Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 29;76(Pt 6):962–966. doi: 10.1107/S2056989020006994

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of 4-[(4-allyl-2-meth­oxy­phen­oxy)meth­yl]-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole

Abdelmaoujoud Taia a,*, Mohamed Essaber a, Abdeljalil Aatif a, Karim Chkirate b, Tuncer Hökelek c, Joel T Mague d, Nada Kheira Sebbar b,e
PMCID: PMC7273996  PMID: 32523773

In the crystal structure, C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds form corrugated layers parallel to (100) that are connected along the a axis by C—H⋯π(ring) and π–π stacking inter­actions.

Keywords: crystal structure, triazole, hydrogen bonding, C—H⋯π(ring) inter­action, π-stacking

Abstract

In the title mol­ecule, C20H21N3O3, the allyl substituent is rotated out of the plane of its attached phenyl ring [torsion angle 100.66 (15)°]. In the crystal, C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds lead to the formation of (100) layers that are connected into a three-dimensional network by C—H⋯π(ring) inter­actions, together with π–π stacking inter­actions [centroid-to-centroid distance = 3.7318 (10) Å] between parallel phenyl rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%) and H⋯C/C⋯H (23.3%) inter­actions. Computational chemistry reveals that the C—HMthphn⋯OMthphn hydrogen bond energy is 47.1 kJ mol−1. The theoretical structure, optimized by density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined mol­ecular structure. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

Chemical context  

Clove essential oil is extracted from cloves, which come from a tree belonging to the Myrtaceae family (Chang & Miau, 1984), originating from the Moluccas in Indonesia. Eugenol (C10H12O2) is the major constituent of clove essential oil with a percentage of 75–90% (Patra & Saxena, 2010). Eugenol is a mol­ecule that belongs to the family of phenyl­propenes; its aromatic ring, an alcohol function and an allylic entity explain its high reactivity. Several studies have revealed various biological activities for eugenol, including anti­viral (Benencia & Courreges, 2000), anti-leishmania (Ueda-Nakamura et al., 2006), anti­bacterial (Pathirana et al., 2019), anti­fungal (Wang et al., 2010), anti-inflammatory (Daniel et al., 2009), anti­oxidant (Mahboub & Memmou., 2015), anesthetic analgesic (Guenette et al., 2007), anti­cancer (Hussain et al., 2011) or anti-diabetes (Mnafgui et al., 2013) properties. On the other hand, 1,2,3-triazoles are known by their diverse biological activities being used as anti­leishmania (Teixeira et al., 2018), anti­microbial (Glowacka et al., 2019) or anti­viral (Bankowska, et al., 2014) agents. In this context, we have synthesized the title compound, (I), through cyclo­addition reaction of 1-azido-4-meth­oxy­benzene with 4-allyl-2-meth­oxy-1-(prop-2-yn­yloxy) benzene; the latter was previously prepared by O-alkyl­ation of eugenol by propargile (Taia et al., 2020).graphic file with name e-76-00962-scheme1.jpg

We report herein the synthesis, mol­ecular and crystal structures of (I), along with the results of a Hirshfeld surface analysis, an inter­action energy calculation, and a density functional theory (DFT) study.

Structural commentary  

The title mol­ecule is non-planar (Fig. 1), with the A (C1–C6) and C (C13–C18) benzene rings inclined to the B (C11/C12/N1–N3) triazole ring by 25.76 (4) and 24.97 (4)°, respectively. The allyl group is rotated out of the plane of the A ring as indicated by the C3—C4—C7—C8 torsion angle of 100.66 (15)°. Both meth­oxy groups are virtually coplanar with their attached rings with C3—C2—O2—C20 and C17—C16—O3—C19 torsion angles, respectively, of 5.04 (16) and 3.73 (16)°. There are no unusual bond lengths or bond angles in the mol­ecule.

Figure 1.

Figure 1

The mol­ecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal structure, (100) layers are formed by C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds (Table 1, Fig. 2). These are stacked along the a axis through C6—H6⋯Cg3(x, −Inline graphic − y, −Inline graphic + z) inter­actions (Table 1) as well as through π—-π stacking inter­actions between inversion-related C rings [Cg3⋯Cg3(1 − x, −y, 1 − z] with a centroid-to-centroid distance of 3.7318 (10) Å (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the benzene ring C (C13–C18).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg3xiii 0.964 (15) 2.825 (15) 3.5168 (15) 129.4 (11)
C19—H19B⋯O3xiv 0.977 (18) 2.578 (18) 3.4587 (16) 150.0 (14)

Symmetry codes: (xiii) Inline graphic; (xiv) Inline graphic.

Figure 2.

Figure 2

A portion of one layer viewed along the a axis, with C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds depicted by dashed lines.

Figure 3.

Figure 3

Projection of the crystal structure along the b axis. C—HMthphn⋯OMthphn (Mthphn = meth­oxy­phen­yl) hydrogen bonds and π–π stacking and C—H⋯π(ring) inter­actions are depicted, respectively, by black, orange and green dashed lines.

Hirshfeld surface analysis  

In order to visualize and qu­antify the inter­molecular inter­actions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near hydrogen atoms (H6 and H19B), and near O3 indicate their roles in hydrogen bonding; they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 5. The HS plotted over the shape-index (Fig. 6) clearly reveals π–π stacking inter­actions (visualized as red and blue areas) in (I), as discussed above.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range of −0.2587 to 1.3813 a.u..

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u..

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 7 bi, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 48.7% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 0.95 Å. In the presence of C—H⋯π inter­actions, the pair of characteristic wings of H⋯C/C⋯H contacts (23.3% contribution to the HS, Fig. 7 c) has the tips at d e + d i = 2.68 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (12.3% contribution, Fig. 7 d) has a distribution of points with small and slightly larger tips at d e + d i = 2.72 and 2.70 Å, respectively. The H⋯O/O⋯H contacts (Fig. 7 e, 11.3% contribution) have a symmetric distribution of points with the tips at d e + d i = 2.48 Å. The C⋯C contacts, Fig. 7 f, have an arrow-shaped distribution of points with the tip at d e = d i = 1.68 Å. Finally, N⋯C/C⋯N (Fig. 7 g), O⋯C/C⋯O (Fig. 7 h) and O⋯N/N⋯O (Fig. 7 i) inter­actions contribute only 1.0%, 0.9% and 0.6%, respectively, to the overall HS and thus have minor significance.

Figure 7.

Figure 7

Two-dimensional fingerprint plots for (I), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) N⋯C/C⋯N, (h) O⋯C/C⋯O and (i) O⋯N/N⋯O inter­actions. d i and d e refer to the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations  

The inter­molecular inter­action energies were calculated using a CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of mol­ecules was generated within a radius of 3.8 Å by default (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). In (I), the relevant C19—H19B⋯O3 hydrogen-bonding inter­action energies (in kJ mol−1) were calculated as −20.6 (E ele), −5.7 (E pol), −49.3 (E dis), 35.4 (E rep) and −47.1 (E tot).

DFT calculations  

Density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009) was used to optimize the mol­ecular structure of (I) in the gas phase. Theoretical and experimental results in terms of bond lengths and angles are in good agreement (Table 2).

Table 2. Comparison of selected bond length and angles (Å, °) between exerimental data (X-ray) and theory [B3LYP/6–311G(d,p)].

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C1 1.3712 (12) 1.39510
O1—C10 1.4279 (12) 1.45830
O2—C2 1.3673 (13) 1.39818
O2—C20 1.4220 (14) 1.46747
O3—C16 1.3631 (12) 1.38746
O3—C19 1.4213 (15) 1.45298
N1—N2 1.3504 (13) 1.39727
N1—C12 1.3541 (13) 1.36977
N1—C13 1.4315 (13) 1.42427
N2—N3 1.3142 (13) 1.32619
N3—C11 1.3600 (13) 1.38002
C8—C9 1.312 (2) 1.33811
     
C1—O1—C10 117.19 (8) 117.72628
C2—O2—C20 117.19 (10) 117.20245
C16—O3—C19 117.42 (9) 118.93805
N2—N1—C12 110.77 (8) 110.09008
N2—N1—C13 119.89 (8) 120.52180
C12—N1—C13 129.33 (9) 129.38444
N3—N2—N1 107.21 (8) 106.61104
N2—N3—C11 108.86 (9) 109.15766
O1—C1—C6 125.33 (9) 124.33053

The highest-occupied mol­ecular orbital (HOMO) and the lowest-unoccupied mol­ecular orbital (LUMO) together with the energy gap between them (ΔE = E LUMOE HOMO) are shown in Fig. 8. Table 3 collates calculated energies, including those for E HOMO and E LUMO, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ).

Figure 8.

Figure 8

HOMO and LUMO of (I), and the energy band gap between them.

Table 3. Calculated energies and other parameters for (I).

Total Energy TE (eV) −31679.5273
E HOMO (eV) −5.8256
E LUMO (eV) −1.0718
Gap, ΔE (eV) 4.7547
Dipole moment, μ (Debye) 2.6382
Ionization potential, I (eV) 5.8256
Electron affinity, A 1.0718
Electronegativity, χ 3.4491
Hardness, η 2.3773
Electrophilicity index, ω 2.5021
Softness, σ 0.4206
Fraction of electron transferred, ΔN 0.7468

Database survey  

An eugenol 4-allyl-2-meth­oxy­phenol analogue has been reported by Ghosh et al. (2005). Others similar compounds have also been reported (Ogata et al., 2000; Yoo et al., 2005; Sadeghian et al., 2008; Ma et al. 2010).

Synthesis and crystallization  

To a solution of 4-allyl-2-meth­oxy-1-(prop-2-yn­yloxy) benzene (0.4 ml, 2.5 mmol) in anhydrous aceto­nitrile, 1-azido-4-meth­oxy­benzene (0.30 ml, 2.5 mmol) and 10 mg copper (I) iodide (CuI) were added. The mixture was refluxed for 2 h. After cooling, the reaction mixture was extracted three times with di­chloro­methane. The organic phase was dried with sodium sulfate and purified by column chromatography on silica gel, eluent hexa­ne–ethyl acetate (v/v = 80/20). Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 88%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atoms were located in a difference-Fourier map and were refined freely.

Table 4. Experimental details.

Crystal data
Chemical formula C20H21N3O3
M r 351.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 16.212 (3), 5.9584 (12), 19.450 (4)
β (°) 110.537 (3)
V3) 1759.5 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.38 × 0.33 × 0.32
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.88, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 32548, 4788, 3978
R int 0.027
(sin θ/λ)max−1) 0.689
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.132, 1.09
No. of reflections 4788
No. of parameters 319
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.54, −0.22

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) andpublCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020006994/wm5559sup1.cif

e-76-00962-sup1.cif (998.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006994/wm5559Isup2.hkl

e-76-00962-Isup2.hkl (381.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006994/wm5559Isup3.cdx

CCDC reference: 2005277

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C20H21N3O3 F(000) = 744
Mr = 351.40 Dx = 1.327 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.212 (3) Å Cell parameters from 9905 reflections
b = 5.9584 (12) Å θ = 2.2–29.3°
c = 19.450 (4) Å µ = 0.09 mm1
β = 110.537 (3)° T = 150 K
V = 1759.5 (6) Å3 Block, colourless
Z = 4 0.38 × 0.33 × 0.32 mm

Data collection

Bruker SMART APEX CCD diffractometer 4788 independent reflections
Radiation source: fine-focus sealed tube 3978 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 8.3333 pixels mm-1 θmax = 29.3°, θmin = 2.2°
φ and ω scans h = −22→21
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −8→8
Tmin = 0.88, Tmax = 0.97 l = −26→26
32548 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.132 All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.1761P] where P = (Fo2 + 2Fc2)/3
4788 reflections (Δ/σ)max < 0.001
319 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22952 (5) −0.13314 (13) 0.17036 (4) 0.02658 (18)
O2 0.13208 (6) 0.21761 (14) 0.12923 (5) 0.0343 (2)
O3 0.45455 (5) 0.16414 (14) 0.66870 (4) 0.03039 (19)
N1 0.35850 (6) −0.22912 (14) 0.39234 (4) 0.02175 (18)
N2 0.36971 (7) −0.45263 (15) 0.38817 (5) 0.0295 (2)
N3 0.34449 (6) −0.50475 (15) 0.31817 (5) 0.0293 (2)
C1 0.19702 (6) −0.09553 (18) 0.09610 (5) 0.0237 (2)
C2 0.14239 (7) 0.09424 (18) 0.07352 (6) 0.0253 (2)
C3 0.10348 (7) 0.14141 (19) −0.00049 (6) 0.0298 (2)
H3 0.0643 (10) 0.270 (3) −0.0155 (8) 0.039 (4)*
C4 0.11724 (7) 0.0034 (2) −0.05366 (6) 0.0314 (2)
C5 0.17275 (8) −0.1789 (2) −0.03076 (6) 0.0331 (3)
H5 0.1821 (11) −0.278 (3) −0.0671 (9) 0.043 (4)*
C6 0.21292 (7) −0.2286 (2) 0.04393 (6) 0.0290 (2)
H6 0.2500 (9) −0.359 (2) 0.0595 (8) 0.031 (3)*
C7 0.07032 (8) 0.0524 (3) −0.13467 (7) 0.0394 (3)
H7A 0.0142 (12) 0.144 (3) −0.1426 (10) 0.051 (5)*
H7B 0.0508 (15) −0.099 (4) −0.1622 (13) 0.086 (7)*
C8 0.12580 (9) 0.1689 (3) −0.17069 (7) 0.0451 (3)
H8 0.1781 (14) 0.088 (3) −0.1728 (11) 0.066 (5)*
C9 0.10758 (12) 0.3641 (4) −0.20373 (8) 0.0597 (5)
H9 0.0469 (18) 0.449 (4) −0.2068 (14) 0.099 (8)*
H9B 0.1442 (14) 0.434 (4) −0.2293 (12) 0.071 (6)*
C10 0.28746 (7) −0.31981 (18) 0.19593 (6) 0.0249 (2)
H10A 0.2564 (9) −0.465 (2) 0.1772 (8) 0.028 (3)*
H10B 0.3377 (9) −0.304 (2) 0.1801 (7) 0.026 (3)*
C11 0.31793 (6) −0.31470 (17) 0.27769 (6) 0.0230 (2)
C12 0.32669 (7) −0.13692 (17) 0.32445 (6) 0.0232 (2)
H12 0.3179 (9) 0.025 (2) 0.3173 (8) 0.031 (3)*
C13 0.38036 (6) −0.12328 (16) 0.46256 (5) 0.0210 (2)
C14 0.44278 (7) −0.22392 (18) 0.52340 (6) 0.0246 (2)
H14 0.4712 (9) −0.363 (2) 0.5174 (8) 0.029 (3)*
C15 0.46548 (7) −0.12254 (18) 0.59111 (6) 0.0249 (2)
H15 0.5101 (11) −0.194 (3) 0.6325 (9) 0.040 (4)*
C16 0.42651 (6) 0.08019 (17) 0.59909 (5) 0.0226 (2)
C17 0.36412 (7) 0.17993 (17) 0.53822 (6) 0.0240 (2)
H17 0.3362 (10) 0.328 (3) 0.5429 (8) 0.039 (4)*
C18 0.34120 (7) 0.07693 (17) 0.46974 (5) 0.0232 (2)
H18 0.2975 (8) 0.148 (2) 0.4265 (7) 0.025 (3)*
C19 0.41329 (10) 0.3629 (2) 0.68101 (7) 0.0373 (3)
H19A 0.3554 (13) 0.341 (3) 0.6731 (10) 0.050 (5)*
H19B 0.4447 (11) 0.399 (3) 0.7326 (10) 0.047 (4)*
H19C 0.4223 (12) 0.480 (3) 0.6507 (10) 0.056 (5)*
C20 0.07124 (9) 0.3989 (2) 0.10918 (8) 0.0374 (3)
H20A 0.0124 (13) 0.347 (3) 0.0825 (11) 0.060 (5)*
H20B 0.0740 (10) 0.471 (3) 0.1585 (10) 0.047 (4)*
H20C 0.0901 (10) 0.514 (3) 0.0820 (9) 0.046 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0318 (4) 0.0271 (4) 0.0177 (4) 0.0090 (3) 0.0046 (3) 0.0019 (3)
O2 0.0408 (5) 0.0298 (4) 0.0294 (4) 0.0122 (3) 0.0088 (3) 0.0000 (3)
O3 0.0365 (4) 0.0303 (4) 0.0194 (4) 0.0041 (3) 0.0036 (3) −0.0023 (3)
N1 0.0260 (4) 0.0191 (4) 0.0178 (4) 0.0022 (3) 0.0048 (3) 0.0024 (3)
N2 0.0424 (5) 0.0192 (4) 0.0227 (4) 0.0025 (4) 0.0063 (4) 0.0018 (3)
N3 0.0394 (5) 0.0216 (4) 0.0222 (4) 0.0017 (4) 0.0051 (4) 0.0006 (3)
C1 0.0232 (4) 0.0261 (5) 0.0187 (5) 0.0007 (4) 0.0035 (3) 0.0012 (4)
C2 0.0241 (5) 0.0244 (5) 0.0251 (5) 0.0012 (4) 0.0057 (4) 0.0009 (4)
C3 0.0269 (5) 0.0297 (5) 0.0272 (5) 0.0027 (4) 0.0025 (4) 0.0060 (4)
C4 0.0275 (5) 0.0396 (6) 0.0217 (5) −0.0023 (4) 0.0018 (4) 0.0041 (4)
C5 0.0338 (6) 0.0409 (6) 0.0209 (5) 0.0036 (5) 0.0051 (4) −0.0023 (5)
C6 0.0289 (5) 0.0317 (5) 0.0229 (5) 0.0057 (4) 0.0045 (4) −0.0008 (4)
C7 0.0349 (6) 0.0502 (8) 0.0241 (6) −0.0033 (5) −0.0010 (4) 0.0065 (5)
C8 0.0337 (6) 0.0741 (10) 0.0234 (6) 0.0000 (6) 0.0047 (5) 0.0015 (6)
C9 0.0578 (9) 0.0807 (12) 0.0296 (7) −0.0256 (9) 0.0014 (6) 0.0125 (7)
C10 0.0273 (5) 0.0240 (5) 0.0199 (5) 0.0057 (4) 0.0040 (4) 0.0003 (4)
C11 0.0238 (4) 0.0222 (5) 0.0207 (5) 0.0020 (3) 0.0051 (4) 0.0015 (4)
C12 0.0267 (5) 0.0221 (5) 0.0189 (5) 0.0035 (4) 0.0055 (4) 0.0036 (4)
C13 0.0240 (4) 0.0206 (4) 0.0170 (4) −0.0005 (3) 0.0055 (3) 0.0017 (3)
C14 0.0270 (5) 0.0238 (5) 0.0217 (5) 0.0059 (4) 0.0070 (4) 0.0035 (4)
C15 0.0258 (5) 0.0264 (5) 0.0196 (5) 0.0043 (4) 0.0044 (4) 0.0042 (4)
C16 0.0247 (4) 0.0234 (5) 0.0185 (4) −0.0017 (3) 0.0061 (3) 0.0005 (4)
C17 0.0287 (5) 0.0194 (4) 0.0225 (5) 0.0020 (4) 0.0074 (4) 0.0016 (4)
C18 0.0263 (5) 0.0206 (4) 0.0197 (5) 0.0024 (3) 0.0045 (4) 0.0042 (4)
C19 0.0553 (8) 0.0269 (6) 0.0247 (6) 0.0042 (5) 0.0079 (5) −0.0040 (4)
C20 0.0363 (6) 0.0290 (6) 0.0471 (7) 0.0098 (5) 0.0148 (5) 0.0040 (5)

Geometric parameters (Å, º)

O1—C1 1.3712 (12) C8—H8 0.99 (2)
O1—C10 1.4279 (12) C9—H9 1.09 (3)
O2—C2 1.3673 (13) C9—H9B 0.99 (2)
O2—C20 1.4220 (14) C10—C11 1.4908 (14)
O3—C16 1.3631 (12) C10—H10A 1.002 (14)
O3—C19 1.4213 (15) C10—H10B 0.971 (14)
N1—N2 1.3504 (13) C11—C12 1.3708 (15)
N1—C12 1.3541 (13) C12—H12 0.978 (15)
N1—C13 1.4315 (13) C13—C18 1.3812 (14)
N2—N3 1.3142 (13) C13—C14 1.3942 (14)
N3—C11 1.3600 (13) C14—C15 1.3764 (15)
C1—C6 1.3814 (15) C14—H14 0.975 (14)
C1—C2 1.4082 (14) C15—C16 1.3969 (15)
C2—C3 1.3827 (15) C15—H15 0.970 (17)
C3—C4 1.3991 (17) C16—C17 1.3921 (14)
C3—H3 0.974 (16) C17—C18 1.3935 (14)
C4—C5 1.3808 (17) C17—H17 1.010 (16)
C4—C7 1.5185 (16) C18—H18 0.984 (13)
C5—C6 1.3995 (16) C19—H19A 0.905 (19)
C5—H5 0.972 (17) C19—H19B 0.977 (18)
C6—H6 0.964 (15) C19—H19C 0.956 (19)
C7—C8 1.491 (2) C20—H20A 0.96 (2)
C7—H7A 1.025 (18) C20—H20B 1.037 (18)
C7—H7B 1.04 (2) C20—H20C 0.979 (17)
C8—C9 1.312 (2)
O1···O2 2.5723 (13) C18···H12 2.871 (15)
O1···H12 2.870 (14) C19···H17 2.543 (15)
O2···H10Ai 2.681 (14) C19···O1vi 3.3285 (19)
O3···H19Bii 2.579 (18) C20···H3 2.508 (15)
N2···C18iii 3.3320 (15) C20···H10Ai 2.938 (15)
N2···H14 2.532 (15) H3···H7A 2.43 (2)
N2···H18iii 2.864 (13) H3···H20A 2.38 (3)
N2···H14iv 2.812 (15) H3···H20C 2.31 (2)
N3···H12iii 2.834 (12) H5···H7B 2.52 (3)
N3···H15iv 2.848 (18) H6···H10A 2.34 (2)
C12···C15v 3.5436 (18) H6···H10B 2.30 (2)
C13···C15v 3.3633 (17) H6···C17ix 2.791 (14)
C13···C14v 3.4679 (17) H6···C18ix 2.955 (15)
C14···C14v 3.5463 (18) H7A···H9 2.37 (3)
C14···C18v 3.5668 (18) H7B···H9x 2.50 (4)
C19···C1vi 3.589 (2) H8···N3ix 2.808 (1)
C19···C10vi 3.4746 (19) H9···H20Bxi 2.50 (3)
C1···H20Ciii 2.856 (18) H9B···O2xii 2.837 (5)
C3···H20C 2.792 (17) H10B···C16ix 2.976 (14)
C3···H20A 2.82 (2) H10B···C19xii 2.897 (13)
C4···H20Avii 2.88 (2) H12···H18 2.377 (19)
C5···H20Avii 2.98 (2) H14···H14iv 2.107 (19)
C6···H20Ciii 2.811 (17) H15···H19Ciii 2.51 (3)
C6···H10A 2.814 (4) H15···H19Bii 2.53 (2)
C6···H10B 2.748 (13) H17···H19A 2.44 (2)
C9···H7Bviii 2.96 (2) H17···H19C 2.26 (2)
C10···H6 2.517 (15) H18···C8vi 2.970 (13)
C12···H18 2.776 (13) H19A···O1vi 2.67 (2)
C15···H19Ciii 2.830 (18) H19A···C1vi 2.91 (2)
C17···H19C 2.725 (18) H19C···H10Bvi 2.55 (2)
C17···H19A 2.843 (19)
C1—O1—C10 117.19 (8) C11—C10—H10A 110.0 (8)
C2—O2—C20 117.19 (10) O1—C10—H10B 109.5 (8)
C16—O3—C19 117.42 (9) C11—C10—H10B 109.6 (8)
N2—N1—C12 110.77 (8) H10A—C10—H10B 109.9 (11)
N2—N1—C13 119.89 (8) N3—C11—C12 108.73 (9)
C12—N1—C13 129.33 (9) N3—C11—C10 121.31 (9)
N3—N2—N1 107.21 (8) C12—C11—C10 129.94 (9)
N2—N3—C11 108.86 (9) N1—C12—C11 104.42 (9)
O1—C1—C6 125.33 (9) N1—C12—H12 121.7 (8)
O1—C1—C2 115.27 (9) C11—C12—H12 133.8 (8)
C6—C1—C2 119.40 (10) C18—C13—C14 120.55 (9)
O2—C2—C3 125.30 (10) C18—C13—N1 120.54 (8)
O2—C2—C1 115.02 (9) C14—C13—N1 118.91 (9)
C3—C2—C1 119.68 (10) C15—C14—C13 119.62 (10)
C2—C3—C4 121.15 (10) C15—C14—H14 120.6 (8)
C2—C3—H3 118.9 (9) C13—C14—H14 119.7 (8)
C4—C3—H3 119.9 (9) C14—C15—C16 120.42 (9)
C5—C4—C3 118.60 (10) C14—C15—H15 118.3 (9)
C5—C4—C7 121.24 (11) C16—C15—H15 121.3 (9)
C3—C4—C7 120.15 (11) O3—C16—C17 125.29 (9)
C4—C5—C6 120.98 (11) O3—C16—C15 114.93 (9)
C4—C5—H5 119.5 (10) C17—C16—C15 119.78 (9)
C6—C5—H5 119.5 (10) C16—C17—C18 119.70 (9)
C1—C6—C5 120.15 (10) C16—C17—H17 120.7 (9)
C1—C6—H6 119.3 (9) C18—C17—H17 119.6 (9)
C5—C6—H6 120.5 (9) C13—C18—C17 119.94 (9)
C8—C7—C4 114.32 (10) C13—C18—H18 120.2 (8)
C8—C7—H7A 109.4 (10) C17—C18—H18 119.8 (8)
C4—C7—H7A 110.7 (10) O3—C19—H19A 111.9 (11)
C8—C7—H7B 106.6 (13) O3—C19—H19B 104.5 (10)
C4—C7—H7B 108.6 (13) H19A—C19—H19B 110.0 (15)
H7A—C7—H7B 106.9 (16) O3—C19—H19C 108.7 (11)
C9—C8—C7 125.01 (16) H19A—C19—H19C 111.8 (15)
C9—C8—H8 117.5 (12) H19B—C19—H19C 109.6 (15)
C7—C8—H8 117.4 (12) O2—C20—H20A 111.5 (11)
C8—C9—H9 118.7 (14) O2—C20—H20B 105.0 (9)
C8—C9—H9B 123.1 (13) H20A—C20—H20B 110.1 (14)
H9—C9—H9B 118.0 (18) O2—C20—H20C 111.3 (9)
O1—C10—C11 106.67 (8) H20A—C20—H20C 111.8 (15)
O1—C10—H10A 111.1 (8) H20B—C20—H20C 106.8 (14)
C12—N1—N2—N3 −0.64 (12) N2—N3—C11—C12 −0.22 (12)
C13—N1—N2—N3 179.75 (8) N2—N3—C11—C10 178.55 (9)
N1—N2—N3—C11 0.52 (12) O1—C10—C11—N3 154.23 (9)
C10—O1—C1—C6 2.77 (15) O1—C10—C11—C12 −27.29 (15)
C10—O1—C1—C2 −178.10 (9) N2—N1—C12—C11 0.49 (11)
C20—O2—C2—C3 5.04 (16) C13—N1—C12—C11 −179.94 (9)
C20—O2—C2—C1 −174.39 (10) N3—C11—C12—N1 −0.16 (11)
O1—C1—C2—O2 2.06 (14) C10—C11—C12—N1 −178.80 (10)
C6—C1—C2—O2 −178.75 (10) N2—N1—C13—C18 −155.77 (10)
O1—C1—C2—C3 −177.40 (9) C12—N1—C13—C18 24.69 (15)
C6—C1—C2—C3 1.79 (16) N2—N1—C13—C14 25.16 (14)
O2—C2—C3—C4 −179.27 (10) C12—N1—C13—C14 −154.37 (10)
C1—C2—C3—C4 0.13 (16) C18—C13—C14—C15 −0.03 (15)
C2—C3—C4—C5 −1.79 (17) N1—C13—C14—C15 179.04 (9)
C2—C3—C4—C7 177.07 (10) C13—C14—C15—C16 −0.10 (16)
C3—C4—C5—C6 1.55 (18) C19—O3—C16—C17 3.73 (16)
C7—C4—C5—C6 −177.30 (11) C19—O3—C16—C15 −176.25 (10)
O1—C1—C6—C5 177.07 (10) C14—C15—C16—O3 −179.83 (9)
C2—C1—C6—C5 −2.03 (17) C14—C15—C16—C17 0.19 (15)
C4—C5—C6—C1 0.35 (18) O3—C16—C17—C18 179.87 (9)
C5—C4—C7—C8 −80.52 (17) C15—C16—C17—C18 −0.16 (15)
C3—C4—C7—C8 100.66 (15) C14—C13—C18—C17 0.06 (15)
C4—C7—C8—C9 −121.28 (16) N1—C13—C18—C17 −178.99 (9)
C1—O1—C10—C11 176.23 (8) C16—C17—C18—C13 0.03 (15)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+1, −y−1, −z+1; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z+1/2; (vii) −x, −y, −z; (viii) −x, y+1/2, −z−1/2; (ix) x, −y−1/2, z−1/2; (x) −x, y−1/2, −z−1/2; (xi) −x, −y+1, −z; (xii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the benzene ring C (C13–C18).

D—H···A D—H H···A D···A D—H···A
C6—H6···Cg3xiii 0.964 (15) 2.825 (15) 3.5168 (15) 129.4 (11)
C19—H19B···O3xiv 0.977 (18) 2.578 (18) 3.4587 (16) 150.0 (14)

Symmetry codes: (xiii) x, −y−3/2, z−3/2; (xiv) −x+1, y+1/2, −z+3/2.

Funding Statement

This work was funded by Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.

References

  1. Bankowska, E., Balzarini, J., Głowacka, I. E. & Wróblewski, A. E. (2014). Monatsh. Chem. 145, 663–673. [DOI] [PMC free article] [PubMed]
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Benencia, F. & Courreges, M. C. (2000). Phytother. Res. 14, 495–500. [DOI] [PubMed]
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chang, H. T. & Miau, R. H. (1984). Fl. Reipubl. Popularis Sin. 53, 28–135.
  7. Daniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani-Amado, C. A. & Cuman, R. K. N. (2009). Rev. Bras. Farmacogn. 19, 212–217.
  8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US
  9. Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812–5819. [DOI] [PubMed]
  10. Glowacka, I. E., Grzonkowski, P., Lisiecki, P. & Kalinowski, L. (2019). Arch. Pharm. 352, 1–4. [DOI] [PubMed]
  11. Guenette, S. A., Helie, P., Beaudry, F. & Vachon, P. (2007). J. Vet. Anesth. Analg. 34, 164–170. [DOI] [PubMed]
  12. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  13. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  14. Hussain, A., Brahmbhatt, K., Priyani, A., Ahmed, M., Rizvi, T. A. & Sharma, C. (2011). Cancer Biother. Radiopharm. 26, 519–527. [DOI] [PubMed]
  15. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Ma, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946. [DOI] [PMC free article] [PubMed]
  18. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  19. Mahboub, R. & Memmou, F. (2015). Nat. Prod. Res. 29, 966–971. [DOI] [PubMed]
  20. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  21. Mnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N. & Elfeki, A. (2013). Arch. Physiol. & Biochem. 119, 225–233. [DOI] [PubMed]
  22. Ogata, M., Hoshi, M., Urano, S. & Endo, T. (2000). Chem. Pharm. Bull. 48, 1467–1469. [DOI] [PubMed]
  23. Pathirana, H. N. K. S., Wimalasena, S. H. M. P., De Silva, B. C. J., Hossain, S., Gang-Joon & Heo (2019). Vet. Res. 56, 31–38.
  24. Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222. [DOI] [PubMed]
  25. Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890–901. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  29. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  30. Taia, A., Essaber, M., Hökelek, T., Aatif, A., Mague, J. T., Alsalme, A. & Al-Zaqri, N. (2020). Acta Cryst. E76, 344–348. [DOI] [PMC free article] [PubMed]
  31. Teixeira, R. R., Gazolla, P. A. R., da Silva, A. M., Borsodi, M. P. G., Bergmann, B. R., Ferreira, R. S., Vaz, B. G., Vasconcelos, G. A. & Lima, W. P. (2018). Eur. J. Med. Chem. 146, 274–286. [DOI] [PubMed]
  32. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  33. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  34. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  35. Ueda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Korehisa Maza, P., Prado Dias Filho, B., Aparício Garcia Cortez, D., Alviano, D. S., Rosa, M. S., Lopes, A. H., Alviano, C. S. & Nakamura, C. V. (2006). Parasitol. Int. 55, 99–105. [DOI] [PubMed]
  36. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  37. Wang, C., Zhang, J., Chen, H., Fan, Y. & Shi, Z. (2010). Trop. Plant. Pathol. 35, 137–143.
  38. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  39. Yoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H. & Lee, K. T. (2005). Cancer Lett. 225, 41–52. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020006994/wm5559sup1.cif

e-76-00962-sup1.cif (998.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006994/wm5559Isup2.hkl

e-76-00962-Isup2.hkl (381.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006994/wm5559Isup3.cdx

CCDC reference: 2005277

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES