to-centroid separation = 3.5954 (15) Å] inter­actions between parallel pyrimidine rings of the H2bmtz ligand.

Chemical context  

Coordination polymers (CPs) are a class of organic–inorganic hybrid materials formed from metal ions or metal clusters and organic linkers through covalent bonds. The structural organization of CPs can result in chains, sheets or three-dimensional frameworks (Batten et al., 2009). These hybrid materials have received extensive attention over the past three decades owing to their structural features and useful applications in the fields of gas storage and separation, catalysis, chemical sensing, magnetism or proton conduction (Furukawa et al., 2010; Ye & Johnson, 2016; Espallargas & Coronado, 2018; Xu et al., 2016; Zhang et al., 2017). Nowadays, many multi-dimensional CPs with structural and topological diversity have been synthesized through the tremendous possibilities of choices for building blocks, and some of them seem promising as candidate materials, for instance, in gas purification (Duan et al., 2015). In the context of the crystal engineering of CPs, the most feasible strategy for the construction of such infinite hybrid networks is by the careful selection of metal coordin­ation arrangements and suitable organic linkers. Among the most common ligands, the rigid organic carboxyl­ate- and pyridyl-based ligands have by far been the most widely used to control the structural motifs of these solids (Glöckle et al., 2001).graphic file with name e-76-00958-scheme1.jpg

In this work, to explore the synthesis of novel CPs using 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine, C10H8N8 or H2bmtz (Kaim & Fees, 1995; Chainok et al., 2012) as a polydentate nitro­gen-donor ligand with cadmium(II) sulfate, a new CP [Cd(SO4)(H2bmtz)0.5(H2O)]n (I) was isolated under hydro­thermal conditions. The crystal structure and supra­molecular inter­actions of (I) are reported herein.

Structural commentary  

The asymmetric unit of the title compound consists of one CdII cation, one-half of the H2bmtz ligand, one sulfate anion and one coordinating water mol­ecule. The 1,4-di­hydro-1,2,4,5-tetra­zine ring of the H2bmtz ligand is located about an inversion centre, with the NH group (N4) being equally disordered over two sites. As shown in Fig. 1, the CdII atom exhibits a distorted octa­hedral [CdN2O4] coordination environment with two nitro­gen atoms from the H2bmtz ligand, three oxygen atoms from three different sulfate anions and one oxygen atom from the coordinating water mol­ecule. The bond angles around the central CdII atom range from 69.69 (5) to 168.46 (5)°. The Cd—O and Cd—N bond lengths fall in the range of 2.2321 (12)–2.3790 (13) Å, which is comparable with those of reported cadmium(II) sulfate compounds containing additional nitro­gen donor ligands such as [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O (GADLON; Harvey et al., 2003), [Cd2(C2H3O2)2(S2O8)(C15H11N2)2(H2O)2]·7H2O (FOMBUF; Díaz de Vivar et al., 2005) and [Cd2(C15H9N9)(H2O)6(SO4)2]·H2O (DIQCOX; Safin et al., 2013). The complete H2bmtz mol­ecule is not planar (r.m.s. deviation = 0.111 Å) with the central six-membered ring of the 1,4-di­hydro-1,2,4,5-tetra­zine moiety in a twist-boat conformation; the C5—N3—N4A i—C5i torsion angle is 36.4 (4)° [symmetry code: (i) 2 − x, 1 − y, 1 − z]. The sulfate anion acts as a μ3-bridging ligand to connect three CdII atoms to form a sheet-like structure of [Cd(SO4)(H2O)] units, propagating parallel to the bc plane, Fig. 2. Adjacent sheets are inter­connected across the H2bmtz ligands, which exhibit a bis-bidentate coordination mode, giving rise to a three-dimensional framework structure, Fig. 3.

Figure 1.

Figure 1

Mol­ecular structure of (I), showing the atom-labelling scheme. Only one orientation of the disordered N4—H group is shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, −Inline graphic + y, Inline graphic − z; (ii) 1 − x, 1 − y, 1 − z].

Figure 2.

Figure 2

View of the [Cd(SO4)(H2O)] sheet in (I) propagating parallel to the bc plane. Classical O—H⋯O hydrogen-bonding inter­actions are shown as dashed lines.

Figure 3.

Figure 3

Packing diagram of (I), showing N—H⋯O hydrogen bonding as dashed lines.

Supra­molecular features  

In the crystal, classical O—H⋯O hydrogen bonds exist between the coordinating water mol­ecules and the sulfate groups, and N—H⋯O hydrogen bonds involving the disordered tetra­zine NH group and sulfate oxygen atoms. In this way, rings with Inline graphic(8) and Inline graphic(16) graph-set motifs are formed, Table 1. Additionally, C—H⋯π [H⋯Cg = 3.34 (2) Å; Cg is the centroid of the pyrimidine ring] and π–π stacking [centroid-to-centroid separation = 3.5954 (15) Å, slippage between parallel pyrimidine rings = 1.131 Å] inter­actions between the pyrimidine rings of the H2bmtz ligand are also observed, Fig. 4.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/N2/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 (2) 1.92 (2) 2.710 (2) 159 (2)
O1—H1B⋯O4ii 0.84 (2) 1.91 (2) 2.743 (2) 174 (3)
N4A—H4A⋯O3iii 0.87 (2) 2.09 (2) 2.889 (3) 153 (2)
N4B—H4A⋯O3iii 0.87 (2) 2.09 (2) 2.828 (3) 143 (2)
C2—H2⋯Cg1iv 0.93 3.34 (2) 4.091 (3) 140 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

Partial packing diagram of (I), showing C—H⋯π and π–π stacking inter­actions (dashed lines) between the H2bmtz ligands.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.41, November 2019 update; Groom et al., 2016) gave only two hits for H2bmtz complexes with transition metals ions, viz. with CuI (QORNAM; Glöckle et al., 2001) and AgI (ZASTAQ; Chainok et al., 2012). In these structures, the coordination mode of the H2bmtz ligands is bis-bidentate through nitro­gen atoms.

Synthesis and crystallization  

All reagents were of analytical grade and were used as received without further purification. The ligand 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine was synthesized according to a literature method (Kaim & Fees, 1995). A mixture solution of CdSO4·8/3H2O (41.7 mg, 0.2 mmol) and the H2bmtz ligand (36.7 mg, 0.1 mmol) in water (5 ml) was added into a 15 ml Teflon-lined reactor, stirred at room temperature for 10 min, sealed in a stainless steel autoclave and placed in an oven. The mixture was heated to 383 K under autogenous pressure for 48 h, and then cooled down to room temperature. After filtration, brown block-shaped crystals were obtained in 80% yield (33.4 mg) based on the cadmium(II) source.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Nitro­gen atom N4 of the 1,4-di­hydro-1,2,4,5-tetra­zine ring was found to be disordered about an inversion centre; restraints (SADI and RIGU with esd 0.001 Å2) were used for its refinement. All hydrogen atoms were found in difference-Fourier maps. H atoms attached to C atoms were refined in the riding-model approximation with C—H = 0.93 Å and U iso(H) = 1.2U eq(C). The H atoms bound to O or N atoms were refined with distance restraints of O—H = 0.84 ± 0.01 Å and N—H = 0.86 ± 0.01 Å and with U iso(H) = 1.5U eq(O) and 1.2U eq(N), respectively.

Table 2. Experimental details.

Crystal data
Chemical formula [Cd(SO4)(C10H8N8)0.5(H2O)]
M r 346.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.3000 (3), 7.9798 (2), 13.2586 (4)
β (°) 106.872 (1)
V3) 941.60 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.56
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24280, 2357, 2338
R int 0.020
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.014, 0.037, 1.12
No. of reflections 2357
No. of parameters 167
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.37

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020006830/wm5546sup1.cif

e-76-00958-sup1.cif (733KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006830/wm5546Isup2.hkl

e-76-00958-Isup2.hkl (189KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006830/wm5546Isup3.cdx

CCDC reference: 2004950

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Crystal data

[Cd(SO4)(C10H8N8)0.5(H2O)] F(000) = 672
Mr = 346.60 Dx = 2.445 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.3000 (3) Å Cell parameters from 9940 reflections
b = 7.9798 (2) Å θ = 3.4–28.4°
c = 13.2586 (4) Å µ = 2.56 mm1
β = 106.872 (1)° T = 296 K
V = 941.60 (5) Å3 Block, brown
Z = 4 0.28 × 0.24 × 0.18 mm

Data collection

Bruker D8 QUEST CMOS diffractometer 2357 independent reflections
Radiation source: sealed x-ray tube 2338 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 7.39 pixels mm-1 θmax = 28.4°, θmin = 3.2°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −10→10
Tmin = 0.660, Tmax = 0.746 l = −17→17
24280 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.6173P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037 (Δ/σ)max = 0.002
S = 1.12 Δρmax = 0.41 e Å3
2357 reflections Δρmin = −0.37 e Å3
167 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
11 restraints Extinction coefficient: 0.0013 (3)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.61850 (2) 0.31497 (2) 0.37692 (2) 0.01977 (5)
S1 0.46994 (4) 0.71617 (4) 0.38900 (3) 0.01921 (8)
O1 0.40176 (15) 0.17176 (15) 0.34420 (10) 0.0290 (2)
H1A 0.378 (3) 0.170 (3) 0.4004 (13) 0.046 (7)*
H1B 0.408 (3) 0.0706 (15) 0.329 (2) 0.049 (7)*
O2 0.49134 (16) 0.55557 (15) 0.34172 (10) 0.0389 (3)
O3 0.61350 (13) 0.77844 (18) 0.45697 (10) 0.0327 (3)
O4 0.40858 (15) 0.83595 (14) 0.30158 (9) 0.0276 (2)
O5 0.35993 (14) 0.70011 (18) 0.44827 (9) 0.0338 (3)
N1 0.81264 (15) 0.12667 (17) 0.37110 (10) 0.0254 (3)
N2 1.07599 (16) 0.1093 (2) 0.39678 (13) 0.0342 (3)
N3 0.85731 (15) 0.44436 (17) 0.44639 (13) 0.0321 (3)
N4A 1.1157 (3) 0.4194 (4) 0.4718 (3) 0.0326 (6) 0.5
H4A 1.180 (2) 0.345 (3) 0.5064 (15) 0.070 (9)*
N4B 1.1132 (3) 0.3849 (4) 0.5340 (3) 0.0320 (6) 0.5
C1 0.7954 (2) −0.0244 (2) 0.32666 (14) 0.0337 (4)
H1 0.699820 −0.071019 0.303463 0.040*
C2 0.9168 (2) −0.1135 (3) 0.31425 (17) 0.0427 (4)
H2 0.904140 −0.217907 0.281657 0.051*
C3 1.0573 (2) −0.0420 (3) 0.35194 (17) 0.0410 (4)
H3 1.140880 −0.100588 0.345972 0.049*
C4 0.95337 (18) 0.18608 (18) 0.40350 (13) 0.0243 (3)
C5 0.97378 (19) 0.3543 (2) 0.45278 (17) 0.0354 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01945 (7) 0.02157 (7) 0.01864 (7) 0.00090 (3) 0.00607 (4) 0.00089 (3)
S1 0.02314 (16) 0.01938 (15) 0.01601 (15) 0.00267 (12) 0.00708 (12) 0.00085 (12)
O1 0.0335 (6) 0.0267 (6) 0.0300 (6) −0.0058 (4) 0.0145 (5) −0.0068 (4)
O2 0.0544 (8) 0.0226 (6) 0.0341 (6) 0.0142 (5) 0.0042 (6) −0.0037 (5)
O3 0.0235 (5) 0.0464 (7) 0.0285 (6) −0.0025 (5) 0.0081 (5) −0.0066 (5)
O4 0.0458 (7) 0.0195 (5) 0.0182 (5) 0.0052 (5) 0.0102 (5) 0.0032 (4)
O5 0.0249 (6) 0.0580 (8) 0.0200 (5) −0.0031 (5) 0.0090 (4) 0.0059 (5)
N1 0.0235 (6) 0.0253 (6) 0.0262 (6) 0.0015 (5) 0.0053 (5) −0.0010 (5)
N2 0.0250 (6) 0.0319 (7) 0.0456 (8) 0.0029 (6) 0.0101 (6) −0.0042 (6)
N3 0.0208 (6) 0.0213 (6) 0.0537 (9) −0.0026 (5) 0.0101 (6) −0.0076 (6)
N4A 0.0192 (11) 0.0255 (14) 0.0529 (19) −0.0017 (10) 0.0102 (12) −0.0135 (14)
N4B 0.0227 (12) 0.0210 (13) 0.0506 (18) −0.0004 (10) 0.0079 (11) −0.0084 (13)
C1 0.0292 (8) 0.0321 (8) 0.0356 (9) −0.0019 (7) 0.0025 (7) −0.0077 (7)
C2 0.0421 (10) 0.0341 (9) 0.0480 (11) 0.0047 (8) 0.0067 (8) −0.0178 (8)
C3 0.0331 (9) 0.0400 (10) 0.0498 (11) 0.0091 (8) 0.0119 (8) −0.0117 (8)
C4 0.0235 (7) 0.0233 (7) 0.0262 (7) 0.0011 (5) 0.0072 (6) 0.0009 (5)
C5 0.0203 (7) 0.0228 (7) 0.0613 (11) −0.0022 (6) 0.0087 (7) −0.0069 (7)

Geometric parameters (Å, º)

Cd1—O1 2.2472 (12) N2—C4 1.320 (2)
Cd1—O2 2.2321 (12) N3—N4Aiii 1.505 (3)
Cd1—O4i 2.3122 (11) N3—N4Biii 1.399 (3)
Cd1—O5ii 2.2708 (12) N3—C5 1.282 (2)
Cd1—N1 2.3674 (13) N4A—H4A 0.871 (10)
Cd1—N3 2.3790 (13) N4A—C5 1.372 (3)
S1—O2 1.4653 (12) N4B—H4A 0.866 (10)
S1—O3 1.4640 (12) N4B—C5 1.445 (3)
S1—O4 1.4828 (11) C1—H1 0.9300
S1—O5 1.4654 (12) C1—C2 1.384 (3)
O1—H1A 0.835 (10) C2—H2 0.9300
O1—H1B 0.839 (10) C2—C3 1.379 (3)
N1—C1 1.331 (2) C3—H3 0.9300
N1—C4 1.340 (2) C4—C5 1.481 (2)
N2—C3 1.335 (2)
O1—Cd1—O4i 90.81 (5) C4—N2—C3 116.51 (15)
O1—Cd1—O5ii 88.77 (5) N4Aiii—N3—Cd1 122.32 (13)
O1—Cd1—N1 108.71 (5) N4Biii—N3—Cd1 127.25 (15)
O1—Cd1—N3 168.46 (5) C5—N3—Cd1 117.26 (11)
O2—Cd1—O1 90.34 (5) C5—N3—N4Aiii 113.35 (17)
O2—Cd1—O4i 80.21 (5) C5—N3—N4Biii 114.67 (17)
O2—Cd1—O5ii 98.25 (5) N3iii—N4A—H4A 99.5 (18)
O2—Cd1—N1 154.41 (5) C5—N4A—N3iii 110.9 (2)
O2—Cd1—N3 94.94 (5) C5—N4A—H4A 108.3 (19)
O4i—Cd1—N1 82.54 (5) N3iii—N4B—H4A 108.1 (19)
O4i—Cd1—N3 100.19 (5) N3iii—N4B—C5 112.9 (2)
O5ii—Cd1—O4i 178.41 (4) C5—N4B—H4A 102.7 (18)
O5ii—Cd1—N1 99.05 (5) N1—C1—H1 119.3
O5ii—Cd1—N3 80.32 (5) N1—C1—C2 121.38 (16)
N1—Cd1—N3 69.69 (5) C2—C1—H1 119.3
O2—S1—O4 107.38 (7) C1—C2—H2 121.2
O2—S1—O5 110.83 (9) C3—C2—C1 117.63 (17)
O3—S1—O2 110.33 (8) C3—C2—H2 121.2
O3—S1—O4 109.74 (8) N2—C3—C2 121.52 (17)
O3—S1—O5 110.69 (7) N2—C3—H3 119.2
O5—S1—O4 107.78 (7) C2—C3—H3 119.2
Cd1—O1—H1A 106.8 (18) N1—C4—C5 116.76 (14)
Cd1—O1—H1B 114.6 (17) N2—C4—N1 126.64 (15)
H1A—O1—H1B 105 (2) N2—C4—C5 116.60 (15)
S1—O2—Cd1 142.41 (8) N3—C5—N4A 123.30 (19)
S1—O4—Cd1iv 131.02 (7) N3—C5—N4B 120.8 (2)
S1—O5—Cd1ii 133.11 (8) N3—C5—C4 118.78 (15)
C1—N1—Cd1 126.47 (11) N4A—C5—C4 114.68 (18)
C1—N1—C4 116.31 (14) N4B—C5—C4 117.02 (18)
C4—N1—Cd1 116.63 (10)
Cd1—N1—C1—C2 170.31 (15) N2—C4—C5—N3 169.24 (18)
Cd1—N1—C4—N2 −172.52 (14) N2—C4—C5—N4A 8.9 (3)
Cd1—N1—C4—C5 8.10 (19) N2—C4—C5—N4B −31.3 (3)
Cd1—N3—C5—N4A 167.1 (2) N3iii—N4A—C5—N3 40.7 (4)
Cd1—N3—C5—N4B −150.1 (2) N3iii—N4A—C5—C4 −160.0 (2)
Cd1—N3—C5—C4 8.5 (2) N3iii—N4B—C5—N3 −38.9 (4)
O2—S1—O4—Cd1iv −10.01 (13) N3iii—N4B—C5—C4 162.2 (2)
O2—S1—O5—Cd1ii 103.95 (11) N4Aiii—N3—C5—N4A −41.6 (4)
O3—S1—O2—Cd1 38.91 (17) N4Aiii—N3—C5—C4 159.9 (2)
O3—S1—O4—Cd1iv 109.93 (10) N4Biii—N3—C5—N4B 39.5 (4)
O3—S1—O5—Cd1ii −18.81 (14) N4Biii—N3—C5—C4 −161.9 (2)
O4—S1—O2—Cd1 158.47 (14) C1—N1—C4—N2 −0.8 (3)
O4—S1—O5—Cd1ii −138.82 (10) C1—N1—C4—C5 179.83 (16)
O5—S1—O2—Cd1 −84.06 (16) C1—C2—C3—N2 −1.5 (3)
O5—S1—O4—Cd1iv −129.45 (10) C3—N2—C4—N1 0.9 (3)
N1—C1—C2—C3 1.5 (3) C3—N2—C4—C5 −179.74 (18)
N1—C4—C5—N3 −11.3 (3) C4—N1—C1—C2 −0.5 (3)
N1—C4—C5—N4A −171.7 (2) C4—N2—C3—C2 0.3 (3)
N1—C4—C5—N4B 148.1 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/N2/C1–C4 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1A···O3ii 0.84 (2) 1.92 (2) 2.710 (2) 159 (2)
O1—H1B···O4v 0.84 (2) 1.91 (2) 2.743 (2) 174 (3)
N4A—H4A···O3iii 0.87 (2) 2.09 (2) 2.889 (3) 153 (2)
N4B—H4A···O3iii 0.87 (2) 2.09 (2) 2.828 (3) 143 (2)
C2—H2···Cg1vi 0.93 3.34 (2) 4.091 (3) 140 (2)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (v) x, y−1, z; (vi) −x+2, y−1/2, −z+1/2.

Funding Statement

This work was funded by Thailand Research Fund grant RSA5780056 to KC. The Research Professional Development Project Under the Science Achievement Scholarship of Thailand (SAST) grant .

References

  1. Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination polymers: Design, analysis and application. UK: The Royal Society of Chemistry.
  2. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. & Batten, S. R. (2012). CrystEngComm, 14, 3717–3726.
  4. Díaz de Vivar, M. E., Harvey, M. A., Garland, M. T., Baggio, S. & Baggio, R. (2005). Acta Cryst. C61, m240–m244. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Duan, J., Jin, W. & Krishna, R. (2015). Inorg. Chem. 54, 4279–4284. [DOI] [PubMed]
  7. Espallargas, G. M. & Coronado, E. (2018). Chem. Soc. Rev. 47, 533–557. [DOI] [PubMed]
  8. Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O’Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424–428. [DOI] [PubMed]
  9. Glöckle, M., Hübler, K., Kümmerer, H.-J., Denninger, G. & Kaim, W. (2001). Inorg. Chem. 40, 2263–2269. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Harvey, M., Baggio, S., Russi, S. & Baggio, R. (2003). Acta Cryst. C59, m171–m174. [DOI] [PubMed]
  12. Kaim, W. & Fees, J. (1995). Z. Naturforsch. B: Chem. Sci. 50, 123–127.
  13. Safin, D. A., Xu, Y., Korobkov, I., Bryce, D. L. & Murugesu, M. (2013). CrystEngComm, 15, 10419–10422.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Xu, H., Gao, J., Qian, X., Wang, J., He, H., Cui, Y., Yang, Y., Wang, Z. & Qian, G. (2016). J. Mater. Chem. A, 4, 10900–10905.
  17. Ye, J. & Johnson, J. K. (2016). Catal. Sci. Technol. 6, 8392–8405.
  18. Zhang, F.-M., Dong, L.-Z., Qin, J.-S., Guan, W., Liu, J., Li, S.-L., Lu, M., Lan, Y.-Q., Su, Z.-M. & Zhou, H.-C. (2017). J. Am. Chem. Soc. 139, 6183–6189. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020006830/wm5546sup1.cif

e-76-00958-sup1.cif (733KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006830/wm5546Isup2.hkl

e-76-00958-Isup2.hkl (189KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006830/wm5546Isup3.cdx

CCDC reference: 2004950

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES