In the crystal structure, C—HMthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds form corrugated layers parallel to (100) that are connected along the a axis by C—H⋯π(ring) and π–π stacking interactions.
Keywords: crystal structure, triazole, hydrogen bonding, C—H⋯π(ring) interaction, π-stacking
Abstract
In the title molecule, C20H21N3O3, the allyl substituent is rotated out of the plane of its attached phenyl ring [torsion angle 100.66 (15)°]. In the crystal, C—HMthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds lead to the formation of (100) layers that are connected into a three-dimensional network by C—H⋯π(ring) interactions, together with π–π stacking interactions [centroid-to-centroid distance = 3.7318 (10) Å] between parallel phenyl rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%) and H⋯C/C⋯H (23.3%) interactions. Computational chemistry reveals that the C—HMthphn⋯OMthphn hydrogen bond energy is 47.1 kJ mol−1. The theoretical structure, optimized by density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined molecular structure. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Chemical context
Clove essential oil is extracted from cloves, which come from a tree belonging to the Myrtaceae family (Chang & Miau, 1984 ▸), originating from the Moluccas in Indonesia. Eugenol (C10H12O2) is the major constituent of clove essential oil with a percentage of 75–90% (Patra & Saxena, 2010 ▸). Eugenol is a molecule that belongs to the family of phenylpropenes; its aromatic ring, an alcohol function and an allylic entity explain its high reactivity. Several studies have revealed various biological activities for eugenol, including antiviral (Benencia & Courreges, 2000 ▸), anti-leishmania (Ueda-Nakamura et al., 2006 ▸), antibacterial (Pathirana et al., 2019 ▸), antifungal (Wang et al., 2010 ▸), anti-inflammatory (Daniel et al., 2009 ▸), antioxidant (Mahboub & Memmou., 2015 ▸), anesthetic analgesic (Guenette et al., 2007 ▸), anticancer (Hussain et al., 2011 ▸) or anti-diabetes (Mnafgui et al., 2013 ▸) properties. On the other hand, 1,2,3-triazoles are known by their diverse biological activities being used as antileishmania (Teixeira et al., 2018 ▸), antimicrobial (Glowacka et al., 2019 ▸) or antiviral (Bankowska, et al., 2014 ▸) agents. In this context, we have synthesized the title compound, (I), through cycloaddition reaction of 1-azido-4-methoxybenzene with 4-allyl-2-methoxy-1-(prop-2-ynyloxy) benzene; the latter was previously prepared by O-alkylation of eugenol by propargile (Taia et al., 2020 ▸).
We report herein the synthesis, molecular and crystal structures of (I), along with the results of a Hirshfeld surface analysis, an interaction energy calculation, and a density functional theory (DFT) study.
Structural commentary
The title molecule is non-planar (Fig. 1 ▸), with the A (C1–C6) and C (C13–C18) benzene rings inclined to the B (C11/C12/N1–N3) triazole ring by 25.76 (4) and 24.97 (4)°, respectively. The allyl group is rotated out of the plane of the A ring as indicated by the C3—C4—C7—C8 torsion angle of 100.66 (15)°. Both methoxy groups are virtually coplanar with their attached rings with C3—C2—O2—C20 and C17—C16—O3—C19 torsion angles, respectively, of 5.04 (16) and 3.73 (16)°. There are no unusual bond lengths or bond angles in the molecule.
Figure 1.
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features
In the crystal structure, (100) layers are formed by C—HMthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds (Table 1 ▸, Fig. 2 ▸). These are stacked along the a axis through C6—H6⋯Cg3(x, − − y, −
+ z) interactions (Table 1 ▸) as well as through π—-π stacking interactions between inversion-related C rings [Cg3⋯Cg3(1 − x, −y, 1 − z] with a centroid-to-centroid distance of 3.7318 (10) Å (Fig. 3 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
Cg3 is the centroid of the benzene ring C (C13–C18).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C6—H6⋯Cg3xiii | 0.964 (15) | 2.825 (15) | 3.5168 (15) | 129.4 (11) |
C19—H19B⋯O3xiv | 0.977 (18) | 2.578 (18) | 3.4587 (16) | 150.0 (14) |
Symmetry codes: (xiii) ; (xiv)
.
Figure 2.
A portion of one layer viewed along the a axis, with C—HMthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds depicted by dashed lines.
Figure 3.
Projection of the crystal structure along the b axis. C—HMthphn⋯OMthphn (Mthphn = methoxyphenyl) hydrogen bonds and π–π stacking and C—H⋯π(ring) interactions are depicted, respectively, by black, orange and green dashed lines.
Hirshfeld surface analysis
In order to visualize and quantify the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017 ▸). In the HS plotted over d norm (Fig. 4 ▸), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016 ▸). The bright-red spots appearing near hydrogen atoms (H6 and H19B), and near O3 indicate their roles in hydrogen bonding; they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on the HS mapped over electrostatic potential (Spackman et al., 2008 ▸; Jayatilaka et al., 2005 ▸), as shown in Fig. 5 ▸. The HS plotted over the shape-index (Fig. 6 ▸) clearly reveals π–π stacking interactions (visualized as red and blue areas) in (I), as discussed above.
Figure 4.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range of −0.2587 to 1.3813 a.u..
Figure 5.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u..
Figure 6.
Hirshfeld surface of the title compound plotted over shape-index.
The overall two-dimensional fingerprint plot, Fig. 7 ▸ a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007 ▸) are illustrated in Fig. 7 ▸ b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 48.7% to the overall crystal packing, which is reflected in Fig. 7 ▸ b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at d e = d i = 0.95 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings of H⋯C/C⋯H contacts (23.3% contribution to the HS, Fig. 7 ▸ c) has the tips at d e + d i = 2.68 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (12.3% contribution, Fig. 7 ▸ d) has a distribution of points with small and slightly larger tips at d e + d i = 2.72 and 2.70 Å, respectively. The H⋯O/O⋯H contacts (Fig. 7 ▸ e, 11.3% contribution) have a symmetric distribution of points with the tips at d e + d i = 2.48 Å. The C⋯C contacts, Fig. 7 ▸ f, have an arrow-shaped distribution of points with the tip at d e = d i = 1.68 Å. Finally, N⋯C/C⋯N (Fig. 7 ▸ g), O⋯C/C⋯O (Fig. 7 ▸ h) and O⋯N/N⋯O (Fig. 7 ▸ i) interactions contribute only 1.0%, 0.9% and 0.6%, respectively, to the overall HS and thus have minor significance.
Figure 7.
Two-dimensional fingerprint plots for (I), showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) N⋯C/C⋯N, (h) O⋯C/C⋯O and (i) O⋯N/N⋯O interactions. d i and d e refer to the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Interaction energy calculations
The intermolecular interaction energies were calculated using a CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017 ▸), where a cluster of molecules was generated within a radius of 3.8 Å by default (Turner et al., 2014 ▸). The total intermolecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015 ▸) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017 ▸). In (I), the relevant C19—H19B⋯O3 hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −20.6 (E ele), −5.7 (E pol), −49.3 (E dis), 35.4 (E rep) and −47.1 (E tot).
DFT calculations
Density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN 09 (Frisch et al., 2009 ▸) was used to optimize the molecular structure of (I) in the gas phase. Theoretical and experimental results in terms of bond lengths and angles are in good agreement (Table 2 ▸).
Table 2. Comparison of selected bond length and angles (Å, °) between exerimental data (X-ray) and theory [B3LYP/6–311G(d,p)].
Bonds/angles | X-ray | B3LYP/6–311G(d,p) |
---|---|---|
O1—C1 | 1.3712 (12) | 1.39510 |
O1—C10 | 1.4279 (12) | 1.45830 |
O2—C2 | 1.3673 (13) | 1.39818 |
O2—C20 | 1.4220 (14) | 1.46747 |
O3—C16 | 1.3631 (12) | 1.38746 |
O3—C19 | 1.4213 (15) | 1.45298 |
N1—N2 | 1.3504 (13) | 1.39727 |
N1—C12 | 1.3541 (13) | 1.36977 |
N1—C13 | 1.4315 (13) | 1.42427 |
N2—N3 | 1.3142 (13) | 1.32619 |
N3—C11 | 1.3600 (13) | 1.38002 |
C8—C9 | 1.312 (2) | 1.33811 |
C1—O1—C10 | 117.19 (8) | 117.72628 |
C2—O2—C20 | 117.19 (10) | 117.20245 |
C16—O3—C19 | 117.42 (9) | 118.93805 |
N2—N1—C12 | 110.77 (8) | 110.09008 |
N2—N1—C13 | 119.89 (8) | 120.52180 |
C12—N1—C13 | 129.33 (9) | 129.38444 |
N3—N2—N1 | 107.21 (8) | 106.61104 |
N2—N3—C11 | 108.86 (9) | 109.15766 |
O1—C1—C6 | 125.33 (9) | 124.33053 |
The highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) together with the energy gap between them (ΔE = E LUMO – E HOMO) are shown in Fig. 8 ▸. Table 3 ▸ collates calculated energies, including those for E HOMO and E LUMO, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ).
Figure 8.
HOMO and LUMO of (I), and the energy band gap between them.
Table 3. Calculated energies and other parameters for (I).
Total Energy TE (eV) | −31679.5273 |
E HOMO (eV) | −5.8256 |
E LUMO (eV) | −1.0718 |
Gap, ΔE (eV) | 4.7547 |
Dipole moment, μ (Debye) | 2.6382 |
Ionization potential, I (eV) | 5.8256 |
Electron affinity, A | 1.0718 |
Electronegativity, χ | 3.4491 |
Hardness, η | 2.3773 |
Electrophilicity index, ω | 2.5021 |
Softness, σ | 0.4206 |
Fraction of electron transferred, ΔN | 0.7468 |
Database survey
An eugenol 4-allyl-2-methoxyphenol analogue has been reported by Ghosh et al. (2005 ▸). Others similar compounds have also been reported (Ogata et al., 2000 ▸; Yoo et al., 2005 ▸; Sadeghian et al., 2008 ▸; Ma et al. 2010 ▸).
Synthesis and crystallization
To a solution of 4-allyl-2-methoxy-1-(prop-2-ynyloxy) benzene (0.4 ml, 2.5 mmol) in anhydrous acetonitrile, 1-azido-4-methoxybenzene (0.30 ml, 2.5 mmol) and 10 mg copper (I) iodide (CuI) were added. The mixture was refluxed for 2 h. After cooling, the reaction mixture was extracted three times with dichloromethane. The organic phase was dried with sodium sulfate and purified by column chromatography on silica gel, eluent hexane–ethyl acetate (v/v = 80/20). Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 88%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. Hydrogen atoms were located in a difference-Fourier map and were refined freely.
Table 4. Experimental details.
Crystal data | |
Chemical formula | C20H21N3O3 |
M r | 351.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 16.212 (3), 5.9584 (12), 19.450 (4) |
β (°) | 110.537 (3) |
V (Å3) | 1759.5 (6) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 0.09 |
Crystal size (mm) | 0.38 × 0.33 × 0.32 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
T min, T max | 0.88, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32548, 4788, 3978 |
R int | 0.027 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.044, 0.132, 1.09 |
No. of reflections | 4788 |
No. of parameters | 319 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.54, −0.22 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020006994/wm5559sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006994/wm5559Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020006994/wm5559Isup3.cdx
CCDC reference: 2005277
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
C20H21N3O3 | F(000) = 744 |
Mr = 351.40 | Dx = 1.327 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.212 (3) Å | Cell parameters from 9905 reflections |
b = 5.9584 (12) Å | θ = 2.2–29.3° |
c = 19.450 (4) Å | µ = 0.09 mm−1 |
β = 110.537 (3)° | T = 150 K |
V = 1759.5 (6) Å3 | Block, colourless |
Z = 4 | 0.38 × 0.33 × 0.32 mm |
Data collection
Bruker SMART APEX CCD diffractometer | 4788 independent reflections |
Radiation source: fine-focus sealed tube | 3978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 2.2° |
φ and ω scans | h = −22→21 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.88, Tmax = 0.97 | l = −26→26 |
32548 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.132 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0858P)2 + 0.1761P] where P = (Fo2 + 2Fc2)/3 |
4788 reflections | (Δ/σ)max < 0.001 |
319 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Special details
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.22952 (5) | −0.13314 (13) | 0.17036 (4) | 0.02658 (18) | |
O2 | 0.13208 (6) | 0.21761 (14) | 0.12923 (5) | 0.0343 (2) | |
O3 | 0.45455 (5) | 0.16414 (14) | 0.66870 (4) | 0.03039 (19) | |
N1 | 0.35850 (6) | −0.22912 (14) | 0.39234 (4) | 0.02175 (18) | |
N2 | 0.36971 (7) | −0.45263 (15) | 0.38817 (5) | 0.0295 (2) | |
N3 | 0.34449 (6) | −0.50475 (15) | 0.31817 (5) | 0.0293 (2) | |
C1 | 0.19702 (6) | −0.09553 (18) | 0.09610 (5) | 0.0237 (2) | |
C2 | 0.14239 (7) | 0.09424 (18) | 0.07352 (6) | 0.0253 (2) | |
C3 | 0.10348 (7) | 0.14141 (19) | −0.00049 (6) | 0.0298 (2) | |
H3 | 0.0643 (10) | 0.270 (3) | −0.0155 (8) | 0.039 (4)* | |
C4 | 0.11724 (7) | 0.0034 (2) | −0.05366 (6) | 0.0314 (2) | |
C5 | 0.17275 (8) | −0.1789 (2) | −0.03076 (6) | 0.0331 (3) | |
H5 | 0.1821 (11) | −0.278 (3) | −0.0671 (9) | 0.043 (4)* | |
C6 | 0.21292 (7) | −0.2286 (2) | 0.04393 (6) | 0.0290 (2) | |
H6 | 0.2500 (9) | −0.359 (2) | 0.0595 (8) | 0.031 (3)* | |
C7 | 0.07032 (8) | 0.0524 (3) | −0.13467 (7) | 0.0394 (3) | |
H7A | 0.0142 (12) | 0.144 (3) | −0.1426 (10) | 0.051 (5)* | |
H7B | 0.0508 (15) | −0.099 (4) | −0.1622 (13) | 0.086 (7)* | |
C8 | 0.12580 (9) | 0.1689 (3) | −0.17069 (7) | 0.0451 (3) | |
H8 | 0.1781 (14) | 0.088 (3) | −0.1728 (11) | 0.066 (5)* | |
C9 | 0.10758 (12) | 0.3641 (4) | −0.20373 (8) | 0.0597 (5) | |
H9 | 0.0469 (18) | 0.449 (4) | −0.2068 (14) | 0.099 (8)* | |
H9B | 0.1442 (14) | 0.434 (4) | −0.2293 (12) | 0.071 (6)* | |
C10 | 0.28746 (7) | −0.31981 (18) | 0.19593 (6) | 0.0249 (2) | |
H10A | 0.2564 (9) | −0.465 (2) | 0.1772 (8) | 0.028 (3)* | |
H10B | 0.3377 (9) | −0.304 (2) | 0.1801 (7) | 0.026 (3)* | |
C11 | 0.31793 (6) | −0.31470 (17) | 0.27769 (6) | 0.0230 (2) | |
C12 | 0.32669 (7) | −0.13692 (17) | 0.32445 (6) | 0.0232 (2) | |
H12 | 0.3179 (9) | 0.025 (2) | 0.3173 (8) | 0.031 (3)* | |
C13 | 0.38036 (6) | −0.12328 (16) | 0.46256 (5) | 0.0210 (2) | |
C14 | 0.44278 (7) | −0.22392 (18) | 0.52340 (6) | 0.0246 (2) | |
H14 | 0.4712 (9) | −0.363 (2) | 0.5174 (8) | 0.029 (3)* | |
C15 | 0.46548 (7) | −0.12254 (18) | 0.59111 (6) | 0.0249 (2) | |
H15 | 0.5101 (11) | −0.194 (3) | 0.6325 (9) | 0.040 (4)* | |
C16 | 0.42651 (6) | 0.08019 (17) | 0.59909 (5) | 0.0226 (2) | |
C17 | 0.36412 (7) | 0.17993 (17) | 0.53822 (6) | 0.0240 (2) | |
H17 | 0.3362 (10) | 0.328 (3) | 0.5429 (8) | 0.039 (4)* | |
C18 | 0.34120 (7) | 0.07693 (17) | 0.46974 (5) | 0.0232 (2) | |
H18 | 0.2975 (8) | 0.148 (2) | 0.4265 (7) | 0.025 (3)* | |
C19 | 0.41329 (10) | 0.3629 (2) | 0.68101 (7) | 0.0373 (3) | |
H19A | 0.3554 (13) | 0.341 (3) | 0.6731 (10) | 0.050 (5)* | |
H19B | 0.4447 (11) | 0.399 (3) | 0.7326 (10) | 0.047 (4)* | |
H19C | 0.4223 (12) | 0.480 (3) | 0.6507 (10) | 0.056 (5)* | |
C20 | 0.07124 (9) | 0.3989 (2) | 0.10918 (8) | 0.0374 (3) | |
H20A | 0.0124 (13) | 0.347 (3) | 0.0825 (11) | 0.060 (5)* | |
H20B | 0.0740 (10) | 0.471 (3) | 0.1585 (10) | 0.047 (4)* | |
H20C | 0.0901 (10) | 0.514 (3) | 0.0820 (9) | 0.046 (4)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0318 (4) | 0.0271 (4) | 0.0177 (4) | 0.0090 (3) | 0.0046 (3) | 0.0019 (3) |
O2 | 0.0408 (5) | 0.0298 (4) | 0.0294 (4) | 0.0122 (3) | 0.0088 (3) | 0.0000 (3) |
O3 | 0.0365 (4) | 0.0303 (4) | 0.0194 (4) | 0.0041 (3) | 0.0036 (3) | −0.0023 (3) |
N1 | 0.0260 (4) | 0.0191 (4) | 0.0178 (4) | 0.0022 (3) | 0.0048 (3) | 0.0024 (3) |
N2 | 0.0424 (5) | 0.0192 (4) | 0.0227 (4) | 0.0025 (4) | 0.0063 (4) | 0.0018 (3) |
N3 | 0.0394 (5) | 0.0216 (4) | 0.0222 (4) | 0.0017 (4) | 0.0051 (4) | 0.0006 (3) |
C1 | 0.0232 (4) | 0.0261 (5) | 0.0187 (5) | 0.0007 (4) | 0.0035 (3) | 0.0012 (4) |
C2 | 0.0241 (5) | 0.0244 (5) | 0.0251 (5) | 0.0012 (4) | 0.0057 (4) | 0.0009 (4) |
C3 | 0.0269 (5) | 0.0297 (5) | 0.0272 (5) | 0.0027 (4) | 0.0025 (4) | 0.0060 (4) |
C4 | 0.0275 (5) | 0.0396 (6) | 0.0217 (5) | −0.0023 (4) | 0.0018 (4) | 0.0041 (4) |
C5 | 0.0338 (6) | 0.0409 (6) | 0.0209 (5) | 0.0036 (5) | 0.0051 (4) | −0.0023 (5) |
C6 | 0.0289 (5) | 0.0317 (5) | 0.0229 (5) | 0.0057 (4) | 0.0045 (4) | −0.0008 (4) |
C7 | 0.0349 (6) | 0.0502 (8) | 0.0241 (6) | −0.0033 (5) | −0.0010 (4) | 0.0065 (5) |
C8 | 0.0337 (6) | 0.0741 (10) | 0.0234 (6) | 0.0000 (6) | 0.0047 (5) | 0.0015 (6) |
C9 | 0.0578 (9) | 0.0807 (12) | 0.0296 (7) | −0.0256 (9) | 0.0014 (6) | 0.0125 (7) |
C10 | 0.0273 (5) | 0.0240 (5) | 0.0199 (5) | 0.0057 (4) | 0.0040 (4) | 0.0003 (4) |
C11 | 0.0238 (4) | 0.0222 (5) | 0.0207 (5) | 0.0020 (3) | 0.0051 (4) | 0.0015 (4) |
C12 | 0.0267 (5) | 0.0221 (5) | 0.0189 (5) | 0.0035 (4) | 0.0055 (4) | 0.0036 (4) |
C13 | 0.0240 (4) | 0.0206 (4) | 0.0170 (4) | −0.0005 (3) | 0.0055 (3) | 0.0017 (3) |
C14 | 0.0270 (5) | 0.0238 (5) | 0.0217 (5) | 0.0059 (4) | 0.0070 (4) | 0.0035 (4) |
C15 | 0.0258 (5) | 0.0264 (5) | 0.0196 (5) | 0.0043 (4) | 0.0044 (4) | 0.0042 (4) |
C16 | 0.0247 (4) | 0.0234 (5) | 0.0185 (4) | −0.0017 (3) | 0.0061 (3) | 0.0005 (4) |
C17 | 0.0287 (5) | 0.0194 (4) | 0.0225 (5) | 0.0020 (4) | 0.0074 (4) | 0.0016 (4) |
C18 | 0.0263 (5) | 0.0206 (4) | 0.0197 (5) | 0.0024 (3) | 0.0045 (4) | 0.0042 (4) |
C19 | 0.0553 (8) | 0.0269 (6) | 0.0247 (6) | 0.0042 (5) | 0.0079 (5) | −0.0040 (4) |
C20 | 0.0363 (6) | 0.0290 (6) | 0.0471 (7) | 0.0098 (5) | 0.0148 (5) | 0.0040 (5) |
Geometric parameters (Å, º)
O1—C1 | 1.3712 (12) | C8—H8 | 0.99 (2) |
O1—C10 | 1.4279 (12) | C9—H9 | 1.09 (3) |
O2—C2 | 1.3673 (13) | C9—H9B | 0.99 (2) |
O2—C20 | 1.4220 (14) | C10—C11 | 1.4908 (14) |
O3—C16 | 1.3631 (12) | C10—H10A | 1.002 (14) |
O3—C19 | 1.4213 (15) | C10—H10B | 0.971 (14) |
N1—N2 | 1.3504 (13) | C11—C12 | 1.3708 (15) |
N1—C12 | 1.3541 (13) | C12—H12 | 0.978 (15) |
N1—C13 | 1.4315 (13) | C13—C18 | 1.3812 (14) |
N2—N3 | 1.3142 (13) | C13—C14 | 1.3942 (14) |
N3—C11 | 1.3600 (13) | C14—C15 | 1.3764 (15) |
C1—C6 | 1.3814 (15) | C14—H14 | 0.975 (14) |
C1—C2 | 1.4082 (14) | C15—C16 | 1.3969 (15) |
C2—C3 | 1.3827 (15) | C15—H15 | 0.970 (17) |
C3—C4 | 1.3991 (17) | C16—C17 | 1.3921 (14) |
C3—H3 | 0.974 (16) | C17—C18 | 1.3935 (14) |
C4—C5 | 1.3808 (17) | C17—H17 | 1.010 (16) |
C4—C7 | 1.5185 (16) | C18—H18 | 0.984 (13) |
C5—C6 | 1.3995 (16) | C19—H19A | 0.905 (19) |
C5—H5 | 0.972 (17) | C19—H19B | 0.977 (18) |
C6—H6 | 0.964 (15) | C19—H19C | 0.956 (19) |
C7—C8 | 1.491 (2) | C20—H20A | 0.96 (2) |
C7—H7A | 1.025 (18) | C20—H20B | 1.037 (18) |
C7—H7B | 1.04 (2) | C20—H20C | 0.979 (17) |
C8—C9 | 1.312 (2) | ||
O1···O2 | 2.5723 (13) | C18···H12 | 2.871 (15) |
O1···H12 | 2.870 (14) | C19···H17 | 2.543 (15) |
O2···H10Ai | 2.681 (14) | C19···O1vi | 3.3285 (19) |
O3···H19Bii | 2.579 (18) | C20···H3 | 2.508 (15) |
N2···C18iii | 3.3320 (15) | C20···H10Ai | 2.938 (15) |
N2···H14 | 2.532 (15) | H3···H7A | 2.43 (2) |
N2···H18iii | 2.864 (13) | H3···H20A | 2.38 (3) |
N2···H14iv | 2.812 (15) | H3···H20C | 2.31 (2) |
N3···H12iii | 2.834 (12) | H5···H7B | 2.52 (3) |
N3···H15iv | 2.848 (18) | H6···H10A | 2.34 (2) |
C12···C15v | 3.5436 (18) | H6···H10B | 2.30 (2) |
C13···C15v | 3.3633 (17) | H6···C17ix | 2.791 (14) |
C13···C14v | 3.4679 (17) | H6···C18ix | 2.955 (15) |
C14···C14v | 3.5463 (18) | H7A···H9 | 2.37 (3) |
C14···C18v | 3.5668 (18) | H7B···H9x | 2.50 (4) |
C19···C1vi | 3.589 (2) | H8···N3ix | 2.808 (1) |
C19···C10vi | 3.4746 (19) | H9···H20Bxi | 2.50 (3) |
C1···H20Ciii | 2.856 (18) | H9B···O2xii | 2.837 (5) |
C3···H20C | 2.792 (17) | H10B···C16ix | 2.976 (14) |
C3···H20A | 2.82 (2) | H10B···C19xii | 2.897 (13) |
C4···H20Avii | 2.88 (2) | H12···H18 | 2.377 (19) |
C5···H20Avii | 2.98 (2) | H14···H14iv | 2.107 (19) |
C6···H20Ciii | 2.811 (17) | H15···H19Ciii | 2.51 (3) |
C6···H10A | 2.814 (4) | H15···H19Bii | 2.53 (2) |
C6···H10B | 2.748 (13) | H17···H19A | 2.44 (2) |
C9···H7Bviii | 2.96 (2) | H17···H19C | 2.26 (2) |
C10···H6 | 2.517 (15) | H18···C8vi | 2.970 (13) |
C12···H18 | 2.776 (13) | H19A···O1vi | 2.67 (2) |
C15···H19Ciii | 2.830 (18) | H19A···C1vi | 2.91 (2) |
C17···H19C | 2.725 (18) | H19C···H10Bvi | 2.55 (2) |
C17···H19A | 2.843 (19) | ||
C1—O1—C10 | 117.19 (8) | C11—C10—H10A | 110.0 (8) |
C2—O2—C20 | 117.19 (10) | O1—C10—H10B | 109.5 (8) |
C16—O3—C19 | 117.42 (9) | C11—C10—H10B | 109.6 (8) |
N2—N1—C12 | 110.77 (8) | H10A—C10—H10B | 109.9 (11) |
N2—N1—C13 | 119.89 (8) | N3—C11—C12 | 108.73 (9) |
C12—N1—C13 | 129.33 (9) | N3—C11—C10 | 121.31 (9) |
N3—N2—N1 | 107.21 (8) | C12—C11—C10 | 129.94 (9) |
N2—N3—C11 | 108.86 (9) | N1—C12—C11 | 104.42 (9) |
O1—C1—C6 | 125.33 (9) | N1—C12—H12 | 121.7 (8) |
O1—C1—C2 | 115.27 (9) | C11—C12—H12 | 133.8 (8) |
C6—C1—C2 | 119.40 (10) | C18—C13—C14 | 120.55 (9) |
O2—C2—C3 | 125.30 (10) | C18—C13—N1 | 120.54 (8) |
O2—C2—C1 | 115.02 (9) | C14—C13—N1 | 118.91 (9) |
C3—C2—C1 | 119.68 (10) | C15—C14—C13 | 119.62 (10) |
C2—C3—C4 | 121.15 (10) | C15—C14—H14 | 120.6 (8) |
C2—C3—H3 | 118.9 (9) | C13—C14—H14 | 119.7 (8) |
C4—C3—H3 | 119.9 (9) | C14—C15—C16 | 120.42 (9) |
C5—C4—C3 | 118.60 (10) | C14—C15—H15 | 118.3 (9) |
C5—C4—C7 | 121.24 (11) | C16—C15—H15 | 121.3 (9) |
C3—C4—C7 | 120.15 (11) | O3—C16—C17 | 125.29 (9) |
C4—C5—C6 | 120.98 (11) | O3—C16—C15 | 114.93 (9) |
C4—C5—H5 | 119.5 (10) | C17—C16—C15 | 119.78 (9) |
C6—C5—H5 | 119.5 (10) | C16—C17—C18 | 119.70 (9) |
C1—C6—C5 | 120.15 (10) | C16—C17—H17 | 120.7 (9) |
C1—C6—H6 | 119.3 (9) | C18—C17—H17 | 119.6 (9) |
C5—C6—H6 | 120.5 (9) | C13—C18—C17 | 119.94 (9) |
C8—C7—C4 | 114.32 (10) | C13—C18—H18 | 120.2 (8) |
C8—C7—H7A | 109.4 (10) | C17—C18—H18 | 119.8 (8) |
C4—C7—H7A | 110.7 (10) | O3—C19—H19A | 111.9 (11) |
C8—C7—H7B | 106.6 (13) | O3—C19—H19B | 104.5 (10) |
C4—C7—H7B | 108.6 (13) | H19A—C19—H19B | 110.0 (15) |
H7A—C7—H7B | 106.9 (16) | O3—C19—H19C | 108.7 (11) |
C9—C8—C7 | 125.01 (16) | H19A—C19—H19C | 111.8 (15) |
C9—C8—H8 | 117.5 (12) | H19B—C19—H19C | 109.6 (15) |
C7—C8—H8 | 117.4 (12) | O2—C20—H20A | 111.5 (11) |
C8—C9—H9 | 118.7 (14) | O2—C20—H20B | 105.0 (9) |
C8—C9—H9B | 123.1 (13) | H20A—C20—H20B | 110.1 (14) |
H9—C9—H9B | 118.0 (18) | O2—C20—H20C | 111.3 (9) |
O1—C10—C11 | 106.67 (8) | H20A—C20—H20C | 111.8 (15) |
O1—C10—H10A | 111.1 (8) | H20B—C20—H20C | 106.8 (14) |
C12—N1—N2—N3 | −0.64 (12) | N2—N3—C11—C12 | −0.22 (12) |
C13—N1—N2—N3 | 179.75 (8) | N2—N3—C11—C10 | 178.55 (9) |
N1—N2—N3—C11 | 0.52 (12) | O1—C10—C11—N3 | 154.23 (9) |
C10—O1—C1—C6 | 2.77 (15) | O1—C10—C11—C12 | −27.29 (15) |
C10—O1—C1—C2 | −178.10 (9) | N2—N1—C12—C11 | 0.49 (11) |
C20—O2—C2—C3 | 5.04 (16) | C13—N1—C12—C11 | −179.94 (9) |
C20—O2—C2—C1 | −174.39 (10) | N3—C11—C12—N1 | −0.16 (11) |
O1—C1—C2—O2 | 2.06 (14) | C10—C11—C12—N1 | −178.80 (10) |
C6—C1—C2—O2 | −178.75 (10) | N2—N1—C13—C18 | −155.77 (10) |
O1—C1—C2—C3 | −177.40 (9) | C12—N1—C13—C18 | 24.69 (15) |
C6—C1—C2—C3 | 1.79 (16) | N2—N1—C13—C14 | 25.16 (14) |
O2—C2—C3—C4 | −179.27 (10) | C12—N1—C13—C14 | −154.37 (10) |
C1—C2—C3—C4 | 0.13 (16) | C18—C13—C14—C15 | −0.03 (15) |
C2—C3—C4—C5 | −1.79 (17) | N1—C13—C14—C15 | 179.04 (9) |
C2—C3—C4—C7 | 177.07 (10) | C13—C14—C15—C16 | −0.10 (16) |
C3—C4—C5—C6 | 1.55 (18) | C19—O3—C16—C17 | 3.73 (16) |
C7—C4—C5—C6 | −177.30 (11) | C19—O3—C16—C15 | −176.25 (10) |
O1—C1—C6—C5 | 177.07 (10) | C14—C15—C16—O3 | −179.83 (9) |
C2—C1—C6—C5 | −2.03 (17) | C14—C15—C16—C17 | 0.19 (15) |
C4—C5—C6—C1 | 0.35 (18) | O3—C16—C17—C18 | 179.87 (9) |
C5—C4—C7—C8 | −80.52 (17) | C15—C16—C17—C18 | −0.16 (15) |
C3—C4—C7—C8 | 100.66 (15) | C14—C13—C18—C17 | 0.06 (15) |
C4—C7—C8—C9 | −121.28 (16) | N1—C13—C18—C17 | −178.99 (9) |
C1—O1—C10—C11 | 176.23 (8) | C16—C17—C18—C13 | 0.03 (15) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y−1, z; (iv) −x+1, −y−1, −z+1; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z+1/2; (vii) −x, −y, −z; (viii) −x, y+1/2, −z−1/2; (ix) x, −y−1/2, z−1/2; (x) −x, y−1/2, −z−1/2; (xi) −x, −y+1, −z; (xii) x, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, º)
Cg3 is the centroid of the benzene ring C (C13–C18).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cg3xiii | 0.964 (15) | 2.825 (15) | 3.5168 (15) | 129.4 (11) |
C19—H19B···O3xiv | 0.977 (18) | 2.578 (18) | 3.4587 (16) | 150.0 (14) |
Symmetry codes: (xiii) x, −y−3/2, z−3/2; (xiv) −x+1, y+1/2, −z+3/2.
Funding Statement
This work was funded by Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.
References
- Bankowska, E., Balzarini, J., Głowacka, I. E. & Wróblewski, A. E. (2014). Monatsh. Chem. 145, 663–673. [DOI] [PMC free article] [PubMed]
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Benencia, F. & Courreges, M. C. (2000). Phytother. Res. 14, 495–500. [DOI] [PubMed]
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chang, H. T. & Miau, R. H. (1984). Fl. Reipubl. Popularis Sin. 53, 28–135.
- Daniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani-Amado, C. A. & Cuman, R. K. N. (2009). Rev. Bras. Farmacogn. 19, 212–217.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US
- Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812–5819. [DOI] [PubMed]
- Glowacka, I. E., Grzonkowski, P., Lisiecki, P. & Kalinowski, L. (2019). Arch. Pharm. 352, 1–4. [DOI] [PubMed]
- Guenette, S. A., Helie, P., Beaudry, F. & Vachon, P. (2007). J. Vet. Anesth. Analg. 34, 164–170. [DOI] [PubMed]
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Hussain, A., Brahmbhatt, K., Priyani, A., Ahmed, M., Rizvi, T. A. & Sharma, C. (2011). Cancer Biother. Radiopharm. 26, 519–527. [DOI] [PubMed]
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Ma, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946. [DOI] [PMC free article] [PubMed]
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
- Mahboub, R. & Memmou, F. (2015). Nat. Prod. Res. 29, 966–971. [DOI] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N. & Elfeki, A. (2013). Arch. Physiol. & Biochem. 119, 225–233. [DOI] [PubMed]
- Ogata, M., Hoshi, M., Urano, S. & Endo, T. (2000). Chem. Pharm. Bull. 48, 1467–1469. [DOI] [PubMed]
- Pathirana, H. N. K. S., Wimalasena, S. H. M. P., De Silva, B. C. J., Hossain, S., Gang-Joon & Heo (2019). Vet. Res. 56, 31–38.
- Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222. [DOI] [PubMed]
- Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890–901. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Taia, A., Essaber, M., Hökelek, T., Aatif, A., Mague, J. T., Alsalme, A. & Al-Zaqri, N. (2020). Acta Cryst. E76, 344–348. [DOI] [PMC free article] [PubMed]
- Teixeira, R. R., Gazolla, P. A. R., da Silva, A. M., Borsodi, M. P. G., Bergmann, B. R., Ferreira, R. S., Vaz, B. G., Vasconcelos, G. A. & Lima, W. P. (2018). Eur. J. Med. Chem. 146, 274–286. [DOI] [PubMed]
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
- Ueda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Korehisa Maza, P., Prado Dias Filho, B., Aparício Garcia Cortez, D., Alviano, D. S., Rosa, M. S., Lopes, A. H., Alviano, C. S. & Nakamura, C. V. (2006). Parasitol. Int. 55, 99–105. [DOI] [PubMed]
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
- Wang, C., Zhang, J., Chen, H., Fan, Y. & Shi, Z. (2010). Trop. Plant. Pathol. 35, 137–143.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H. & Lee, K. T. (2005). Cancer Lett. 225, 41–52. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020006994/wm5559sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006994/wm5559Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020006994/wm5559Isup3.cdx
CCDC reference: 2005277
Additional supporting information: crystallographic information; 3D view; checkCIF report