Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 15;76(Pt 6):820–825. doi: 10.1107/S2056989020006155

Co-crystal structure, Hirshfeld surface analysis and DFT studies of 3,4-ethyl­ene­dioxy­thio­phene solvated bis­[1,3-bis­(penta­fluoro­phen­yl)propane-1,3-dionato]copper(II)

Yusuke Habuka a, Emily Ami Takeuchi a,b, Akiko Hori a,*
PMCID: PMC7273995  PMID: 32523747

The title complex, Cu(L)2 or [Cu(C15HF10O2)2], comprising one copper ion and two fully fluorinated ligands (L ), was crystallized with 3,4-ethyl­ene­dioxy­thio­phene (EDOT, C6H6O2S) as a guest mol­ecule to give in a di­chloro­methane solution a unique co-crystal, Cu(L)2·3C6H6O2S.

Keywords: crystal structure; co-crystal; Hirshfeld surface analysis; 3,4-ethyl­ene­dioxy­thio­phene; EDOT

Abstract

The title complex, Cu(L)2 or [Cu(C15HF10O2)2], comprised of one copper ion and two fully fluorinated ligands (L ), was crystallized with 3,4-ethyl­ene­dioxy­thio­phene (EDOT, C6H6O2S) as a guest mol­ecule to give in a di­chloro­methane solution a unique co-crystal, Cu(L)2·3C6H6O2S. In the crystal, the oxygen of one guest mol­ecule, EDOT-1, is coordinated to the metal to give an alternate linear arrangement, and the π-planes of the others, EDOT-2 and EDOT-3, inter­act weakly with the penta­fluoro­phenyl groups of the complex through arene–perfluoro­arene inter­actions. Head-to-tail columnar and head-to-head dimeric arrangements are observed for EDOT-2 and EDOT-3, respectively, in the crystal. The Hirshfeld surface analysis indicated that the most important contributions for the crystal packing are from the F⋯F (20.4%), F⋯H/H⋯F (24.5%) and F⋯C/C⋯F (9.6%) inter­actions. The density functional theory (DFT) optimized structure at the ωB97X-D 6–31G* level was compared with the experimentally determined mol­ecular structure in the solid state.

Chemical context  

3,4-Ethyl­ene­dioxy­thio­phene, EDOT, is a familiar reagent for polythio­phene or oligo­thio­phene organic-active materials such as organic conductive macromolecules and optoelectronic materials. The corresponding poly-3,4-ethyl­ene­dioxy­thio­phene, PEDOT, is one of the typical organic conductive materials with a high conductivity, environmental stability, mechanical strength and visible light transmittance, thus showing wide ranges of applications (Skotheim et al., 1998; Groenendaal et al., 2000; Kirchmeyer & Reuter, 2005). The affinity as a guest mol­ecule and the corresponding inter­molecular inter­actions in co-crystals of EDOT are crucial issues for chemists in order to understand the mol­ecular recognition and supra­molecular association events (Storsberg et al., 2000). The crystal packing and the relative inter­molecular inter­actions are estimated by the oxygen and sulfur atoms for coordination bonds and mol­ecular stacking of the π-inter­actions for the five-membered hetero-conjugated aromatic ring. On the other hand, mol­ecular crystals of fully fluorinated coordination complexes have been studied as hosts, showing flexible and responsive crystal-packing structures depending on the guest mol­ecules. Typically, the copper complex, Cu(L)2, produces unique co-crystals abundantly taken into benzene derivatives after crystallization and reversibly encapsulates their vapors (Hori et al., 2014), while the corresponding single crystals of Cu(dbm)2 (dbm = di­benzoyl­methane) showed no inter­action with the guest mol­ecules. The driving forces of the mol­ecular recognition estimated a metal⋯π inter­action (Hunter, 1994; Ma & Dougherty, 1997) induced by improvement of the cationic properties of the central metal as a result of the fluorine-withdrawing nature and arene–perfluoro­arene inter­action (Williams, 1993, 2017; Hori, 2012) induced by the exact opposite quadrupole moment between the penta­fluoro­phenyl ring of the complex and the aromatic ring of the guest mol­ecule.graphic file with name e-76-00820-scheme1.jpg

In this study, we examined the encapsulation of 3,4-ethyl­ene­dioxy­thio­phene for the title complex, Cu(L)2, indicating a new guest-encapsulated crystal, Cu(L)2·3EDOT (I), as shown in the Scheme. The crystal of (I) was prepared by previously reported protocols (Hori & Arii, 2007). Typically, Cu(L)2 and an excess amount of EDOT in CH2Cl2 (or AcOEt) were slowly evaporated to yield green block-shaped crystals. The driving forces and the detailed weak inter­molecular inter­actions were investigated by Hirshfeld surface analysis and DFT calculations. Using the same procedure, the corresponding compound Pd(L)2·nEDOT was not obtained, then Pd(L)2 was separately crystallized, showing different metal characteristics and affinity for EDOT. The electrostatic potential of the metal ions is also discussed.

Structural commentary  

The asymmetric unit of (I) contains one entire complex mol­ecule and three EDOT mol­ecules. The complex is non-centrosymmetric and comprises one Cu2+ ion and two ligands (L) to give a mononuclear Cu2+ complex, as shown in Fig. 1. The geometry around the metal center is pseudo-square planar; the bond distances Cu1—O1, Cu—O2, Cu—O3 and Cu1—O4 are 1.940 (2), 1.941 (2), 1.922 (2) and 1.928 (2) Å, respectively. The penta­fluoro­phenyl groups [rings AD (C1–C6, C10–C15, C16–C21 and C25–C30, respectively)] are highly twisted with respect to the coordination plane; the dihedral angle between ring A (or ring B) and Cu1/O1/C7–C9/O2 is 65.80 (13)° [or 36.24 (15)°] and the dihedral angle between ring C (or ring D) and Cu1/O3/C22–C24/O4 is 54.97 (14)° [or 51.22 (13)°], indicating that all these rings are crystallographically different. The flexible and twisted rings allow inter­molecular inter­actions with the EDOT mol­ecules to consolidate the crystal of (I). The oxygen atoms of EDOT-1 are coordinated with atom Cu1 of the complex mol­ecule; the lengths of the coordination bonds are 2.421 (2) and 2.711 (2) Å for Cu1—O6 and Cu1—O5i [symmetry code: (i) x + 1, y, z], respectively (Figs. 1 and 2 a). The EDOT-2 mol­ecule shows disorder, the occupancy of the major component, EDOT-2A, being 0.691 (4); EDOT-2A shows close inter­actions with ring C of Cu(L)2 through an arene–perfluoro­arene inter­action. The EDOT-3 mol­ecule shows no remarkable inter­actions in the crystal packing as discussed below. Each EDOT mol­ecule shows a π-localized structure as shown in the Scheme; the lengths of the C=C double bonds are 1.355 (5) and 1.351 (4) Å for EDOT-1, 1.46 (1) and 1.32 (1) Å for EDOT-2A, and 1.361 (6) and 1.365 (6) Å for EDOT-3. EDOT-2A has a large variation in the distance because of the structural disorder, while the analysis was performed without restricting the binding distance of the carbon-to-carbon bonds. For comparison of the mol­ecular recognitions of Cu(L)2, negative quadrupole moments of the mol­ecules, e.g., benzene and carbon dioxide, are reversibly recognized in the crystals, because of the positive quadrupole moments of the penta­flurophenyl groups (Hori et al. 2014, 2017). Thus, the crystal structure of (I) indicates the possibility that the butadiene moiety, C=C—C=C, in EDOT also has a negative surface and inter­acts in the crystal of Cu(L)2 through electrostatic inter­actions.

Figure 1.

Figure 1

The mol­ecular structure of (I) at 100 K, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The minor EDOT-2B component is omitted.

Figure 2.

Figure 2

Views of part of the crystal structure of (I): (a) 1:1 alternating linear structure with EDOT-1 and Cu(L)2, (b) EDOT-2A and EDOT-3 in the void spaces of the linear chain with the (c) head-to-tail and (d) head-to-head arrangements in the crystal. Color scheme: C, gray; H, white; Cu, orange; F, light green; O, red; S, yellow.

Supra­molecular features  

The partial view of the packing structure in Fig. 2 a clearly shows a one-dimensional linear chain orientation between the complex mol­ecule and EDOT-1. EDOT-1 coordinates to the copper ion of the complex to form a 1:1 alternating linear structure along the a-axis direction. The EDOT-2A and EDOT-3 mol­ecules are inserted in the voids of the linear chain along the a- and c-axis directions, respectively. EDOT-2A forms a head-to-tail one-dimensional chain (Fig. 2 c) with weak hydrogen bonds (Table 1) between the sulfur atom and the aliphatic proton with DA distances of 3.051 (11) and 3.220 (9) Å for C41A—H41A⋯S2A and C42A—H42A⋯S2A, respectively, and the mol­ecule is further sandwiched by the penta­fluoro­phenyl rings of the complex. EDOT-3 forms discrete dimers (Fig. 2 d) in a head-to-head configuration between the aliphatic moieties, and the dimers are also surrounded by the penta­fluoro­phenyl rings of the complex mol­ecule. Short inter­molecular inter­actions between the centroids (Cg) of the penta­fluoro­phenyl ring in Cu(L)2 and the five-membered ring of EDOT are observed. The penta­fluoro­phenyl ring A (C1–C6) is sited on the adjacent EDOT-2A ii (S2A/C37A–C40A) [symmetry code: (ii) x, y, z + 1]: the centroid–centroid distance CgCg is 3.950 (4) Å and the shortest perpendicular distance of Cg (ring A) on the ring of EDOT-2A ii is 3.0832 (13) Å. Ring B (C10–C15) is sandwiched between two adjacent mol­ecules, EDOT-3iii and EDOT-3iv (S3/C43–C46) [symmetry code: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1]: the centroid–centroid distances are 3.906 (2) and 4.054 (2) Å, respectively, and the corresponding shortest perpendicular distances are 3.5236 (19) and 3.2687 (15) Å, respectively. Ring C (C16–C21) inter­acts with EDOT-2A (S2A/C37A–C40A) and EDOT-2B (minor disorder component; S2B/C37B–C40B); the centroid–centroid distances are 3.586 (3) and 3.684 (5) Å, respectively, and the corresponding shortest perpendicular distances are 3.5337 (14) and 3.299 (4) Å, respectively. Ring D (C25–C30) inter­acts with the adjacent EDOT-1i (S1/C31–C34) with centroid–centroid and perpendicular distances of 3.7052 (19) and 3.3405 (13) Å, respectively. The results indicate that a remarkable arene–perfluoro­arene inter­action is observed for EDOT-2A with a length close to the sum of the van der Waals radii. A notable intra­molecular C—F⋯π inter­action is observed between F5 and EDOT-1 [3.287 (2) Å] and inter­molecular C—F⋯π inter­actions occur between the penta­fluoro­phenyl rings as an F⋯π(hole) inter­action; the distances are 2.997 (2) and 3.175 (3) Å for F9⋯ring A iv and F14⋯ring D v, respectively [symmetry code: (v) x, −y + Inline graphic, z − Inline graphic]. These aromatic inter­actions are estimated to be induced by the positive electron distribution and quadrupole moment of the penta­fluoro­phenyl rings.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯F17i 0.95 2.41 3.362 (4) 179
C31—H31⋯O1ii 0.95 2.57 3.351 (4) 139
C35—H35A⋯O8B ii 0.99 2.45 3.349 (16) 151
C37A—H37A⋯S1iii 0.95 2.77 3.590 (9) 145
C41A—H41A⋯S2A iv 0.99 2.51 3.051 (11) 114
C42A—H42A⋯S2A iv 0.99 2.57 3.220 (9) 123
C42A—H42A⋯F6iv 0.99 2.45 3.162 (8) 128
C48—H48B⋯F10v 0.99 2.51 3.326 (5) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Hirshfeld surface analysis  

To understand all the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The HS of the complex mol­ecule mapped with d e (the distance between the surface and external atoms) and the corresponding fingerprint plots are shown in Figs. 3 and 4, respectively. The complex Cu(L)2 is surrounded by EDOT and Cu(L)2 mol­ecules and the inter­molecular inter­actions are indicated in red (Fig. 3). The main inter­actions for the whole structure are F⋯F and F⋯H/H⋯F, contributing 20.4% and 24.5%, respectively, to the overall crystal packing due to the high surface area of fluorine for the complex. The presence of π–π and C—H⋯π inter­actions is reflected in the contributions of the C⋯C (5.2%) and C⋯H/H⋯C (6.2%) contacts. The two-dimensional fingerprint plots (McKinnon et al., 2007) of the independent Cu(L)2 and three EDOT mol­ecules are shown in Fig. 4 ad, together with the contributions of each element. For Cu(L)2, the contribution of the Cu atom indicates interaction only with the oxygen of EDOT-1 (1.2%). For the three EDOT mol­ecules, the main inter­actions are H⋯F contributing 23.6%, 25.3%, and 26.8% for EDOT-1, 2A and 3, respectively. The contribution of the π–π inter­actions through C⋯C inter­actions shows the relationship EDOT-2A (8.2%) > EDOT-3 (6.0%) > EDOT-1 (4.5%), which indicates good agreement of the arene–perfluoro­arene inter­actions in the crystal packing. For the sulfur in EDOT, the S⋯H inter­action is observed for EDOT-1 (8.1%) > EDOT-2A (7.6%), but no inter­action for EDOT-3 (0.0%) and the S⋯F inter­action is observed for EDOT-3 (16.1%) >> EDOT-2A (4.3%) > EDOT-1 (3.3%), which is also shown by the relationships of Figs. 2 and 3. For the oxygen in EDOT, O⋯H inter­actions are observed [EDOT-2A (8.5%) > EDOT-3 (7.2%) > EDOT-1 (2.0%)] as well as O⋯F [EDOT-2A (6.1%) > EDOT-3 (2.2%) > EDOT-1 (1.2%)] and O⋯Cu inter­actions [EDOT-1 (4.5%) > EDOT-2A and 3 (0.0%)]. These results indicate that the main inter­molecular contributions without π-inter­actions are Cu⋯O and S⋯H for EDOT-1, O⋯H for EDOT-2A, and S⋯F for EDOT-3.

Figure 3.

Figure 3

HS of the complex mapped with d e.

Figure 4.

Figure 4

Fingerprint plots for the Cu(L)2 and EDOT mol­ecules in (I).

DFT calculations  

The DFT calculations were performed to obtain qu­anti­tative values for the surface potential and inter­molecular inter­actions. The electrostatic potentials of Cu(L)2 and EDOT in (I) range from −135.79 to +162.31 kJ mol−1, as shown in Fig. 5. The highest electrostatic potential, in which the electron-poor region is shown in blue, is on the Cu atom, the edge of the ketonato hydrogen, the central part of the penta­fluoro­phenyl rings in Cu(L)2, and the aromatic and aliphatic hydrogen atoms of EDOT. The lowest electrostatic potential, shown in red, is around the oxygen atoms of Cu(L)2 and EDOT. The highest electrostatic potentials of the centers of the penta­fluoro­phenyl rings AD are approximately +97, +90, +91, +83 kJ mol−1, respectively, which is almost the same as the independently calculated value for Cu(L)2 (+97 kJ mol−1 for the penta­fluoro­phenyl ring), which was calculated using the currently reported crystal structure (Crowder et al., 2019). The lowest electrostatic potentials of the five-membered rings of EDOT are −77, −63, and −63 kJ mol−1 for EDOT-1, 2A and 3, respectively, indicating the electron distribution is slightly lower than that calculated independently for EDOT (−81 kJ mol−1) and used to estimate the inter­molecular inter­actions of Cu(L)2 and EDOT. The electrostatic potential maps of the EDOT mol­ecules are shown in Fig. 5 c. The left-hand structure, optimized and calculated for an independent mol­ecule, clearly indicates that the EDOT-2A has more positive surfaces. The lowest electrostatic potentials of the oxygen atoms are −117 and −118 kJ mol−1 for EDOT (calculated from the refined structure of a single component), −85 and −121 kJ mol−1 for EDOT-1, −109 and −63 kJ mol−1 for EDOT-2A, and −102 and −113 kJ mol−1 for EDOT-3. These values show the strength of the inter­molecular inter­actions of the oxygen atoms; one oxygen in EDOT-1 is an electron donor for the coordination bond with decreasing electron density (−85 kJ mol−1) and one oxygen in EDOT-2A is an electron donor for the hydrogen bond with decreasing electron density (−63 kJ mol−1). The highest electrostatic potential of the surface of the aliphatic H atoms is +162 kJ mol−1 in EDOT-2A and the values of each EDOT are +116, +112, and +123 kJ mol−1 for EDOT (calculated), EDOT-1, and EDOT-3, respectively. The lowest electrostatic potential on sulfur is −32 kJ mol−1 in EDOT-2A and the values of each EDOT are −79, −65, and −48 kJ mol−1 for EDOT (calculated), EDOT-1, and EDOT-3, respectively. These results show the outflowing of the surface electrons due to the formation of the co-crystal and the corresponding inter­molecular inter­actions.

Figure 5.

Figure 5

(a) Structure and (b) the energy potential maps of Cu(L)2 with the surrounding EDOT mol­ecules and (c) the energy potential maps of independent EDOT and each solvated EDOT mol­ecule in (I). The color of the potential is shown between −120 kJ mol−1 (red) to +120 kJ mol−1 (blue).

Synthesis  

To a solution of Cu(L)2 (15 mg, 17 µmol) in chloro­form (2 ml) was added an excess amount of EDOT. The solution was evaporated slowly to give green crystals of Cu(L)2·3EDOT (I), which were separated by filtration and characterized by crystallographic and thermogravimetric (TG) analyses.

Thermogravimetric studies  

In the TG analysis for (I), the weight loss indicates an approximate one-step elimination (Fig. 6); the total elimination of EDOT was found to be 33.6%, which is almost the same as the calculated value of 33.0% around 50–130°C. The release curve is gentle, and the coordinated EDOT and solvated EDOT are gradually separated from the crystals without being distinguished, confirming the weak coordination bond due to the Jahn–Teller effect of the Cu ion. In the complex, the positive electrostatic potential on the copper (+206.41 kJ mol−1) in the independent crystal of Cu(L)2 was higher than that of the corresponding non-fluorinated complex, +116.71 kJ mol−1 for Cu(dbm)2 (Kusakawa et al., 2020) due to the substitution of the penta­fluoro­phenyl groups, indicating that the present EDOT recognition was induced. For the same procedure, Pd(L)2 and EDOT were combined to give brown needle-shaped crystals, which are clearly characterized as Pd(L)2 as a single component (Nakajima & Hori, 2014) and no guest release was observed by the brown crystals of Pd(L)2; the electrostatic potentials on the metal center of Pd(L)2 and Pd(dbm)2 are −1.0 and −73 kJ mol−1, respectively (Kusakawa et al., 2020).

Figure 6.

Figure 6

TG curves of (I) showing the one-step elimination; the scan rate was 5.0°C min−1.

In summary, we have discussed the crystal structure and the inter­molecular inter­actions for three EDOT mol­ecules inserted in (I), in which guest recognition is induced by the flexible orientations and positive electrostatic potentials of the penta­fluoro­phenyl groups and the enhanced positive potential on the copper ion of the fluorinated complex, Cu(L)2. The crystal structure clearly suggests that the alternate coordination polymer between the metal center of Cu(L)2 and the oxygen atom of EDOT-1 was obtained along the a axis through the weak coordination bond and the close stacking between the penta­fluoro­phenyl group of Cu(L)2 and the aromatic moiety of EDOT-2 and EDOT-3 was obtained through the arene–perfluoro­arene inter­actions.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in geometrically idealized positions and refined as riding with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(C15HF10O2)2]·3(C6H6O2S)
M r 1296.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.7343 (3), 46.8973 (16), 13.2580 (5)
β (°) 99.211 (1)
V3) 4746.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.17 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker D8 Goniometer
Absorption correction Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.88, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 54634, 8367, 7663
R int 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.106, 1.06
No. of reflections 8367
No. of parameters 821
No. of restraints 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.74, −1.69

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and shelXle (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020006155/tx2020sup1.cif

e-76-00820-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006155/tx2020Isup3.hkl

e-76-00820-Isup3.hkl (664.4KB, hkl)

CCDC reference: 2001277

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cu(C15HF10O2)2]·3(C6H6O2S) F(000) = 2580
Mr = 1296.36 Dx = 1.814 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.7343 (3) Å Cell parameters from 9808 reflections
b = 46.8973 (16) Å θ = 2.6–26.4°
c = 13.2580 (5) Å µ = 0.73 mm1
β = 99.211 (1)° T = 100 K
V = 4746.9 (3) Å3 Prismatic, green
Z = 4 0.17 × 0.17 × 0.11 mm

Data collection

Bruker D8 Goniometer diffractometer 7663 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1 Rint = 0.042
φ and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2018) h = −9→9
Tmin = 0.88, Tmax = 0.93 k = −55→55
54634 measured reflections l = −15→15
8367 independent reflections

Refinement

Refinement on F2 236 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0217P)2 + 17.5257P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
8367 reflections Δρmax = 1.74 e Å3
821 parameters Δρmin = −1.69 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7594 (4) 0.57893 (7) 0.7738 (3) 0.0197 (7)
C2 0.7513 (5) 0.56890 (7) 0.8708 (3) 0.0239 (7)
C3 0.5906 (5) 0.56378 (7) 0.8994 (2) 0.0230 (7)
C4 0.4391 (4) 0.56870 (7) 0.8317 (3) 0.0202 (7)
C5 0.4504 (4) 0.57829 (6) 0.7348 (2) 0.0161 (6)
C6 0.6098 (4) 0.58382 (6) 0.7030 (2) 0.0147 (6)
C7 0.6196 (4) 0.59398 (6) 0.5964 (2) 0.0147 (6)
C8 0.5525 (4) 0.57585 (7) 0.5164 (2) 0.0167 (6)
H8 0.504456 0.558107 0.532651 0.020*
C9 0.5522 (4) 0.58236 (6) 0.4136 (2) 0.0161 (6)
C10 0.4813 (4) 0.56082 (7) 0.3334 (2) 0.0181 (7)
C11 0.3819 (5) 0.56923 (7) 0.2409 (3) 0.0223 (7)
C12 0.3197 (5) 0.55012 (8) 0.1642 (3) 0.0263 (8)
C13 0.3578 (5) 0.52165 (8) 0.1781 (3) 0.0289 (8)
C14 0.4521 (5) 0.51230 (7) 0.2688 (3) 0.0270 (8)
C15 0.5126 (4) 0.53170 (7) 0.3443 (3) 0.0215 (7)
C16 0.5439 (4) 0.69479 (7) 0.1554 (3) 0.0211 (7)
C17 0.5208 (5) 0.70298 (8) 0.0544 (3) 0.0244 (7)
C18 0.6640 (5) 0.71125 (8) 0.0115 (3) 0.0265 (8)
C19 0.8283 (5) 0.71115 (7) 0.0703 (3) 0.0234 (7)
C20 0.8482 (4) 0.70269 (7) 0.1712 (2) 0.0194 (7)
C21 0.7071 (4) 0.69421 (6) 0.2165 (2) 0.0177 (7)
C22 0.7309 (4) 0.68348 (7) 0.3249 (2) 0.0178 (7)
C23 0.8210 (4) 0.70030 (7) 0.4022 (2) 0.0201 (7)
H23 0.868645 0.717911 0.384186 0.024*
C24 0.8448 (4) 0.69249 (7) 0.5051 (2) 0.0173 (7)
C25 0.9650 (4) 0.71009 (6) 0.5807 (2) 0.0171 (7)
C26 0.9238 (4) 0.71685 (7) 0.6765 (3) 0.0203 (7)
C27 1.0395 (5) 0.73123 (7) 0.7492 (2) 0.0217 (7)
C28 1.2028 (5) 0.73887 (7) 0.7288 (3) 0.0242 (8)
C29 1.2486 (4) 0.73251 (7) 0.6353 (3) 0.0215 (7)
C30 1.1306 (4) 0.71850 (7) 0.5624 (2) 0.0185 (7)
Cu1 0.68190 (5) 0.63872 (2) 0.46222 (3) 0.01411 (10)
F1 0.9178 (2) 0.58323 (5) 0.74715 (16) 0.0310 (5)
F2 0.8979 (3) 0.56388 (5) 0.93711 (16) 0.0374 (5)
F3 0.5815 (3) 0.55400 (5) 0.99358 (14) 0.0313 (5)
F4 0.2828 (3) 0.56383 (5) 0.85960 (15) 0.0323 (5)
F5 0.3000 (2) 0.58185 (4) 0.66859 (14) 0.0241 (4)
F6 0.3354 (3) 0.59659 (4) 0.22499 (15) 0.0325 (5)
F7 0.2237 (3) 0.55922 (5) 0.07760 (15) 0.0357 (5)
F8 0.3024 (3) 0.50278 (5) 0.10381 (17) 0.0414 (6)
F9 0.4876 (3) 0.48451 (4) 0.28398 (18) 0.0411 (6)
F10 0.6066 (3) 0.52110 (4) 0.43069 (15) 0.0271 (5)
F11 0.4006 (3) 0.68757 (5) 0.19509 (15) 0.0315 (5)
F12 0.3608 (3) 0.70347 (5) −0.00156 (16) 0.0382 (5)
F13 0.6433 (3) 0.71930 (6) −0.08624 (16) 0.0436 (6)
F14 0.9691 (3) 0.71899 (5) 0.02976 (16) 0.0380 (6)
F15 1.0123 (2) 0.70194 (4) 0.22413 (14) 0.0262 (4)
F16 0.7661 (3) 0.71015 (4) 0.69951 (15) 0.0281 (5)
F17 0.9945 (3) 0.73766 (4) 0.83999 (15) 0.0310 (5)
F18 1.3151 (3) 0.75249 (5) 0.79938 (16) 0.0344 (5)
F19 1.4079 (3) 0.73923 (5) 0.61553 (17) 0.0317 (5)
F20 1.1831 (2) 0.71248 (4) 0.47335 (14) 0.0232 (4)
O1 0.6911 (3) 0.61812 (4) 0.58985 (16) 0.0160 (5)
O2 0.6045 (3) 0.60555 (5) 0.37963 (16) 0.0174 (5)
O3 0.6659 (3) 0.65885 (5) 0.33475 (16) 0.0183 (5)
O4 0.7762 (3) 0.67114 (4) 0.54204 (16) 0.0161 (5)
C31 0.1008 (4) 0.64236 (7) 0.6576 (3) 0.0206 (7)
H31 −0.006458 0.635978 0.676158 0.025*
C32 0.1423 (4) 0.64075 (7) 0.5623 (2) 0.0175 (6)
C33 0.3118 (4) 0.65181 (7) 0.5562 (2) 0.0174 (7)
C34 0.3973 (4) 0.66157 (7) 0.6465 (3) 0.0217 (7)
H34 0.511792 0.669515 0.656735 0.026*
C35 0.1249 (4) 0.62454 (7) 0.3939 (3) 0.0224 (7)
H35A 0.039407 0.621591 0.330723 0.027*
H35B 0.194058 0.606808 0.407871 0.027*
C36 0.2450 (4) 0.64868 (7) 0.3781 (2) 0.0203 (7)
H36A 0.299577 0.644895 0.316742 0.024*
H36B 0.176752 0.666565 0.366393 0.024*
O5 0.0319 (3) 0.63026 (5) 0.47813 (17) 0.0219 (5)
O6 0.3806 (3) 0.65200 (5) 0.46638 (17) 0.0196 (5)
S1 0.26923 (11) 0.65754 (2) 0.74025 (6) 0.02224 (19)
C37A 0.6149 (13) 0.63435 (13) −0.0633 (7) 0.081 (2) 0.691 (4)
H37A 0.563149 0.637854 −0.132152 0.097* 0.691 (4)
C38A 0.8040 (15) 0.63579 (9) −0.0290 (9) 0.065 (2) 0.691 (4)
C39A 0.8335 (12) 0.63070 (10) 0.0769 (6) 0.0505 (18) 0.691 (4)
C40A 0.6864 (13) 0.62610 (15) 0.1133 (9) 0.070 (2) 0.691 (4)
H40A 0.682749 0.622829 0.183669 0.084* 0.691 (4)
C41A 1.1061 (13) 0.6324 (2) −0.0266 (6) 0.076 (2) 0.691 (4)
H41A 1.200067 0.640480 −0.060666 0.091* 0.691 (4)
H41B 1.116849 0.611377 −0.026951 0.091* 0.691 (4)
C42A 1.1269 (11) 0.64274 (16) 0.0798 (5) 0.0560 (18) 0.691 (4)
H42A 1.245676 0.637829 0.115366 0.067* 0.691 (4)
H42B 1.115506 0.663764 0.079751 0.067* 0.691 (4)
O7A 0.9340 (10) 0.64083 (11) −0.0833 (4) 0.0793 (18) 0.691 (4)
O8A 1.0018 (9) 0.63079 (13) 0.1331 (6) 0.0464 (17) 0.691 (4)
S2A 0.5036 (4) 0.62657 (5) 0.0220 (3) 0.0935 (11) 0.691 (4)
C37B 0.7270 (17) 0.6447 (2) −0.1070 (9) 0.026 (2) 0.309 (4)
H37B 0.629116 0.642764 −0.159856 0.032* 0.309 (4)
C38B 0.741 (2) 0.6349 (2) −0.0184 (14) 0.027 (3) 0.309 (4)
C39B 0.9021 (17) 0.6392 (2) 0.0503 (10) 0.026 (2) 0.309 (4)
C40B 1.0267 (17) 0.6549 (2) 0.0030 (10) 0.033 (3) 0.309 (4)
H40B 1.142956 0.659473 0.033626 0.040* 0.309 (4)
C41B 0.644 (2) 0.6146 (4) 0.1222 (13) 0.044 (3) 0.309 (4)
H41C 0.619068 0.631998 0.159730 0.053* 0.309 (4)
H41D 0.562812 0.599481 0.138370 0.053* 0.309 (4)
C42B 0.823 (2) 0.6056 (3) 0.1583 (11) 0.048 (3) 0.309 (4)
H42C 0.854016 0.589377 0.116939 0.058* 0.309 (4)
H42D 0.835506 0.599434 0.230543 0.058* 0.309 (4)
O7B 0.6071 (13) 0.6205 (2) 0.0122 (8) 0.043 (2) 0.309 (4)
O8B 0.9395 (18) 0.6302 (3) 0.1485 (12) 0.035 (3) 0.309 (4)
S2B 0.9318 (6) 0.66369 (8) −0.1156 (3) 0.0442 (12) 0.309 (4)
C43 0.0201 (7) 0.50447 (11) 0.7530 (4) 0.0524 (12)
H43 −0.018735 0.523709 0.751083 0.063*
C44 −0.0114 (5) 0.48559 (9) 0.6737 (3) 0.0328 (9)
C45 0.0687 (5) 0.45912 (10) 0.6969 (3) 0.0356 (9)
C46 0.1565 (7) 0.45771 (13) 0.7943 (3) 0.0626 (16)
H46 0.218746 0.441339 0.822400 0.075*
C47 −0.1409 (5) 0.46667 (9) 0.5206 (3) 0.0311 (9)
H47A −0.179232 0.472340 0.448601 0.037*
H47B −0.239788 0.456524 0.543732 0.037*
C48 0.0045 (6) 0.44703 (8) 0.5246 (3) 0.0366 (9)
H48A −0.031048 0.430597 0.479103 0.044*
H48B 0.103712 0.456699 0.500110 0.044*
O9 −0.1054 (4) 0.49163 (6) 0.5800 (2) 0.0412 (7)
O10 0.0591 (4) 0.43703 (6) 0.6276 (2) 0.0443 (7)
S3 0.14290 (18) 0.48766 (4) 0.85819 (10) 0.0653 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0169 (16) 0.0194 (16) 0.0221 (17) −0.0026 (13) 0.0010 (13) 0.0019 (13)
C2 0.0243 (18) 0.0256 (18) 0.0186 (17) −0.0002 (14) −0.0061 (14) 0.0014 (14)
C3 0.035 (2) 0.0201 (17) 0.0139 (16) −0.0022 (15) 0.0036 (14) −0.0006 (13)
C4 0.0212 (17) 0.0202 (17) 0.0207 (17) −0.0016 (13) 0.0079 (13) −0.0019 (13)
C5 0.0164 (16) 0.0140 (15) 0.0167 (16) 0.0006 (12) −0.0011 (12) −0.0003 (12)
C6 0.0187 (16) 0.0098 (14) 0.0154 (15) −0.0015 (12) 0.0020 (12) −0.0012 (12)
C7 0.0105 (14) 0.0151 (15) 0.0182 (16) 0.0031 (12) 0.0016 (12) 0.0011 (12)
C8 0.0193 (16) 0.0120 (15) 0.0184 (16) −0.0036 (12) 0.0022 (13) −0.0003 (12)
C9 0.0137 (15) 0.0145 (16) 0.0197 (16) 0.0020 (12) 0.0008 (12) −0.0023 (13)
C10 0.0191 (16) 0.0183 (16) 0.0167 (16) −0.0003 (13) 0.0025 (13) −0.0035 (13)
C11 0.0261 (18) 0.0197 (17) 0.0204 (17) 0.0034 (14) 0.0019 (14) −0.0033 (14)
C12 0.0258 (19) 0.034 (2) 0.0176 (17) 0.0021 (15) −0.0022 (14) −0.0024 (15)
C13 0.032 (2) 0.028 (2) 0.0238 (18) −0.0012 (16) −0.0025 (15) −0.0154 (15)
C14 0.032 (2) 0.0165 (17) 0.031 (2) 0.0015 (14) 0.0003 (16) −0.0069 (15)
C15 0.0210 (17) 0.0215 (17) 0.0201 (17) 0.0011 (14) −0.0025 (13) −0.0037 (14)
C16 0.0208 (17) 0.0191 (17) 0.0236 (17) −0.0019 (13) 0.0040 (14) 0.0001 (14)
C17 0.0236 (18) 0.0260 (18) 0.0217 (17) 0.0009 (14) −0.0023 (14) 0.0026 (14)
C18 0.036 (2) 0.0291 (19) 0.0136 (16) 0.0021 (16) 0.0011 (15) 0.0077 (14)
C19 0.0261 (18) 0.0240 (18) 0.0215 (17) −0.0026 (14) 0.0078 (14) 0.0052 (14)
C20 0.0217 (17) 0.0149 (16) 0.0204 (16) −0.0024 (13) 0.0000 (13) 0.0005 (13)
C21 0.0250 (17) 0.0112 (15) 0.0172 (16) −0.0025 (13) 0.0038 (13) 0.0002 (12)
C22 0.0173 (16) 0.0178 (16) 0.0188 (16) −0.0008 (13) 0.0044 (13) 0.0012 (13)
C23 0.0242 (17) 0.0163 (16) 0.0193 (16) −0.0065 (13) 0.0023 (13) 0.0008 (13)
C24 0.0163 (16) 0.0138 (15) 0.0226 (17) 0.0005 (12) 0.0058 (13) −0.0029 (13)
C25 0.0213 (17) 0.0112 (15) 0.0190 (16) −0.0029 (12) 0.0039 (13) 0.0016 (12)
C26 0.0209 (17) 0.0166 (16) 0.0243 (17) 0.0003 (13) 0.0060 (14) −0.0007 (13)
C27 0.033 (2) 0.0153 (16) 0.0167 (16) 0.0019 (14) 0.0044 (14) −0.0025 (13)
C28 0.0309 (19) 0.0133 (16) 0.0254 (18) −0.0023 (14) −0.0047 (15) −0.0032 (14)
C29 0.0193 (17) 0.0165 (16) 0.0287 (18) −0.0025 (13) 0.0033 (14) 0.0006 (14)
C30 0.0238 (17) 0.0137 (15) 0.0187 (16) 0.0000 (13) 0.0058 (13) −0.0002 (13)
Cu1 0.0160 (2) 0.01277 (19) 0.01372 (19) −0.00238 (14) 0.00286 (14) −0.00015 (15)
F1 0.0151 (10) 0.0467 (13) 0.0298 (11) −0.0041 (9) −0.0011 (8) 0.0100 (10)
F2 0.0266 (11) 0.0555 (15) 0.0250 (11) 0.0015 (10) −0.0108 (9) 0.0114 (10)
F3 0.0435 (13) 0.0369 (12) 0.0134 (9) 0.0006 (10) 0.0042 (9) 0.0057 (9)
F4 0.0260 (11) 0.0471 (13) 0.0263 (11) −0.0014 (10) 0.0118 (9) 0.0063 (10)
F5 0.0156 (9) 0.0345 (11) 0.0211 (10) 0.0014 (8) −0.0002 (8) 0.0049 (8)
F6 0.0462 (13) 0.0219 (11) 0.0243 (11) 0.0109 (9) −0.0097 (9) −0.0028 (8)
F7 0.0414 (13) 0.0422 (13) 0.0187 (10) 0.0043 (10) −0.0100 (9) −0.0043 (9)
F8 0.0543 (15) 0.0360 (13) 0.0294 (12) −0.0026 (11) −0.0068 (11) −0.0208 (10)
F9 0.0602 (16) 0.0167 (11) 0.0412 (13) 0.0042 (10) −0.0074 (11) −0.0109 (10)
F10 0.0333 (11) 0.0185 (10) 0.0253 (10) 0.0031 (8) −0.0076 (9) −0.0014 (8)
F11 0.0209 (10) 0.0467 (13) 0.0270 (11) −0.0044 (9) 0.0046 (9) 0.0059 (10)
F12 0.0258 (11) 0.0569 (15) 0.0278 (11) −0.0003 (10) −0.0077 (9) 0.0093 (11)
F13 0.0419 (14) 0.0681 (17) 0.0195 (11) −0.0015 (12) 0.0010 (10) 0.0185 (11)
F14 0.0329 (12) 0.0576 (15) 0.0250 (11) −0.0105 (11) 0.0098 (9) 0.0122 (10)
F15 0.0215 (10) 0.0346 (11) 0.0217 (10) −0.0065 (9) 0.0007 (8) 0.0056 (9)
F16 0.0272 (11) 0.0320 (11) 0.0280 (11) −0.0053 (9) 0.0137 (9) −0.0078 (9)
F17 0.0468 (13) 0.0271 (11) 0.0201 (10) −0.0019 (10) 0.0088 (9) −0.0092 (9)
F18 0.0379 (13) 0.0307 (12) 0.0301 (12) −0.0077 (10) −0.0080 (10) −0.0086 (9)
F19 0.0208 (11) 0.0341 (12) 0.0399 (13) −0.0107 (9) 0.0037 (9) −0.0027 (10)
F20 0.0252 (10) 0.0256 (10) 0.0208 (10) −0.0040 (8) 0.0100 (8) −0.0015 (8)
O1 0.0170 (11) 0.0142 (11) 0.0162 (11) −0.0026 (9) 0.0014 (9) 0.0004 (9)
O2 0.0213 (12) 0.0161 (11) 0.0150 (11) −0.0010 (9) 0.0035 (9) −0.0015 (9)
O3 0.0220 (12) 0.0165 (11) 0.0163 (11) −0.0056 (9) 0.0026 (9) 0.0000 (9)
O4 0.0182 (11) 0.0157 (11) 0.0154 (11) −0.0027 (9) 0.0051 (9) −0.0010 (9)
C31 0.0172 (16) 0.0221 (17) 0.0230 (17) 0.0004 (13) 0.0047 (13) 0.0009 (14)
C32 0.0159 (16) 0.0167 (16) 0.0194 (16) 0.0023 (13) 0.0016 (13) −0.0002 (13)
C33 0.0151 (15) 0.0193 (16) 0.0184 (16) 0.0038 (13) 0.0051 (13) 0.0018 (13)
C34 0.0166 (16) 0.0272 (18) 0.0217 (17) 0.0008 (14) 0.0043 (13) −0.0008 (14)
C35 0.0213 (17) 0.0259 (18) 0.0210 (17) −0.0008 (14) 0.0063 (14) −0.0072 (14)
C36 0.0200 (17) 0.0234 (17) 0.0172 (16) 0.0025 (13) 0.0018 (13) −0.0010 (13)
O5 0.0159 (11) 0.0301 (13) 0.0200 (12) −0.0033 (10) 0.0037 (9) −0.0073 (10)
O6 0.0147 (11) 0.0276 (13) 0.0172 (11) −0.0006 (9) 0.0046 (9) −0.0011 (10)
S1 0.0212 (4) 0.0292 (5) 0.0160 (4) 0.0024 (3) 0.0019 (3) −0.0007 (3)
C37A 0.100 (5) 0.031 (3) 0.083 (4) 0.006 (3) −0.075 (4) −0.007 (3)
C38A 0.093 (5) 0.028 (3) 0.057 (4) −0.002 (3) −0.042 (4) −0.001 (3)
C39A 0.066 (4) 0.029 (3) 0.046 (4) 0.007 (3) −0.024 (3) −0.008 (3)
C40A 0.069 (5) 0.044 (4) 0.086 (5) 0.013 (4) −0.022 (4) −0.036 (4)
C41A 0.109 (5) 0.072 (4) 0.042 (4) −0.027 (4) −0.003 (4) 0.008 (3)
C42A 0.076 (4) 0.054 (4) 0.033 (3) −0.014 (3) −0.010 (3) 0.011 (3)
O7A 0.129 (4) 0.057 (3) 0.036 (3) −0.016 (3) −0.035 (3) 0.015 (2)
O8A 0.056 (4) 0.047 (3) 0.030 (3) −0.003 (3) −0.013 (3) 0.006 (2)
S2A 0.0765 (18) 0.0582 (14) 0.127 (2) 0.0261 (12) −0.0414 (16) −0.0615 (15)
C37B 0.033 (5) 0.028 (5) 0.017 (4) 0.013 (4) −0.001 (4) −0.006 (4)
C38B 0.026 (5) 0.031 (5) 0.027 (5) 0.001 (4) 0.016 (4) −0.007 (4)
C39B 0.027 (4) 0.027 (4) 0.024 (5) 0.004 (4) 0.006 (4) 0.000 (4)
C40B 0.036 (5) 0.025 (5) 0.038 (5) −0.001 (4) 0.002 (4) 0.001 (4)
C41B 0.050 (6) 0.054 (6) 0.033 (5) −0.014 (5) 0.022 (5) −0.009 (5)
C42B 0.061 (6) 0.049 (5) 0.034 (5) −0.014 (5) 0.004 (5) 0.001 (5)
O7B 0.025 (4) 0.064 (5) 0.048 (4) −0.018 (4) 0.033 (4) −0.028 (4)
O8B 0.041 (6) 0.035 (5) 0.024 (5) −0.002 (4) −0.006 (5) 0.000 (4)
S2B 0.070 (3) 0.031 (2) 0.0374 (19) −0.0014 (16) 0.0282 (17) 0.0000 (15)
C43 0.067 (3) 0.048 (3) 0.045 (3) −0.010 (2) 0.017 (2) −0.005 (2)
C44 0.031 (2) 0.036 (2) 0.030 (2) −0.0056 (17) 0.0020 (16) 0.0027 (17)
C45 0.026 (2) 0.053 (3) 0.028 (2) 0.0078 (18) 0.0036 (16) 0.0055 (18)
C46 0.054 (3) 0.107 (5) 0.025 (2) 0.047 (3) 0.000 (2) 0.000 (2)
C47 0.0203 (18) 0.048 (2) 0.0249 (19) −0.0103 (16) 0.0036 (15) −0.0028 (17)
C48 0.054 (3) 0.027 (2) 0.026 (2) −0.0040 (18) −0.0025 (18) 0.0016 (16)
O9 0.0491 (18) 0.0391 (16) 0.0335 (15) 0.0116 (14) 0.0009 (13) 0.0044 (13)
O10 0.058 (2) 0.0410 (17) 0.0328 (16) 0.0137 (15) 0.0037 (14) 0.0049 (13)
S3 0.0512 (8) 0.1075 (12) 0.0347 (6) 0.0080 (7) −0.0008 (5) −0.0211 (7)

Geometric parameters (Å, º)

C1—F1 1.344 (4) C31—C32 1.355 (5)
C1—C2 1.380 (5) C31—S1 1.717 (3)
C1—C6 1.387 (4) C31—H31 0.9500
C2—F2 1.340 (4) C32—O5 1.382 (4)
C2—C3 1.377 (5) C32—C33 1.425 (4)
C3—F3 1.343 (4) C33—C34 1.351 (5)
C3—C4 1.377 (5) C33—O6 1.380 (4)
C4—F4 1.340 (4) C34—S1 1.719 (3)
C4—C5 1.377 (5) C34—H34 0.9500
C5—F5 1.350 (4) C35—O5 1.447 (4)
C5—C6 1.390 (4) C35—C36 1.501 (5)
C6—C7 1.505 (4) C35—H35A 0.9900
C7—O1 1.269 (4) C35—H35B 0.9900
C7—C8 1.393 (4) C36—O6 1.450 (4)
C8—C9 1.396 (4) C36—H36A 0.9900
C8—H8 0.9500 C36—H36B 0.9900
C9—O2 1.268 (4) C37A—C38A 1.463 (14)
C9—C10 1.505 (4) C37A—S2A 1.570 (11)
C10—C15 1.390 (5) C37A—H37A 0.9500
C10—C11 1.396 (5) C38A—O7A 1.347 (14)
C11—F6 1.340 (4) C38A—C39A 1.407 (14)
C11—C12 1.383 (5) C39A—C40A 1.323 (14)
C12—F7 1.334 (4) C39A—O8A 1.392 (11)
C12—C13 1.373 (5) C40A—S2A 1.708 (9)
C13—F8 1.342 (4) C40A—H40A 0.9500
C13—C14 1.375 (5) C41A—O7A 1.474 (11)
C14—F9 1.340 (4) C41A—C42A 1.476 (10)
C14—C15 1.378 (5) C41A—H41A 0.9900
C15—F10 1.349 (4) C41A—H41B 0.9900
C16—F11 1.343 (4) C42A—O8A 1.403 (10)
C16—C17 1.378 (5) C42A—H42A 0.9900
C16—C21 1.387 (5) C42A—H42B 0.9900
C17—F12 1.337 (4) C37B—C38B 1.25 (2)
C17—C18 1.379 (5) C37B—S2B 1.836 (14)
C18—F13 1.335 (4) C37B—H37B 0.9500
C18—C19 1.380 (5) C38B—O7B 1.351 (16)
C19—F14 1.341 (4) C38B—C39B 1.44 (2)
C19—C20 1.380 (5) C39B—O8B 1.36 (2)
C20—F15 1.348 (4) C39B—C40B 1.433 (19)
C20—C21 1.386 (5) C40B—S2B 1.678 (13)
C21—C22 1.505 (4) C40B—H40B 0.9500
C22—O3 1.274 (4) C41B—C42B 1.46 (2)
C22—C23 1.389 (5) C41B—O7B 1.47 (2)
C23—C24 1.396 (5) C41B—H41C 0.9900
C23—H23 0.9500 C41B—H41D 0.9900
C24—O4 1.268 (4) C42B—O8B 1.48 (2)
C24—C25 1.501 (4) C42B—H42C 0.9900
C25—C26 1.394 (5) C42B—H42D 0.9900
C25—C30 1.398 (5) C43—C44 1.365 (6)
C26—F16 1.341 (4) C43—S3 1.745 (5)
C26—C27 1.382 (5) C43—H43 0.9500
C27—F17 1.339 (4) C44—O9 1.365 (5)
C27—C28 1.381 (5) C44—C45 1.399 (6)
C28—F18 1.333 (4) C45—C46 1.361 (6)
C28—C29 1.375 (5) C45—O10 1.379 (5)
C29—F19 1.338 (4) C46—S3 1.652 (6)
C29—C30 1.384 (5) C46—H46 0.9500
C30—F20 1.339 (4) C47—O9 1.413 (5)
Cu1—O3 1.923 (2) C47—C48 1.448 (6)
Cu1—O4 1.928 (2) C47—H47A 0.9900
Cu1—O1 1.940 (2) C47—H47B 0.9900
Cu1—O2 1.941 (2) C48—O10 1.442 (5)
Cu1—O5i 2.711 (2) C48—H48A 0.9900
Cu1—O6 2.421 (2) C48—H48B 0.9900
F1—C1—C2 118.4 (3) C31—C32—O5 124.4 (3)
F1—C1—C6 119.6 (3) C31—C32—C33 113.0 (3)
C2—C1—C6 122.0 (3) O5—C32—C33 122.6 (3)
F2—C2—C3 119.7 (3) C34—C33—O6 124.1 (3)
F2—C2—C1 120.8 (3) C34—C33—C32 113.4 (3)
C3—C2—C1 119.6 (3) O6—C33—C32 122.5 (3)
F3—C3—C4 119.9 (3) C33—C34—S1 110.2 (3)
F3—C3—C2 120.0 (3) C33—C34—H34 124.9
C4—C3—C2 120.2 (3) S1—C34—H34 124.9
F4—C4—C3 120.2 (3) O5—C35—C36 111.3 (3)
F4—C4—C5 120.5 (3) O5—C35—H35A 109.4
C3—C4—C5 119.3 (3) C36—C35—H35A 109.4
F5—C5—C4 118.0 (3) O5—C35—H35B 109.4
F5—C5—C6 119.6 (3) C36—C35—H35B 109.4
C4—C5—C6 122.4 (3) H35A—C35—H35B 108.0
C1—C6—C5 116.6 (3) O6—C36—C35 110.6 (3)
C1—C6—C7 121.8 (3) O6—C36—H36A 109.5
C5—C6—C7 121.6 (3) C35—C36—H36A 109.5
O1—C7—C8 127.3 (3) O6—C36—H36B 109.5
O1—C7—C6 115.8 (3) C35—C36—H36B 109.5
C8—C7—C6 117.0 (3) H36A—C36—H36B 108.1
C7—C8—C9 123.5 (3) C32—O5—C35 111.7 (2)
C7—C8—H8 118.2 C33—O6—C36 111.5 (2)
C9—C8—H8 118.2 C33—O6—Cu1 121.57 (18)
O2—C9—C8 125.7 (3) C36—O6—Cu1 121.90 (18)
O2—C9—C10 115.2 (3) C31—S1—C34 92.92 (16)
C8—C9—C10 119.1 (3) C38A—C37A—S2A 115.0 (8)
C15—C10—C11 115.5 (3) C38A—C37A—H37A 122.5
C15—C10—C9 123.3 (3) S2A—C37A—H37A 122.5
C11—C10—C9 121.2 (3) O7A—C38A—C39A 123.2 (9)
F6—C11—C12 116.9 (3) O7A—C38A—C37A 129.5 (10)
F6—C11—C10 120.3 (3) C39A—C38A—C37A 107.3 (11)
C12—C11—C10 122.7 (3) C40A—C39A—O8A 126.2 (9)
F7—C12—C13 120.3 (3) C40A—C39A—C38A 112.4 (9)
F7—C12—C11 120.4 (3) O8A—C39A—C38A 121.4 (10)
C13—C12—C11 119.3 (3) C39A—C40A—S2A 113.7 (9)
F8—C13—C12 120.4 (3) C39A—C40A—H40A 123.2
F8—C13—C14 119.6 (3) S2A—C40A—H40A 123.2
C12—C13—C14 120.0 (3) O7A—C41A—C42A 110.5 (8)
F9—C14—C13 120.6 (3) O7A—C41A—H41A 109.5
F9—C14—C15 119.7 (3) C42A—C41A—H41A 109.5
C13—C14—C15 119.7 (3) O7A—C41A—H41B 109.5
F10—C15—C14 116.6 (3) C42A—C41A—H41B 109.5
F10—C15—C10 120.7 (3) H41A—C41A—H41B 108.1
C14—C15—C10 122.7 (3) O8A—C42A—C41A 111.8 (7)
F11—C16—C17 117.7 (3) O8A—C42A—H42A 109.3
F11—C16—C21 119.8 (3) C41A—C42A—H42A 109.3
C17—C16—C21 122.5 (3) O8A—C42A—H42B 109.3
F12—C17—C16 120.5 (3) C41A—C42A—H42B 109.3
F12—C17—C18 120.0 (3) H42A—C42A—H42B 107.9
C16—C17—C18 119.5 (3) C38A—O7A—C41A 111.8 (6)
F13—C18—C17 120.0 (3) C39A—O8A—C42A 113.2 (7)
F13—C18—C19 120.4 (3) C37A—S2A—C40A 91.5 (6)
C17—C18—C19 119.6 (3) C38B—C37B—S2B 107.0 (11)
F14—C19—C20 119.7 (3) C38B—C37B—H37B 126.5
F14—C19—C18 120.4 (3) S2B—C37B—H37B 126.5
C20—C19—C18 119.9 (3) C37B—C38B—O7B 120.8 (17)
F15—C20—C19 117.5 (3) C37B—C38B—C39B 118.6 (14)
F15—C20—C21 120.5 (3) O7B—C38B—C39B 120.6 (15)
C19—C20—C21 122.0 (3) O8B—C39B—C40B 121.6 (13)
C20—C21—C16 116.6 (3) O8B—C39B—C38B 126.6 (14)
C20—C21—C22 121.7 (3) C40B—C39B—C38B 111.8 (12)
C16—C21—C22 121.6 (3) C39B—C40B—S2B 108.2 (10)
O3—C22—C23 126.8 (3) C39B—C40B—H40B 125.9
O3—C22—C21 114.3 (3) S2B—C40B—H40B 125.9
C23—C22—C21 119.0 (3) C42B—C41B—O7B 113.7 (12)
C22—C23—C24 122.9 (3) C42B—C41B—H41C 108.8
C22—C23—H23 118.5 O7B—C41B—H41C 108.8
C24—C23—H23 118.5 C42B—C41B—H41D 108.8
O4—C24—C23 126.0 (3) O7B—C41B—H41D 108.8
O4—C24—C25 115.4 (3) H41C—C41B—H41D 107.7
C23—C24—C25 118.7 (3) C41B—C42B—O8B 107.9 (13)
C26—C25—C30 116.3 (3) C41B—C42B—H42C 110.1
C26—C25—C24 121.8 (3) O8B—C42B—H42C 110.1
C30—C25—C24 121.7 (3) C41B—C42B—H42D 110.1
F16—C26—C27 117.8 (3) O8B—C42B—H42D 110.1
F16—C26—C25 120.2 (3) H42C—C42B—H42D 108.4
C27—C26—C25 122.0 (3) C38B—O7B—C41B 111.0 (13)
F17—C27—C28 119.7 (3) C39B—O8B—C42B 106.6 (13)
F17—C27—C26 120.3 (3) C40B—S2B—C37B 94.3 (6)
C28—C27—C26 120.0 (3) C44—C43—S3 109.2 (4)
F18—C28—C29 120.2 (3) C44—C43—H43 125.4
F18—C28—C27 120.0 (3) S3—C43—H43 125.4
C29—C28—C27 119.7 (3) O9—C44—C43 124.7 (4)
F19—C29—C28 120.2 (3) O9—C44—C45 122.4 (4)
F19—C29—C30 120.0 (3) C43—C44—C45 112.8 (4)
C28—C29—C30 119.7 (3) C46—C45—O10 124.1 (4)
F20—C30—C29 117.2 (3) C46—C45—C44 112.8 (4)
F20—C30—C25 120.6 (3) O10—C45—C44 123.1 (3)
C29—C30—C25 122.2 (3) C45—C46—S3 112.5 (4)
O3—Cu1—O4 93.47 (9) C45—C46—H46 123.8
O3—Cu1—O1 178.39 (9) S3—C46—H46 123.8
O4—Cu1—O1 87.48 (9) O9—C47—C48 115.2 (3)
O3—Cu1—O2 85.82 (9) O9—C47—H47A 108.5
O4—Cu1—O2 175.70 (9) C48—C47—H47A 108.5
O1—Cu1—O2 93.32 (9) O9—C47—H47B 108.5
O3—Cu1—O6 88.12 (9) C48—C47—H47B 108.5
O4—Cu1—O6 93.75 (8) H47A—C47—H47B 107.5
O1—Cu1—O6 90.53 (8) O10—C48—C47 110.4 (3)
O2—Cu1—O6 90.46 (9) O10—C48—H48A 109.6
C7—O1—Cu1 123.3 (2) C47—C48—H48A 109.6
C9—O2—Cu1 125.0 (2) O10—C48—H48B 109.6
C22—O3—Cu1 124.4 (2) C47—C48—H48B 109.6
C24—O4—Cu1 123.7 (2) H48A—C48—H48B 108.1
C32—C31—S1 110.4 (2) C44—O9—C47 111.3 (3)
C32—C31—H31 124.8 C45—O10—C48 111.3 (3)
S1—C31—H31 124.8 C46—S3—C43 92.6 (2)
F1—C1—C2—F2 0.8 (5) F16—C26—C27—F17 1.1 (5)
C6—C1—C2—F2 178.8 (3) C25—C26—C27—F17 179.2 (3)
F1—C1—C2—C3 −178.7 (3) F16—C26—C27—C28 −179.3 (3)
C6—C1—C2—C3 −0.7 (5) C25—C26—C27—C28 −1.3 (5)
F2—C2—C3—F3 0.4 (5) F17—C27—C28—F18 0.2 (5)
C1—C2—C3—F3 180.0 (3) C26—C27—C28—F18 −179.3 (3)
F2—C2—C3—C4 −179.6 (3) F17—C27—C28—C29 −179.4 (3)
C1—C2—C3—C4 −0.1 (5) C26—C27—C28—C29 1.0 (5)
F3—C3—C4—F4 0.2 (5) F18—C28—C29—F19 1.9 (5)
C2—C3—C4—F4 −179.7 (3) C27—C28—C29—F19 −178.5 (3)
F3—C3—C4—C5 −178.9 (3) F18—C28—C29—C30 −179.6 (3)
C2—C3—C4—C5 1.1 (5) C27—C28—C29—C30 0.0 (5)
F4—C4—C5—F5 −1.7 (5) F19—C29—C30—F20 −0.5 (5)
C3—C4—C5—F5 177.4 (3) C28—C29—C30—F20 −179.0 (3)
F4—C4—C5—C6 179.5 (3) F19—C29—C30—C25 177.6 (3)
C3—C4—C5—C6 −1.4 (5) C28—C29—C30—C25 −0.9 (5)
F1—C1—C6—C5 178.5 (3) C26—C25—C30—F20 178.8 (3)
C2—C1—C6—C5 0.5 (5) C24—C25—C30—F20 4.0 (5)
F1—C1—C6—C7 −0.2 (5) C26—C25—C30—C29 0.7 (5)
C2—C1—C6—C7 −178.2 (3) C24—C25—C30—C29 −174.1 (3)
F5—C5—C6—C1 −178.2 (3) C8—C7—O1—Cu1 12.6 (4)
C4—C5—C6—C1 0.6 (5) C6—C7—O1—Cu1 −168.61 (19)
F5—C5—C6—C7 0.5 (4) C8—C9—O2—Cu1 −4.8 (4)
C4—C5—C6—C7 179.3 (3) C10—C9—O2—Cu1 173.90 (19)
C1—C6—C7—O1 −61.9 (4) C23—C22—O3—Cu1 −1.0 (5)
C5—C6—C7—O1 119.4 (3) C21—C22—O3—Cu1 177.7 (2)
C1—C6—C7—C8 117.0 (3) C23—C24—O4—Cu1 19.4 (4)
C5—C6—C7—C8 −61.6 (4) C25—C24—O4—Cu1 −159.1 (2)
O1—C7—C8—C9 −1.3 (5) S1—C31—C32—O5 −178.2 (2)
C6—C7—C8—C9 179.9 (3) S1—C31—C32—C33 0.2 (4)
C7—C8—C9—O2 −3.1 (5) C31—C32—C33—C34 0.2 (4)
C7—C8—C9—C10 178.2 (3) O5—C32—C33—C34 178.6 (3)
O2—C9—C10—C15 140.7 (3) C31—C32—C33—O6 179.4 (3)
C8—C9—C10—C15 −40.5 (5) O5—C32—C33—O6 −2.2 (5)
O2—C9—C10—C11 −37.6 (4) O6—C33—C34—S1 −179.7 (2)
C8—C9—C10—C11 141.2 (3) C32—C33—C34—S1 −0.5 (4)
C15—C10—C11—F6 176.1 (3) O5—C35—C36—O6 63.7 (3)
C9—C10—C11—F6 −5.5 (5) C31—C32—O5—C35 −165.6 (3)
C15—C10—C11—C12 −0.7 (5) C33—C32—O5—C35 16.2 (4)
C9—C10—C11—C12 177.7 (3) C36—C35—O5—C32 −45.5 (4)
F6—C11—C12—F7 2.4 (5) C34—C33—O6—C36 −162.4 (3)
C10—C11—C12—F7 179.2 (3) C32—C33—O6—C36 18.6 (4)
F6—C11—C12—C13 −177.5 (3) C34—C33—O6—Cu1 42.2 (4)
C10—C11—C12—C13 −0.7 (6) C32—C33—O6—Cu1 −136.9 (3)
F7—C12—C13—F8 1.6 (6) C35—C36—O6—C33 −47.5 (3)
C11—C12—C13—F8 −178.4 (3) C35—C36—O6—Cu1 107.8 (3)
F7—C12—C13—C14 −177.9 (3) C32—C31—S1—C34 −0.4 (3)
C11—C12—C13—C14 2.0 (6) C33—C34—S1—C31 0.5 (3)
F8—C13—C14—F9 −0.7 (6) S2A—C37A—C38A—O7A 177.3 (4)
C12—C13—C14—F9 178.9 (4) S2A—C37A—C38A—C39A −2.5 (4)
F8—C13—C14—C15 178.5 (3) O7A—C38A—C39A—C40A −179.5 (3)
C12—C13—C14—C15 −1.9 (6) C37A—C38A—C39A—C40A 0.3 (2)
F9—C14—C15—F10 0.2 (5) O7A—C38A—C39A—O8A 0.5 (3)
C13—C14—C15—F10 −179.0 (3) C37A—C38A—C39A—O8A −179.7 (2)
F9—C14—C15—C10 179.7 (3) O8A—C39A—C40A—S2A −178.3 (4)
C13—C14—C15—C10 0.5 (6) C38A—C39A—C40A—S2A 1.8 (4)
C11—C10—C15—F10 −179.8 (3) O7A—C41A—C42A—O8A 62.1 (9)
C9—C10—C15—F10 1.8 (5) C39A—C38A—O7A—C41A 16.2 (6)
C11—C10—C15—C14 0.8 (5) C37A—C38A—O7A—C41A −163.6 (5)
C9—C10—C15—C14 −177.6 (3) C42A—C41A—O7A—C38A −45.8 (8)
F11—C16—C17—F12 −0.4 (5) C40A—C39A—O8A—C42A −165.9 (6)
C21—C16—C17—F12 −179.4 (3) C38A—C39A—O8A—C42A 14.1 (6)
F11—C16—C17—C18 178.4 (3) C41A—C42A—O8A—C39A −44.6 (8)
C21—C16—C17—C18 −0.6 (5) C38A—C37A—S2A—C40A 3.0 (4)
F12—C17—C18—F13 −1.0 (5) C39A—C40A—S2A—C37A −2.8 (5)
C16—C17—C18—F13 −179.8 (3) S2B—C37B—C38B—O7B 177.9 (5)
F12—C17—C18—C19 178.9 (3) S2B—C37B—C38B—C39B −2.2 (5)
C16—C17—C18—C19 0.1 (5) C37B—C38B—C39B—O8B 179.6 (3)
F13—C18—C19—F14 −0.4 (5) O7B—C38B—C39B—O8B −0.5 (5)
C17—C18—C19—F14 179.7 (3) C37B—C38B—C39B—C40B −0.1 (3)
F13—C18—C19—C20 −179.8 (3) O7B—C38B—C39B—C40B 179.8 (4)
C17—C18—C19—C20 0.3 (5) O8B—C39B—C40B—S2B −177.2 (6)
F14—C19—C20—F15 −1.9 (5) C38B—C39B—C40B—S2B 2.5 (6)
C18—C19—C20—F15 177.5 (3) O7B—C41B—C42B—O8B 67.4 (17)
F14—C19—C20—C21 −179.6 (3) C37B—C38B—O7B—C41B −171.9 (10)
C18—C19—C20—C21 −0.1 (5) C39B—C38B—O7B—C41B 8.2 (11)
F15—C20—C21—C16 −177.9 (3) C42B—C41B—O7B—C38B −42.0 (16)
C19—C20—C21—C16 −0.4 (5) C40B—C39B—O8B—C42B −156.4 (10)
F15—C20—C21—C22 −1.0 (5) C38B—C39B—O8B—C42B 23.9 (10)
C19—C20—C21—C22 176.6 (3) C41B—C42B—O8B—C39B −53.7 (14)
F11—C16—C21—C20 −178.2 (3) C39B—C40B—S2B—C37B −3.1 (7)
C17—C16—C21—C20 0.8 (5) C38B—C37B—S2B—C40B 3.1 (7)
F11—C16—C21—C22 4.8 (5) S3—C43—C44—O9 179.3 (3)
C17—C16—C21—C22 −176.2 (3) S3—C43—C44—C45 −2.8 (5)
C20—C21—C22—O3 −124.5 (3) O9—C44—C45—C46 179.6 (4)
C16—C21—C22—O3 52.3 (4) C43—C44—C45—C46 1.7 (6)
C20—C21—C22—C23 54.3 (4) O9—C44—C45—O10 −0.1 (6)
C16—C21—C22—C23 −129.0 (3) C43—C44—C45—O10 −178.1 (4)
O3—C22—C23—C24 −3.4 (6) O10—C45—C46—S3 −179.9 (3)
C21—C22—C23—C24 178.0 (3) C44—C45—C46—S3 0.4 (6)
C22—C23—C24—O4 −6.9 (5) O9—C47—C48—O10 61.2 (4)
C22—C23—C24—C25 171.6 (3) C43—C44—O9—C47 −169.8 (4)
O4—C24—C25—C26 −42.2 (4) C45—C44—O9—C47 12.5 (5)
C23—C24—C25—C26 139.1 (3) C48—C47—O9—C44 −42.9 (4)
O4—C24—C25—C30 132.2 (3) C46—C45—O10—C48 −162.8 (5)
C23—C24—C25—C30 −46.4 (4) C44—C45—O10—C48 16.9 (5)
C30—C25—C26—F16 178.4 (3) C47—C48—O10—C45 −44.6 (5)
C24—C25—C26—F16 −6.8 (5) C45—C46—S3—C43 −1.7 (4)
C30—C25—C26—C27 0.4 (5) C44—C43—S3—C46 2.6 (4)
C24—C25—C26—C27 175.1 (3)

Symmetry code: (i) x+1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C23—H23···F17ii 0.95 2.41 3.362 (4) 179
C31—H31···O1iii 0.95 2.57 3.351 (4) 139
C35—H35A···O8Biii 0.99 2.45 3.349 (16) 151
C37A—H37A···S1iv 0.95 2.77 3.590 (9) 145
C41A—H41A···S2Ai 0.99 2.51 3.051 (11) 114
C42A—H42A···S2Ai 0.99 2.57 3.220 (9) 123
C42A—H42A···F6i 0.99 2.45 3.162 (8) 128
C48—H48B···F10v 0.99 2.51 3.326 (5) 140

Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z−1/2; (iii) x−1, y, z; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Japan Society for the Promotion of Science grant 18 K05153.

References

  1. Bruker (2018). APEX3, SAINT, SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Crowder, J. M., Han, H., Wei, Z., Dikarev, E. V. & Petrukhina, M. A. (2019). Polyhedron, 157, 33–38.
  3. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481–494.
  4. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  5. Hori, A. (2012). Frontiers in Crystal Engineering, Vol. III, pp. 163–185. New York: John Wiley & Sons.
  6. Hori, A. & Arii, T. (2007). CrystEngComm, 9, 215–217.
  7. Hori, A., Gonda, R. & Rzeznicka, I. I. (2017). CrystEngComm, 19, 6263–6266.
  8. Hori, A., Nakajima, K., Akimoto, Y., Naganuma, K. & Yuge, H. (2014). CrystEngComm, 16, 8805–8817.
  9. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  10. Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.
  11. Kirchmeyer, S. & Reuter, K. (2005). J. Mater. Chem. 15, 2077–2088.
  12. Kusakawa, T., Goto, T. & Hori, A. (2020). CrystEngComm. In the press. doi: https://doi.org/10.1039/D0CE00416B.
  13. Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303–1324. [DOI] [PubMed]
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Nakajima, K. & Hori, A. (2014). Cryst. Growth Des. 14, 3169–3173.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Skotheim, T. A., Elsenbaumer, R. L. & Reynolds, J. R. (1998). Handbook of Conducting Polymers, 2nd ed. New York: Marcel Dekker.
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Storsberg, J., Ritter, H., Pielartzik, H. & Groenendaal, L. (2000). Adv. Mater. 12, 567–569.
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  22. Williams, J. H. (1993). Acc. Chem. Res. 26, 593–598.
  23. Williams, J. H. (2017). Crystal Engineering: How Molecules Build Solids. San Rafael: Morgan & Claypool Publishers.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020006155/tx2020sup1.cif

e-76-00820-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006155/tx2020Isup3.hkl

e-76-00820-Isup3.hkl (664.4KB, hkl)

CCDC reference: 2001277

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES