Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 22;76(Pt 6):889–895. doi: 10.1107/S205698902000657X

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of (Z)-4-hexyl-2-(4-methyl­benzyl­idene)-2H-benzo[b][1,4]thia­zin-3(4H)-one

Ghizlane Sebbar a,*, Brahim Hni b, Tuncer Hökelek c, Joel T Mague d, Nada Kheira Sebbar b,e, Bouchra Belkadi a, El Mokhtar Essassi b
PMCID: PMC7273998  PMID: 32523758

The benzo­thia­zine moiety is folded along the N⋯S axis and a puckering analysis of the conformation of the heterocyclic ring was performed. The hexyl chain is mainly in an extended conformation. In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine) hydrogen bonds.

Keywords: crystal structure, hydrogen bond, benzo­thia­zine, anti­bacterial activity, Hirshfeld surface

Abstract

The title compound, C22H25NOS, consists of methyl­benzyl­idene and benzo­thia­zine units linked to a hexyl moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine) hydrogen bonds. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (59.2%) and H⋯C/C⋯H (27.9%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OBnzthz and C—HMthn⋯OBnzthz hydrogen-bond energies are 75.3 and 56.5 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound was evaluated against gram-positive and gram-negative bacteria.

Chemical context  

1,4-Benzo­thia­zine derivatives constitute an important class of heterocyclic compounds which, even when part of a complex mol­ecule, possess a wide spectrum of biological activities (Sebbar et al., 2016a ; Gupta et al., 2009). Various 1,4-benzo­thia­zine derivatives have been synthesized by several methods (Parai & Panda, 2009; Barange et al., 2007; Saadouni et al., 2014). 1,4-Benzo­thia­zine derivatives are important because of their inter­esting biological properties such as anti-bacterial (Olayinka, 2012; Bhikan et al., 2012), anti-fungal (Schiaffella et al., 2006; Gupta & Wagh, 2006), anti­proliferative (Zieba et al., 2010), anti­malarial (Baraza­rte et al., 2009) and anti-inflammatory (Kaneko et al., 2002) activities. The biological activities of some 1,4-benzo­thia­zines are similar to those of pheno­thia­zines, featuring the same structural specificity (Hni et al., 2019a,b; Ellouz et al., 2017a ,b ; Sebbar et al., 2019a ,b ).

In a continuation of our research devoted to the development of substituted 1,4-benzo­thia­zine derivatives (Ellouz et al., 2015, 2019; Sebbar et al., 2015, 2017a ; Ellouz et al.), we have synthesized the title compound, I, by reaction of hexyl chloride with 2-(4- methyl­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3 -one and potassium carbonate in the presence of tetra-n-butyl­ammonium bromide (as catalyst). We report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis and inter­action energy calculation [using CE–B3LYP/6–31G(d,p) energy model] and the density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level for comparing with the experimentally determined mol­ecular structure in the solid state of the title compound. Moreover, the anti­bacterial activity of I is evaluated against gram-positive and gram-negative bacteria (viz., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus fasciens).graphic file with name e-76-00889-scheme1.jpg

Structural commentary  

The title compound, I, consists of methyl­benzyl­idene and benzo­thia­zine units linked to a hexyl moiety, where the thia­zine ring adopts a screw-boat conformation (Fig. 1). The heterocyclic portion of the benzo­thia­zine moiety is folded about the S1⋯N1 axis with the dihedral angle between the planes defined by N1/C7/C8/S1 and S1/C1/C6/N1 being 30.28 (6)°. A puckering analysis of the thia­zine, B (N1/S1/C1/C6–C8), ring conformation gave the parameters Q T = 0.4853 (12) Å, θ = 69.48 (15)° and φ = 329.03 (18)°, indicating a screw-boat conformation. The dihedral angle between the benzene rings A (C1–C6) and C (C16–C21) is 75.64 (5)°. The base of the n-hexyl chain is approximately perpendicular to the mean plane of the benzo­thia­zine unit, as indicated by the C6—N1—C9—C10 torsion angle of −96.2 (1)°. The remainder of this chain, with the exception of the terminal methyl group, is in an extended conformation (Fig. 1).

Figure 1.

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds (Table 1) and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz hydrogen bonds (Table 1, Figs. 2 and 3) (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.42 3.349 (2) 168
C15—H15⋯O1ii 0.95 2.45 3.2977 (17) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Detail of the chain of dimers viewed down the b-axis direction with the weak C—HMthn⋯OBnzthz and C—HBnz⋯OBnzthz (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine) hydrogen bonds depicted by dashed lines.

Figure 3.

Figure 3

A partial packing diagram down the a-axis direction giving an end view of three adjacent chains.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atoms H4 and H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 6 clearly suggests that there are no π–π inter­actions in (I).

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.2415 to 1.4195 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 7 b--f, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 59.2% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.14 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 7 c, 27.9% contribution to the HS) has the tips at d e + d i = 2.77 Å. The pair of spikes in the fingerprint plot delineated into H⋯S/S⋯H (Fig. 7 d, 5.6% contribution) has the tips at d e + d i = 2.98 Å. The H⋯O/O⋯H contacts (Fig. 7 e, 5.5% contribution) have a symmetrical distribution of points with the tips at d e + d i = 2.27 Å. Finally, the H⋯N/N⋯H contacts (Fig. 7 f), make only a 0.8% contribution to the HS with the tips at d e + d i = 3.28 Å.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H, (e) H⋯O/O⋯H and (f) H⋯N/N⋯H inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯O/O⋯H inter­actions in Fig. 8 a--d, respectively.

Figure 8.

Figure 8

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯S/S⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations  

The inter­molecular inter­action energies are calculated using CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding inter­action energies (in kJ mol−1) are −15.5 (E ele), −2.9 (E pol), −109.6 (E dis), 62.8 (E rep) and −75.3 (E tot) for C4—H4⋯O1 and −24.8 (E ele), −9.3 (E pol), −60.1 (E dis), 46.9 (E rep) and −56.5 (E tot) for C15—H15⋯O1.

DFT calculations  

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. E HOMO and E LUMO clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-methyl­benzyl­idene)-4-hexyl-2H-benzo[b][1,4]thia­zin-3(4H)-one ring. The energy band gap [ΔE = E LUMO − E HOMO] of the mol­ecule is 4.0189 eV, and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −5.8458 and −1.8269 eV, respectively.

Table 2. Comparison of the selected (X-ray and DFT) geometric data (Å, °).

Bonds/angles X-ray B3LYP/6–311G(d,p)
S1—C8 1.7552 (13) 1.83796
S1—C1 1.7560 (14) 1.83324
O1—C7 1.2310 (15) 1.25561
N1—C7 1.3687 (17) 1.39823
N1—C6 1.4207 (17) 1.42632
N1—C9 1.4756 (17) 1.48630
C1—C2 1.3928 (19) 1.39451
C1—C6 1.3976 (19) 1.40423
C2—C3 1.380 (2) 1.39431
C3—C4 1.379 (2) 1.39578
C4—C5 1.387 (2) 1.39431
     
C8—S1—C1 99.20 (6) 99.87
C7—N1—C6 124.55 (11) 124.76
C7—N1—C9 115.97 (11) 116.02
C6—N1—C9 119.35 (11) 119.89
C2—C1—C6 120.33 (13) 120.89
C2—C1—S1 117.86 (11) 118.13
C6—C1—S1 121.81 (10) 121.30
C3—C2—C1 120.67 (14) 120.36
C4—C3—C2 119.39 (14) 120.16

Table 3. Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound I
Total Energy, TE (eV) −37591.8507
E HOMO (eV) −5.8458
E LUMO (eV) −1.8269
Gap, ΔE (eV) 4.0189
Dipole moment, μ (Debye) 2.5702
Ionization potential, I (eV) 5.8458
Electron affinity, A 1.8269
Electronegativity, χ 3.8363
Hardness, η 2.0095
Electrophilicity index, ω 3.6621
Softness, σ 0.4976
Fraction of electron transferred, ΔN 0.7872

Figure 9.

Figure 9

The energy band gap of the title compound.

Database survey  

A search in the Cambridge Structural Database (Groom et al., 2016), for compounds containing the fragment II (R 1 = Ph, R 2 = C), gave 15 hits, including with R 1 = 4-ClC6H4 and R 2 = CH2CH2CH2CH3 (IIa ) (Ellouz et al., 2017b ), R 1 = 2,4-Cl2C6H3 and R 2 = CH2Ph2 (IIb ) (Sebbar et al., 2019b ), and R 1 = 2-ClC6H4, R 2 = CH2C≡CH (IIc ) (Sebbar et al., 2017b ), R 1 = 4-FC6H4 and R 2 = CH2C≡CH (IIc ) (Hni et al.,2019a ), CH2COOH (Sebbar et al., 2016a ), R 1 = 2,4-Cl2C6H3 and R 2 = (CH2)8CH3 (Hni et al., 2020), R 1 = 4-ClC6H4 and R 2 = CH2Ph2 (IIb ) (Ellouz et al., 2016), R 1 = 4-ClC6H4 and R 2 = (IId ) (Ellouz et al., 2017a ) or CH2C≡CH (IIc) (Sebbar et al., 2014), R 1 = 2,4-Cl2C6H3 and R 2 = IId (Hni et al., 2019b ), R 1 = 2,4-Cl2C6H3 and R 2 =CH2CH2CN (IIe ) (Sebbar et al., 2019a ), IIf (Sebbar et al., 2016b ) and IIg (Ellouz et al., 2015).

In the majority of these, the thia­zine ring is significantly folded about the S⋯N axis with dihedral angles between the two S/C/C/N planes ranging from ca 35° [IIf (Sebbar et al., 2016b ) and IId (Ellouz et al., 2017a )] to ca 27° [IIc (Hni et al., 2019a ) and IIc (Sebbar et al., 2014)].

Anti­bacterial activity  

To compare and analyse the anti­bacterial behaviour of the title compound and commercial anti­biotics such as Chloramphenicol (Chlor), we have tested I against Escherichia coli graphic file with name e-76-00889-scheme2.jpg

(ATTC-25922), Pseudomonas aeruginosa (ATCC-27853), Staphylococcus aureus (ATCC-25923) and Streptococcus fasciens (ATCC-29212) strains of bacteria using the diffusion method disk for evaluating the applicability of I as an anti­bacterial agent (Mabkhot et al., 2016; Hoffmann et al., 2017). Fig. 10 summarizes the diameter of inhibition (mm) values of I and the commercial anti­biotic Chlor. The determination of the minimum inhibition concentration MIC values of I against the bacteria are presented in Table 4. The results of the anti­bacterial activity of the product I obtained by the alkyl­ation reaction under the conditions of catalysis by liquid–solid phase transfer of hexyl chloride with 2-(4-methyl­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one showed increases of MIC = 20 µg ml−1 for Staphylococcus aureus, MIC = 10 µg ml−1 for Escherichia coli and Pseudomonas aeruginosa and MIC = 5 µg ml−1 for Streptococcus fasciens, which corresponds to the best MIC activity as compared to the commercial anti­biotic. In addition, the maximum effect of I was recorded against Pseudomonas aeruginosa (diameter of inhibition 12.1 mm). Chlor presents an anti­bacterial activity diameter of inhibition of between 19 mm and 27 mm and no zone inhibition was observed with di­methyl­sulfoxide (DMSO) [(1%): 1 mL of DMSO added to 99 mL ofulltra-pure water] [The test samples were first dissolved in DMSO (1%), which did not affect the microbial growth.] On one hand, the chemical structure of I can explain this biological effect. The mechanism of action of I is not attributable to one specific mechanism, but there are several targets in the cell: degradation of the cell wall, damage to membrane proteins, damage to cytoplasmic membrane, leakage of cell contents and coagulation of cytoplasm. On the other hand, it should be noted that the functionalized derivatives by ester groups and benzene rings have the highest anti­bacterial coefficient (92% of pathogenic bacteria are sensitive). This study is expected to take anti-inflammatory, anti­fungal, anti-parasitic and anti-cancer activities, because the literature gives a lot of inter­esting results on these topics. Some other types of bacteria may possibly be tested by employing the same method so as eventually to generalize the suggested investigation method (Alderman & Smith, 2001).

Figure 10.

Figure 10

Anti­bacterial activity of the title compound (I) and commercial anti­biotic Chloramphenicol (Chlor) against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus fasciens.

Table 4. Minimal inhibitory concentration [MIC (μg/ml)] of the title compound I .

ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, ATCC-25923 = Staphylococcus aureus, ATCC-29212 = Streptococcus fasciens and Chlor = Chloramphenicol.

Product I Chlor DMSO
ATCC-25922 10 6.25 0
ATTC-25953 10 6.25 0
ATCC-27823 20 12.5 0
ATCC-29212 5 12.5 0

Synthesis and crystallization  

To a solution of 2-(4-methyl­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.70 g, 2 mmol), potassium carbonate (4 mmol) and tetra-n-butyl ammonium bromide (0.2 mmol) in DMF (15 ml) was added 1-chloro­hexane (0.48 g, 4 mmol). Stirring was continued at room temperature for 12 h. The reaction mixture was filtered and the solvent was removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel using the mixture ethyl acetate–hexane (9:1) as eluent. Colourless crystals of the title compound I , were isolated when the solvent was allowed to evaporate (yield: 60%), m.p. > 284 K.

1H NMR (300 MHz, DMSO-d 6) δ ppm: 0.88 (t, 3H, –CH2–CH3, J = 6.3 Hz); 2.37 (s, 3H, =CH-C6H4–CH3); 2.37–2.52 (m, 8H, 4CH2); 4.08 (t, 2H, N-CH2, J = 7.1 Hz); 7.06–7.57 (m, 8H, CHarom); 7.77 (s, 1H; =CH–C6H4Cl); 13C NMR (62.5 MHz, DMSO-d 6) δ ppm: 13.86 (–CH2–CH3); 20.98 (=CH–C6H4–CH3); 22.02, 25,83 26.48, 30.84, (CH2); 44.24 (NCH2); 117.26, 123.47, 126.36, 127.55, 129.15, 129.15, 130.03, 130.03, (CHarom); 133.77 (CHall­yl); 118.5, 119.31, 131.39, 135.77, 139.92, (Cq); 160.48 (C=O).

Refinement  

The experimental details including the crystal data, data collection and refinement are summarized in Table 5. The C-bound H atoms were positioned geometrically, with C—H = 0.95 Å (for aromatic and methine H atoms), 0.99 Å (for methyl­ene H atoms) and 0.98 Å (for methyl H atoms), and constrained to ride on their parent atoms, with U iso(H) = k × U eq(C), where k = 1.5 (for methyl H atoms) and k = 1.2 for other H atoms.

Table 5. Experimental details.

Crystal data
Chemical formula C22H25NOS
M r 351.49
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 8.8581 (19), 9.183 (2), 13.021 (3)
α, β, γ (°) 106.474 (3), 109.398 (3), 93.383 (3)
V3) 944.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.33 × 0.26 × 0.10
 
Data collection
Diffractometer Bruker Smart APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.83, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 17663, 4860, 3807
R int 0.029
(sin θ/λ)max−1) 0.677
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.134, 1.08
No. of reflections 4860
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.22

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698902000657X/ex2032sup1.cif

e-76-00889-sup1.cif (529.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000657X/ex2032Isup2.hkl

e-76-00889-Isup2.hkl (386.8KB, hkl)

Supporting information file. DOI: 10.1107/S205698902000657X/ex2032Isup3.cdx

Supporting information file. DOI: 10.1107/S205698902000657X/ex2032Isup4.cml

CCDC reference: 2004559

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C22H25NOS Z = 2
Mr = 351.49 F(000) = 376
Triclinic, P1 Dx = 1.236 Mg m3
a = 8.8581 (19) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.183 (2) Å Cell parameters from 7052 reflections
c = 13.021 (3) Å θ = 2.4–28.7°
α = 106.474 (3)° µ = 0.18 mm1
β = 109.398 (3)° T = 150 K
γ = 93.383 (3)° Plate, colourless
V = 944.2 (4) Å3 0.33 × 0.26 × 0.10 mm

Data collection

Bruker Smart APEX CCD diffractometer 4860 independent reflections
Radiation source: fine-focus sealed tube 3807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.3333 pixels mm-1 θmax = 28.8°, θmin = 1.8°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −12→12
Tmin = 0.83, Tmax = 0.98 l = −17→17
17663 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0868P)2] where P = (Fo2 + 2Fc2)/3
4860 reflections (Δ/σ)max = 0.002
228 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48853 (4) 0.62268 (4) 0.80836 (3) 0.02689 (12)
O1 0.14092 (11) 0.34562 (11) 0.54654 (8) 0.0296 (2)
N1 0.40988 (13) 0.34294 (13) 0.59158 (9) 0.0230 (2)
C1 0.62657 (16) 0.53904 (15) 0.74903 (11) 0.0238 (3)
C2 0.79091 (16) 0.60067 (17) 0.80699 (13) 0.0295 (3)
H2 0.824726 0.683588 0.877249 0.035*
C3 0.90511 (17) 0.54252 (18) 0.76340 (14) 0.0344 (3)
H3 1.017293 0.583176 0.804334 0.041*
C4 0.85491 (18) 0.42485 (19) 0.65987 (14) 0.0359 (4)
H4 0.932696 0.386664 0.628234 0.043*
C5 0.69171 (17) 0.36181 (17) 0.60156 (13) 0.0304 (3)
H5 0.658838 0.281107 0.530152 0.037*
C6 0.57519 (15) 0.41547 (15) 0.64649 (11) 0.0230 (3)
C7 0.28144 (15) 0.41309 (15) 0.60267 (11) 0.0221 (3)
C8 0.31493 (15) 0.57412 (15) 0.68247 (11) 0.0229 (3)
C9 0.36834 (18) 0.18446 (15) 0.51035 (12) 0.0272 (3)
H9A 0.278067 0.127685 0.519876 0.033*
H9AB 0.463261 0.131943 0.530044 0.033*
C10 0.31894 (18) 0.17657 (16) 0.38509 (12) 0.0292 (3)
H10A 0.222119 0.226310 0.364140 0.035*
H10B 0.408117 0.234298 0.375094 0.035*
C11 0.28073 (19) 0.01127 (16) 0.30521 (12) 0.0321 (3)
H11A 0.381565 −0.033721 0.320101 0.038*
H11B 0.202450 −0.049348 0.323086 0.038*
C12 0.2103 (2) −0.00319 (18) 0.17853 (13) 0.0370 (4)
H12A 0.111018 0.044208 0.164526 0.044*
H12B 0.289671 0.056538 0.160940 0.044*
C13 0.1679 (2) −0.1666 (2) 0.09621 (15) 0.0470 (4)
H13A 0.112018 −0.164616 0.017068 0.056*
H13B 0.090849 −0.227440 0.114929 0.056*
C14 0.3135 (3) −0.2469 (2) 0.09928 (16) 0.0522 (5)
H14A 0.278359 −0.348108 0.039587 0.078*
H14B 0.362499 −0.259934 0.174847 0.078*
H14C 0.393526 −0.184479 0.085374 0.078*
C15 0.20651 (16) 0.66746 (15) 0.65716 (11) 0.0240 (3)
H15 0.112596 0.621988 0.589786 0.029*
C16 0.21350 (15) 0.82914 (15) 0.71914 (11) 0.0237 (3)
C17 0.28006 (17) 0.89520 (16) 0.83901 (11) 0.0270 (3)
H17 0.320387 0.832386 0.885317 0.032*
C18 0.28781 (18) 1.05119 (16) 0.89087 (12) 0.0299 (3)
H18 0.332476 1.093311 0.972370 0.036*
C19 0.23138 (17) 1.14756 (16) 0.82588 (12) 0.0275 (3)
C20 0.16120 (18) 1.08124 (16) 0.70733 (13) 0.0301 (3)
H20 0.119719 1.144064 0.661268 0.036*
C21 0.15056 (17) 0.92502 (16) 0.65499 (12) 0.0287 (3)
H21 0.099424 0.882241 0.573798 0.034*
C22 0.2467 (2) 1.31839 (17) 0.88163 (14) 0.0363 (4)
H22A 0.172104 1.360783 0.827572 0.054*
H22B 0.358422 1.368479 0.902762 0.054*
H22C 0.219515 1.337033 0.950821 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02168 (18) 0.0295 (2) 0.02434 (19) 0.00586 (14) 0.00650 (13) 0.00294 (14)
O1 0.0212 (5) 0.0261 (5) 0.0333 (5) 0.0031 (4) 0.0066 (4) 0.0017 (4)
N1 0.0227 (5) 0.0209 (6) 0.0238 (5) 0.0061 (4) 0.0084 (4) 0.0044 (4)
C1 0.0223 (6) 0.0248 (7) 0.0268 (7) 0.0070 (5) 0.0094 (5) 0.0109 (5)
C2 0.0237 (7) 0.0299 (7) 0.0330 (8) 0.0035 (6) 0.0068 (6) 0.0118 (6)
C3 0.0198 (6) 0.0420 (9) 0.0450 (9) 0.0073 (6) 0.0106 (6) 0.0203 (7)
C4 0.0270 (7) 0.0445 (9) 0.0459 (9) 0.0153 (7) 0.0198 (7) 0.0193 (8)
C5 0.0292 (7) 0.0334 (8) 0.0321 (7) 0.0123 (6) 0.0145 (6) 0.0103 (6)
C6 0.0213 (6) 0.0248 (7) 0.0254 (6) 0.0067 (5) 0.0084 (5) 0.0112 (5)
C7 0.0217 (6) 0.0214 (6) 0.0230 (6) 0.0049 (5) 0.0088 (5) 0.0060 (5)
C8 0.0200 (6) 0.0222 (6) 0.0249 (6) 0.0025 (5) 0.0088 (5) 0.0048 (5)
C9 0.0327 (7) 0.0200 (6) 0.0293 (7) 0.0083 (5) 0.0121 (6) 0.0070 (5)
C10 0.0353 (7) 0.0238 (7) 0.0276 (7) 0.0090 (6) 0.0109 (6) 0.0067 (6)
C11 0.0399 (8) 0.0255 (7) 0.0291 (7) 0.0072 (6) 0.0134 (6) 0.0050 (6)
C12 0.0375 (8) 0.0348 (8) 0.0310 (8) 0.0102 (7) 0.0074 (6) 0.0042 (6)
C13 0.0450 (10) 0.0445 (10) 0.0371 (9) −0.0097 (8) 0.0171 (7) −0.0073 (8)
C14 0.0842 (14) 0.0342 (9) 0.0395 (10) 0.0190 (9) 0.0272 (10) 0.0063 (7)
C15 0.0224 (6) 0.0232 (7) 0.0247 (6) 0.0037 (5) 0.0081 (5) 0.0060 (5)
C16 0.0206 (6) 0.0214 (6) 0.0283 (7) 0.0047 (5) 0.0097 (5) 0.0056 (5)
C17 0.0318 (7) 0.0247 (7) 0.0272 (7) 0.0084 (6) 0.0121 (6) 0.0099 (6)
C18 0.0337 (7) 0.0278 (7) 0.0256 (7) 0.0067 (6) 0.0106 (6) 0.0048 (6)
C19 0.0274 (7) 0.0219 (7) 0.0336 (7) 0.0047 (5) 0.0135 (6) 0.0067 (6)
C20 0.0328 (7) 0.0251 (7) 0.0342 (8) 0.0088 (6) 0.0115 (6) 0.0126 (6)
C21 0.0303 (7) 0.0263 (7) 0.0254 (7) 0.0061 (6) 0.0065 (5) 0.0063 (6)
C22 0.0433 (9) 0.0233 (7) 0.0397 (9) 0.0074 (6) 0.0150 (7) 0.0063 (6)

Geometric parameters (Å, º)

S1—C8 1.7552 (13) C11—H11B 0.9900
S1—C1 1.7560 (14) C12—C13 1.515 (2)
O1—C7 1.2310 (15) C12—H12A 0.9900
N1—C7 1.3687 (17) C12—H12B 0.9900
N1—C6 1.4207 (17) C13—C14 1.518 (3)
N1—C9 1.4756 (17) C13—H13A 0.9900
C1—C2 1.3928 (19) C13—H13B 0.9900
C1—C6 1.3976 (19) C14—H14A 0.9800
C2—C3 1.380 (2) C14—H14B 0.9800
C2—H2 0.9500 C14—H14C 0.9800
C3—C4 1.379 (2) C15—C16 1.4615 (18)
C3—H3 0.9500 C15—H15 0.9500
C4—C5 1.387 (2) C16—C21 1.3963 (18)
C4—H4 0.9500 C16—C17 1.4004 (18)
C5—C6 1.3958 (19) C17—C18 1.3862 (19)
C5—H5 0.9500 C17—H17 0.9500
C7—C8 1.4922 (18) C18—C19 1.395 (2)
C8—C15 1.3464 (18) C18—H18 0.9500
C9—C10 1.5205 (19) C19—C20 1.387 (2)
C9—H9A 0.9900 C19—C22 1.5067 (19)
C9—H9AB 0.9900 C20—C21 1.3851 (19)
C10—C11 1.5201 (19) C20—H20 0.9500
C10—H10A 0.9900 C21—H21 0.9500
C10—H10B 0.9900 C22—H22A 0.9800
C11—C12 1.520 (2) C22—H22B 0.9800
C11—H11A 0.9900 C22—H22C 0.9800
C8—S1—C1 99.20 (6) C13—C12—C11 115.01 (14)
C7—N1—C6 124.55 (11) C13—C12—H12A 108.5
C7—N1—C9 115.97 (11) C11—C12—H12A 108.5
C6—N1—C9 119.35 (11) C13—C12—H12B 108.5
C2—C1—C6 120.33 (13) C11—C12—H12B 108.5
C2—C1—S1 117.86 (11) H12A—C12—H12B 107.5
C6—C1—S1 121.81 (10) C12—C13—C14 113.96 (15)
C3—C2—C1 120.67 (14) C12—C13—H13A 108.8
C3—C2—H2 119.7 C14—C13—H13A 108.8
C1—C2—H2 119.7 C12—C13—H13B 108.8
C4—C3—C2 119.39 (14) C14—C13—H13B 108.8
C4—C3—H3 120.3 H13A—C13—H13B 107.7
C2—C3—H3 120.3 C13—C14—H14A 109.5
C3—C4—C5 120.51 (13) C13—C14—H14B 109.5
C3—C4—H4 119.7 H14A—C14—H14B 109.5
C5—C4—H4 119.7 C13—C14—H14C 109.5
C4—C5—C6 120.83 (14) H14A—C14—H14C 109.5
C4—C5—H5 119.6 H14B—C14—H14C 109.5
C6—C5—H5 119.6 C8—C15—C16 128.87 (12)
C5—C6—C1 118.17 (12) C8—C15—H15 115.6
C5—C6—N1 120.84 (12) C16—C15—H15 115.6
C1—C6—N1 120.95 (12) C21—C16—C17 117.48 (12)
O1—C7—N1 120.68 (12) C21—C16—C15 118.10 (12)
O1—C7—C8 120.59 (11) C17—C16—C15 124.42 (12)
N1—C7—C8 118.71 (11) C18—C17—C16 120.77 (12)
C15—C8—C7 118.49 (12) C18—C17—H17 119.6
C15—C8—S1 124.93 (10) C16—C17—H17 119.6
C7—C8—S1 116.43 (9) C17—C18—C19 121.36 (13)
N1—C9—C10 113.78 (11) C17—C18—H18 119.3
N1—C9—H9A 108.8 C19—C18—H18 119.3
C10—C9—H9A 108.8 C20—C19—C18 117.81 (13)
N1—C9—H9AB 108.8 C20—C19—C22 120.67 (13)
C10—C9—H9AB 108.8 C18—C19—C22 121.52 (13)
H9A—C9—H9AB 107.7 C21—C20—C19 121.14 (13)
C11—C10—C9 111.74 (11) C21—C20—H20 119.4
C11—C10—H10A 109.3 C19—C20—H20 119.4
C9—C10—H10A 109.3 C20—C21—C16 121.33 (13)
C11—C10—H10B 109.3 C20—C21—H21 119.3
C9—C10—H10B 109.3 C16—C21—H21 119.3
H10A—C10—H10B 107.9 C19—C22—H22A 109.5
C12—C11—C10 113.46 (12) C19—C22—H22B 109.5
C12—C11—H11A 108.9 H22A—C22—H22B 109.5
C10—C11—H11A 108.9 C19—C22—H22C 109.5
C12—C11—H11B 108.9 H22A—C22—H22C 109.5
C10—C11—H11B 108.9 H22B—C22—H22C 109.5
H11A—C11—H11B 107.7
C8—S1—C1—C2 154.11 (11) N1—C7—C8—S1 −35.27 (15)
C8—S1—C1—C6 −25.32 (12) C1—S1—C8—C15 −139.90 (12)
C6—C1—C2—C3 1.0 (2) C1—S1—C8—C7 44.53 (11)
S1—C1—C2—C3 −178.44 (11) C7—N1—C9—C10 79.89 (15)
C1—C2—C3—C4 1.7 (2) C6—N1—C9—C10 −96.17 (14)
C2—C3—C4—C5 −2.0 (2) N1—C9—C10—C11 178.84 (12)
C3—C4—C5—C6 −0.3 (2) C9—C10—C11—C12 172.66 (13)
C4—C5—C6—C1 2.9 (2) C10—C11—C12—C13 −178.97 (14)
C4—C5—C6—N1 −174.94 (13) C11—C12—C13—C14 −64.8 (2)
C2—C1—C6—C5 −3.2 (2) C7—C8—C15—C16 −178.20 (12)
S1—C1—C6—C5 176.17 (10) S1—C8—C15—C16 6.3 (2)
C2—C1—C6—N1 174.59 (12) C8—C15—C16—C21 144.09 (15)
S1—C1—C6—N1 −5.99 (18) C8—C15—C16—C17 −35.5 (2)
C7—N1—C6—C5 −156.27 (13) C21—C16—C17—C18 −2.2 (2)
C9—N1—C6—C5 19.42 (18) C15—C16—C17—C18 177.39 (13)
C7—N1—C6—C1 25.95 (19) C16—C17—C18—C19 −0.6 (2)
C9—N1—C6—C1 −158.36 (12) C17—C18—C19—C20 2.4 (2)
C6—N1—C7—O1 175.34 (12) C17—C18—C19—C22 −177.10 (14)
C9—N1—C7—O1 −0.48 (18) C18—C19—C20—C21 −1.3 (2)
C6—N1—C7—C8 −3.51 (19) C22—C19—C20—C21 178.20 (14)
C9—N1—C7—C8 −179.33 (11) C19—C20—C21—C16 −1.6 (2)
O1—C7—C8—C15 −30.00 (19) C17—C16—C21—C20 3.3 (2)
N1—C7—C8—C15 148.85 (13) C15—C16—C21—C20 −176.31 (13)
O1—C7—C8—S1 145.87 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.95 2.42 3.349 (2) 168
C15—H15···O1ii 0.95 2.45 3.2977 (17) 148

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1.

Funding Statement

This work was funded by Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.

References

  1. Alderman, D. & Smith, P. (2001). Aquaculture, 196, 211–243.
  2. Barange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). Tetrahedron, 63, 1775–1789.
  3. Barazarte, A., Lobo, G., Gamboa, N., Rodrigues, J. R., Capparelli, M. V., Alvarez-Larena, A., López, S. E. & Charris, J. E. (2009). Eur. J. Med. Chem. 44, 1303–1310. [DOI] [PubMed]
  4. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  5. Bhikan, J. K., Rahul, S. S., Premchand, B. P., Sanjay, A. P., Rajeshwar, J. K., Pravin, S. G. & Bhata, R. C. (2012). E-J. Chem. 9, 318–322.
  6. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.
  8. Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.
  9. Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Scientific Study & Res. 20, 563–574.
  10. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
  11. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764.
  12. Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.
  13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Gupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697–702.
  16. Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan J. Chem. 4, 209–221.
  17. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  18. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  19. Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. [DOI] [PMC free article] [PubMed]
  20. Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. [DOI] [PMC free article] [PubMed]
  21. Hni, B., Sebbar, N. K., Hökelek, T., Redouane, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 281–287. [DOI] [PMC free article] [PubMed]
  22. Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45. [DOI] [PubMed]
  23. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  24. Kaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922–929. [DOI] [PubMed]
  25. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  26. Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036. [DOI] [PMC free article] [PubMed]
  27. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  28. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  29. Olayinka, O. A. (2012). Arch. Pharm. Chem. Life Sci. pp. 1–11.
  30. Parai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703–4705.
  31. Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun. 7, 77–84.
  32. Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203. [DOI] [PubMed]
  33. Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016b). IUCrData, 1, x161823.
  34. Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.
  35. Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.
  36. Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889.
  37. Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727. [DOI] [PMC free article] [PubMed]
  38. Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656. [DOI] [PMC free article] [PubMed]
  39. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
  40. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  41. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  42. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  43. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  44. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  45. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  46. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  47. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  48. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  49. Zięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733–4739. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698902000657X/ex2032sup1.cif

e-76-00889-sup1.cif (529.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000657X/ex2032Isup2.hkl

e-76-00889-Isup2.hkl (386.8KB, hkl)

Supporting information file. DOI: 10.1107/S205698902000657X/ex2032Isup3.cdx

Supporting information file. DOI: 10.1107/S205698902000657X/ex2032Isup4.cml

CCDC reference: 2004559

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES