Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 22;76(Pt 6):884–888. doi: 10.1107/S2056989020006623

Crystal structure of a 1:1 co-crystal of the anti­cancer drug gefitinib with azelaic acid

Christy P George a, Ekta Sangtani a, Rajesh G Gonnade a,b,*
PMCID: PMC7274001  PMID: 32523757

Gefitinib, the anti­cancer drug, has been co-crystallized with azelaic acid to obtain a 1:1 co-crystal in the monoclinic P21/n space group containing one mol­ecule each of gefitinib and azelaic acid in the asymmetric unit. Both mol­ecules are associated with each other through N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds.

Keywords: anti­cancer, azelaic acid, co-crystal, crystal structure, gefitinib, hydrogen bond, π–π inter­actions

Abstract

In the title co-crystal, C22H24ClFN4O3·C9H16O4, gefitinib (GTB; systematic name: quinazolin-4-amine) co-crystallizes with azelaic acid (AA; systematic name: nona­nedioic acid). The co-crystal has the monoclinic P21/n centrosymmetric space group, containing one mol­ecule each of GTB and AA in the asymmetric unit. A structure overlay of the GTB mol­ecule in the co-crystal with that of its most stable polymorph revealed a significant difference in the conformation of the morpholine moiety. The significant deviation in the conformation of one of the acidic groups of azelaic acid from its usual linear chain structure could be due to the encapsulation of one acidic group in the pocket formed between the two pincers of GTB namely, the morpholine and phenyl moieties. Both GTB and AA mol­ecules form N—H⋯O, O—H⋯N, C—H⋯O hydrogen bonds with C—H⋯F close contacts along with off-stacked aromatic π–π inter­actions between the GTB mol­ecules.

Chemical context  

Gefitinib (GTB, Iressa) is an orally administered chemotherapy treatment drug that inhibits tyrosine kinase (an enzyme that transports phosphates from ATP to the tyrosine residue of a protein) (Kobayashi & Hagiwara, 2013) for non-small-cell lung cancer (NSCLC), pancreatic cancer, breast cancer and several other types of cancer. Two polymorphs of GTB have been reported from our group previously, both of which crystallized in the triclinic P Inline graphic space group (Thorat et al., 2014). The drug–drug co-crystal of GTB with furosemide has also been published (Thorat et al., 2015). Some of the major side effects of GTB include rash, acne and dry skin. To overcome these after effects, there is a need for combination drug therapy. In this regard, we chose azelaic acid (AA), which is used for treating mild to moderate acne, both comedonal acne and inflammatory acne (Fitton & Goa, 1991). Furthermore, GTB is also known to form co-crystals with aliphatic di­carb­oxy­lic acids through N—H⋯O and O—H⋯N hydrogen bonds (Gonnade, 2015). AA is an aliphatic di­carb­oxy­lic acid (heptane-di­carb­oxy­lic acid), having seven CH2 groups in the alkyl chain. Two polymorphs of AA have been reported earlier, the α form is monoclinic, P21/c (Caspari, 1928; Housty & Hospital, 1967) and the β form crystallizes in the monoclinic C2/c space group (Housty & Hospital, 1967). Both GTB and AA are non-volatile solids at room temperature and their respective melting points are in the ranges 192–195 K and 378–381 K.graphic file with name e-76-00884-scheme1.jpg

Structural commentary  

The title compound GTB–AA (1:1) crystallizes in the monoclinic P21/n centrosymmetric space group containing one mol­ecule of each in the asymmetric unit (Fig. 1, Table 1) (CCDC reference No. 2002536). The halophenyl ring of GTB and the alkyl (–CH2–) chain of AA exhibit positional disorder over two conformations, due to the free rotation around the N—C and C—C single bonds, respectively (Fig. 2 a and 2b). A structure overlay of the GTB mol­ecule based on a fit of the quinazoline groups in the co-crystal structure with that of its stable polymorph [the crystal structure of the stable polymorph of GTB was retrieved from the Cambridge Structural Database (Groom et al., 2016), refcode: FARRUM02; Thorat et al., 2014] revealed a considerable difference in the orientation of the morpholine moiety [torsion angles, C19—C20—C21—N22 = 54.0 (2)° for GTB in the co-crystal while the corresponding torsion angle in the stable polymorph of GTB is 74.3 (2)°] because of the conformationally flexible –CH2– spacer (Fig. 3). Whereas the conformation of the phenyl group showed a slight difference with a dihedral angle of 14.1 (2)° (the angular difference between the planes of halophenyl ring of both structures). The quinazoline, morpholine and phenyl moieties of GTB have acquired a roughly planar geometry in the co-crystal [torsion angle C12—C5—C19—N22 = 14.4 (2)°, only the N atom of morpholine is considered and not the full fragment], whereas in the stable polymorph of GTB, the morpholine moiety deviates significantly from the plane [the corresponding torsion angle is −75.7 (2)°]. The approximate planarity of the phenyl, quinazoline and morpholine (only N atom considered) moieties of GTB in the co-crystal seems to be due to the engagement of these groups with one of the acid groups of AA via N—H⋯O and O—H⋯N hydrogen bonds. The conformation of this acid group of AA shows a considerable departure from its usual linear chain structure due to an acquired bend at the 7th carbon atom (C39) [torsional difference 105.15 (19)° from the other end of the acid group, torsion angles, C32—C33—C34—C35 = −174.15 (19)° and C37—C38—C39—C40 = −69.0 (3)°]. The conformational bend could be due to the inclusion of the acid moiety in the pocket formed between the morpholine and phenyl moieties (which have a mol­ecular clip-like geometry) of GTB and the subsequent involvement of the carbonyl and hydroxyl groups of the included acid moiety in the formation of the N—H⋯O and O—H⋯N hydrogen bonds with the distantly located amine N—H and the N atom of the morpholine moiety, respectively (Fig. 4). The other acid group of AA forms an O—H⋯N hydrogen bond with the N atom of the quinazoline moiety.

Figure 1.

Figure 1

The asymmetric unit of the title compound, showing the atom labelling, 50% probability displacement ellipsoids for non-H atoms and hydrogen bonding with a dotted magenta line. H atoms are shown as small spheres of arbitrary radii.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O42i 0.84 (2) 2.20 (2) 3.025 (2) 169.6 (18)
O41—H41⋯N22ii 1.01 1.78 2.6566 (19) 144
O30—H30⋯N1 0.99 (3) 1.65 (3) 2.6135 (19) 166 (2)
C5—H5⋯O42i 0.95 2.25 3.194 (2) 170
C2—H2⋯F1iii 0.95 2.15 3.07 (3) 163
C2—H2⋯F1′iii 0.95 2.32 3.253 (3) 166
C29—H29B⋯O18iv 0.98 2.65 3.6101 (19) 167
C23—H23B⋯O25v 0.99 2.57 3.220 (2) 123
C27—H27B⋯F1vi 0.99 2.71 3.68 (4) 166
C39—H39A⋯O30vii 0.99 2.50 3.255 (4) 133
C21—H21B⋯O31viii 0.99 2.29 3.234 (2) 160
C13—H13⋯O30ix 0.95 2.39 3.139 (3) 135
C13′—H13′⋯O30ix 0.95 2.53 3.268 (3) 135
Cg2⋯Cg2viii     3.5358 (11) 0 (1)
Cg2⋯Cg3viii     3.7909 (11) 1 (1)
Cg2⋯Cg3ix     3.7530 (11) 1 (1)
Cg3⋯Cg3viii     3.7934 (11) 0 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Figure 2.

Figure 2

Crystal structures of GTB (a) and AA (b) in the co-crystal showing positional disorder of the halophenyl ring and alkyl chain, respectively.

Figure 3.

Figure 3

Structure overlay of GTB mol­ecule in the co-crystal (magenta) and its stable polymorph (green).

Figure 4.

Figure 4

The ‘mol­ecular clip’-like geometry of GTB that accommodates a carboxyl group of AA. The mol­ecules inter­act through N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds.

Supra­molecular features  

The closely associated mol­ecules of GTB and AA (through an O30—H30⋯N1 hydrogen bond) constitute a ‘zero-dimensional’ supra­molecular motif wherein a carboxyl OH of AA donates its H atom to the quinazoline N atom (Fig. 1). Adjacent n-glide symmetry-related ‘zero-dimensional’ motifs are linked firmly along the ac diagonal by strong N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds to generate a one-dimensional linear chain structure (Fig. 5, Table 1). The cavity created by GTB as a result of its ‘mol­ecular clip’-like geometry encapsulates the other carb­oxy­lic acid group of AA. In the cavity, the carboxyl oxygen (O42) accepts the H atoms from amine N11—H11 and C5—H5 to form N11—H11⋯O42i and C5—H5⋯O42i hydrogen bonds (symmetry operations are given in the footnote to Table 1). In turn, the carboxyl OH (O41—H41) of AA donates its H atom to the morpholine N22 to make a O41—H41⋯N22ii hydrogen bond. The neighbouring anti­parallel chains are stitched centrosymmetrically through C2—H2⋯F1iii contacts and C29—H29B⋯O18iv hydrogen bonds to form a two-dimensional layered assembly in the ac plane (Fig. 6). A view of the mol­ecular packing down the b axis reveals the stacking of the 2D layers by aromatic π–π inter­actions between centrosymmetrically related quinazoline rings [inter­planar spacing, 3.396 (13) Å] (Cg2⋯Cg2vii, Cg2⋯Cg3vii, Cg2⋯Cg3viii and Cg3⋯Cg3vii; Cg2 is the centroid of the N1/C2/N3/C4/C10/C9 ring and Cg3 is the centroid of the C5–C10 ring, Table 1). Mol­ecules between the two layers are also connected by C27—H27B⋯F1vi contacts and C23—H23B⋯O25v, C21—H21B⋯O31vii, C13—H13⋯O30viii and C39—H39A⋯O30ix hydrogen bonds to generate the three-dimensional packing (Fig. 7, Table 1).

Figure 5.

Figure 5

A one-dimensional chain formed by GTB and AA mol­ecules along the ac diagonal via O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.

Figure 6.

Figure 6

Two-dimensional layered assembly of GTB and AA along the ac diagonal. The neighbouring one-dimensional chains are stitched through C—H⋯F and C—H⋯O hydrogen bonds.

Figure 7.

Figure 7

The view of the mol­ecular packing along the b axis showing the association of GTB mol­ecules through aromatic π–π inter­actions along with C—H⋯F and C—H⋯O inter­actions.

Database survey  

A search for the title co-crystal in the Cambridge Structural Database (CSD, Version 5.41, the update of March 2020; Groom et al., 2016) found no hits. However, searches for GTB and AA gave 8 and 35 hits, respectively. A search for the GTB mol­ecule showed that the amine N—H moiety is involved in N—H⋯O hydrogen-bond formation either with the morpholine oxygen in both of its polymorphs (Thorat et al., 2014) or with the water oxygen (Gilday et al., 2005; Thorat et al., 2015). For the AA search, 17 hits were found only for its two polymorphs (refcodes: AZELAC01–AZELAC17) wherein the AA mol­ecules are found to be associated by the conventional dimeric O—H⋯O hydrogen bonds (Caspari, 1928; Housty & Hospital, 1967). The remaining hits were for either co-crystals with amides (Tothadi & Phadkule, 2019; Thompson et al., 2011; Karki et al., 2009), pyridines (Braga et al., 2010; Martins et al., 2016; Krueger et al., 2017) or complexes with Ni (Zhao et al., 2012), Fe (Braga et al., 2006) or Ba (Grzesiak et al., 2012).

Synthesis and crystallization  

Co-crystallization was carried out using equimolar amounts of commercial samples of GTB and AA by grinding combined with a slow evaporation method. The grinding experiment was performed manually using a mortar and pestle. The 1:1 stoichiometric molar ratio of GTB (45 mg, 0.1 mmol) and AA (19 mg, 0.1 mmol) was ground for about 15 minutes using dry (neat) grinding. The ground sample was dissolved in n-butanol and heated for ∼10 minutes to ensure the complete dissolution of the sample. The solution was filtered into the crystallization flask to remove the impurity and undissolved compound, and the solution was allowed to evaporate at room temperature (298–300 K). Elongated needle-shaped colourless crystals were obtained after 1–2 h. The melting point of the obtained co-crystal was 398–399 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms (except for hy­droxy and amine H atoms) were placed in geometrically idealized positions, with C—H = 0.95 Å for phenyl H atoms, C—H = 0.99 Å for methyl­ene H atoms and C—H = 0.98 Å for methyl H atoms. They were constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C) for phenyl and methyl­ene, and 1.5U eq(C) for methyl groups. The O- (O30) and N-bound H atoms were located in difference-Fourier maps and refined isotropically. However, the O-bound H atom was placed in a geometrically idealized positions using HFIX 148 as the O—H distance was longer when refined with its located position in the difference-Fourier map. It was constrained to ride on its parent atom (O41), with U iso(H) = 1.5U eq(O). The long O—H distance could be due to its involvement in the strong O—H⋯N hydrogen-bond formation with N22. The difference F oF c map shows that the H atom could be residing part of the time on O41 and part of the time on N22.

Table 2. Experimental details.

Crystal data
Chemical formula C22H24ClFN4O3·C9H16O4
M r 635.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.7716 (10), 7.4153 (13), 38.175 (7)
β (°) 92.311 (5)
V3) 3046.7 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.28 × 0.19 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.950, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 92337, 7338, 5413
R int 0.162
(sin θ/λ)max−1) 0.661
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.110, 1.02
No. of reflections 7338
No. of parameters 473
No. of restraints 126
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.32

Computer programs: APEX3 (Bruker, 2016), SAINT-Plus (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 (Farrugia, 2012), Mercury 2020.1 (Macrae et al., 2020), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020), publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020006623/pk2627sup1.cif

e-76-00884-sup1.cif (4.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006623/pk2627Isup2.hkl

e-76-00884-Isup2.hkl (402KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006623/pk2627Isup3.cml

CCDC reference: 2002536

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CPG thanks SERB, New Delhi, for a project fellowship. This work was funded by the Science and Engineering Research Board (SERB), New Delhi (grant No. EEQ/2018/001172).

supplementary crystallographic information

Crystal data

C22H24ClFN4O3·C9H16O4 F(000) = 1344
Mr = 635.12 Dx = 1.385 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.7716 (10) Å Cell parameters from 9964 reflections
b = 7.4153 (13) Å θ = 2.5–36.4°
c = 38.175 (7) Å µ = 0.19 mm1
β = 92.311 (5)° T = 100 K
V = 3046.7 (8) Å3 Thin Needle, colourless
Z = 4 0.28 × 0.19 × 0.04 mm

Data collection

Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer 7338 independent reflections
Radiation source: micro-focus sealed tube, Incoatech IµS HB 5413 reflections with I > 2σ(I)
Multilayer mirrors monochromator Rint = 0.162
Detector resolution: 7.39 pixels mm-1 θmax = 28.0°, θmin = 2.4°
φ and ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −9→9
Tmin = 0.950, Tmax = 0.993 l = −50→50
92337 measured reflections

Refinement

Refinement on F2 126 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2854P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
7338 reflections Δρmax = 0.37 e Å3
473 parameters Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.47579 (12) 0.8204 (2) 0.55135 (4) 0.0133 (3)
C2 0.36066 (14) 0.8699 (2) 0.54311 (5) 0.0148 (4)
H2 0.3136 0.9129 0.5619 0.018*
N3 0.30169 (12) 0.8670 (2) 0.51143 (4) 0.0144 (3)
C4 0.36644 (14) 0.8072 (2) 0.48478 (4) 0.0113 (3)
C5 0.56600 (14) 0.6768 (2) 0.46286 (4) 0.0111 (3)
H5 0.5318 0.6671 0.4396 0.013*
C6 0.68614 (14) 0.6245 (2) 0.47037 (4) 0.0109 (3)
C7 0.73862 (13) 0.6397 (2) 0.50508 (4) 0.0116 (3)
C8 0.66847 (14) 0.7041 (2) 0.53159 (4) 0.0117 (3)
H8 0.7033 0.7129 0.5548 0.014*
C9 0.54411 (14) 0.7573 (2) 0.52418 (4) 0.0115 (3)
C10 0.49287 (14) 0.7456 (2) 0.48986 (4) 0.0108 (3)
N11 0.31164 (12) 0.8064 (2) 0.45205 (4) 0.0129 (3)
H11 0.3547 (17) 0.784 (3) 0.4348 (5) 0.018 (5)*
C12 0.1907 (2) 0.8603 (3) 0.44138 (7) 0.0084 (5) 0.915 (7)
C13 0.1724 (2) 0.9202 (3) 0.40659 (7) 0.0103 (5) 0.915 (7)
H13 0.2409 0.9296 0.3918 0.012* 0.915 (7)
C14 0.0538 (2) 0.9655 (3) 0.39399 (6) 0.0126 (5) 0.915 (7)
C15 −0.0455 (2) 0.9516 (5) 0.41588 (7) 0.0121 (6) 0.915 (7)
C16 −0.0294 (2) 0.8968 (3) 0.45021 (8) 0.0114 (5) 0.915 (7)
H16 −0.0984 0.8906 0.4649 0.014* 0.915 (7)
C17 0.0893 (2) 0.8503 (3) 0.46331 (6) 0.0103 (5) 0.915 (7)
H17 0.1014 0.8120 0.4870 0.012* 0.915 (7)
Cl1 0.03309 (6) 1.0446 (3) 0.35140 (2) 0.0239 (3) 0.915 (7)
F1 −0.1656 (19) 0.981 (6) 0.4079 (9) 0.0207 (5) 0.085 (7)
C12' 0.165 (3) 0.869 (4) 0.4489 (8) 0.0084 (5) 0.085 (7)
C13' 0.180 (3) 0.904 (3) 0.4171 (9) 0.0103 (5) 0.085 (7)
H13' 0.2607 0.8997 0.4082 0.012* 0.085 (7)
C14' 0.088 (3) 0.944 (3) 0.3964 (9) 0.0126 (5) 0.085 (7)
C15' −0.034 (2) 0.956 (6) 0.4083 (11) 0.0121 (6) 0.085 (7)
C16' −0.038 (3) 0.918 (4) 0.4387 (10) 0.0114 (5) 0.085 (7)
H16' −0.1167 0.9307 0.4489 0.014* 0.085 (7)
C17' 0.051 (3) 0.863 (4) 0.4588 (8) 0.0103 (5) 0.085 (7)
H17' 0.0340 0.8158 0.4813 0.012* 0.085 (7)
Cl1' 0.0350 (8) 0.977 (3) 0.3483 (3) 0.0239 (3) 0.085 (7)
F1' −0.15929 (17) 0.9946 (5) 0.40135 (6) 0.0207 (5) 0.915 (7)
O18 0.76536 (10) 0.55753 (17) 0.44664 (3) 0.0146 (3)
C19 0.71844 (14) 0.5374 (3) 0.41114 (4) 0.0140 (3)
H19A 0.6840 0.6529 0.4021 0.017*
H19B 0.6523 0.4447 0.4096 0.017*
C20 0.82895 (15) 0.4798 (3) 0.39031 (5) 0.0167 (4)
H20A 0.8851 0.5844 0.3879 0.020*
H20B 0.8755 0.3852 0.4036 0.020*
C21 0.79365 (15) 0.4080 (2) 0.35412 (5) 0.0162 (4)
H21A 0.8708 0.3825 0.3418 0.019*
H21B 0.7492 0.2923 0.3567 0.019*
N22 0.71453 (13) 0.5303 (2) 0.33193 (4) 0.0170 (3)
C23 0.69993 (18) 0.4460 (3) 0.29657 (5) 0.0252 (4)
H23A 0.6568 0.3287 0.2985 0.030*
H23B 0.7829 0.4231 0.2873 0.030*
C24 0.6265 (2) 0.5668 (4) 0.27160 (6) 0.0392 (6)
H24A 0.6195 0.5091 0.2482 0.047*
H24B 0.5415 0.5827 0.2801 0.047*
O25 0.68388 (16) 0.7383 (3) 0.26857 (4) 0.0467 (5)
C26 0.6932 (2) 0.8207 (3) 0.30238 (6) 0.0426 (6)
H26A 0.6088 0.8361 0.3113 0.051*
H26B 0.7306 0.9419 0.3002 0.051*
C27 0.77011 (19) 0.7117 (3) 0.32823 (5) 0.0261 (4)
H27A 0.8558 0.7002 0.3201 0.031*
H27B 0.7740 0.7734 0.3512 0.031*
O28 0.85921 (10) 0.58683 (17) 0.50862 (3) 0.0148 (3)
C29 0.92077 (14) 0.6098 (3) 0.54230 (5) 0.0162 (4)
H29A 0.9179 0.7371 0.5491 0.024*
H29B 1.0075 0.5712 0.5412 0.024*
H29C 0.8790 0.5367 0.5597 0.024*
O30 0.58731 (10) 0.86845 (18) 0.61271 (3) 0.0181 (3)
H30 0.533 (2) 0.852 (4) 0.5915 (7) 0.056 (8)*
O31 0.41210 (11) 0.90780 (19) 0.64135 (4) 0.0238 (3)
C32 0.52448 (15) 0.9063 (2) 0.64073 (5) 0.0169 (4)
C33 0.60896 (16) 0.9548 (3) 0.67194 (5) 0.0209 (4)
H33A 0.6142 1.0879 0.6735 0.025*
H33B 0.6934 0.9093 0.6676 0.025*
C34 0.57017 (16) 0.8827 (3) 0.70716 (5) 0.0200 (4)
H34A 0.5747 0.7494 0.7073 0.024*
H34B 0.4834 0.9184 0.7112 0.024*
C35 0.6584 (3) 0.9608 (5) 0.73679 (8) 0.0196 (6) 0.770 (4)
H35A 0.7449 0.9243 0.7324 0.023* 0.770 (4)
H35B 0.6546 1.0941 0.7360 0.023* 0.770 (4)
C36 0.6250 (3) 0.8968 (3) 0.77317 (6) 0.0178 (6) 0.770 (4)
H36A 0.6289 0.7634 0.7740 0.021* 0.770 (4)
H36B 0.5388 0.9335 0.7777 0.021* 0.770 (4)
C37 0.7126 (2) 0.9744 (4) 0.80178 (8) 0.0186 (6) 0.770 (4)
H37A 0.7989 0.9407 0.7967 0.022* 0.770 (4)
H37B 0.7070 1.1077 0.8011 0.022* 0.770 (4)
C38 0.6847 (2) 0.9101 (3) 0.83854 (7) 0.0174 (6) 0.770 (4)
H38A 0.6933 0.7772 0.8394 0.021* 0.770 (4)
H38B 0.5973 0.9397 0.8432 0.021* 0.770 (4)
C39 0.7695 (3) 0.9931 (5) 0.86770 (8) 0.0150 (7) 0.770 (4)
H39A 0.7688 1.1260 0.8653 0.018* 0.770 (4)
H39B 0.7366 0.9625 0.8908 0.018* 0.770 (4)
C35' 0.6128 (9) 0.9559 (19) 0.7400 (3) 0.0196 (6) 0.230 (4)
H35C 0.6048 1.0888 0.7387 0.023* 0.230 (4)
H35D 0.7025 0.9281 0.7433 0.023* 0.230 (4)
C36' 0.5482 (8) 0.8921 (13) 0.7725 (2) 0.023 (2) 0.230 (4)
H36C 0.5562 0.7594 0.7743 0.027* 0.230 (4)
H36D 0.4586 0.9209 0.7698 0.027* 0.230 (4)
C37' 0.6007 (7) 0.9780 (13) 0.8072 (2) 0.023 (2) 0.230 (4)
H37C 0.5988 1.1109 0.8048 0.028* 0.230 (4)
H37D 0.5456 0.9453 0.8264 0.028* 0.230 (4)
C38' 0.7281 (8) 0.9218 (12) 0.8171 (3) 0.0139 (19) 0.230 (4)
H38C 0.7850 0.9748 0.8002 0.017* 0.230 (4)
H38D 0.7333 0.7890 0.8149 0.017* 0.230 (4)
C39' 0.7737 (12) 0.9740 (19) 0.8538 (3) 0.019 (2) 0.230 (4)
H39C 0.7657 1.1065 0.8559 0.023* 0.230 (4)
H39D 0.7161 0.9199 0.8705 0.023* 0.230 (4)
C40 0.90344 (15) 0.9248 (2) 0.86617 (5) 0.0153 (4)
O41 0.97487 (11) 1.00506 (19) 0.84437 (3) 0.0235 (3)
H41 1.060 (2) 0.950 (2) 0.8463 (4) 0.035*
O42 0.93796 (11) 0.80413 (19) 0.88602 (3) 0.0224 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0133 (6) 0.0141 (7) 0.0125 (7) 0.0010 (6) 0.0024 (5) −0.0003 (6)
C2 0.0139 (7) 0.0173 (9) 0.0133 (8) 0.0029 (7) 0.0036 (6) −0.0007 (7)
N3 0.0127 (6) 0.0165 (8) 0.0140 (7) 0.0020 (6) 0.0015 (5) 0.0003 (6)
C4 0.0119 (7) 0.0092 (8) 0.0128 (8) −0.0007 (6) 0.0005 (6) 0.0004 (7)
C5 0.0106 (7) 0.0123 (8) 0.0101 (8) −0.0005 (6) −0.0005 (6) 0.0001 (7)
C6 0.0109 (7) 0.0106 (8) 0.0114 (8) −0.0002 (6) 0.0027 (6) 0.0000 (7)
C7 0.0088 (7) 0.0100 (8) 0.0160 (9) −0.0006 (6) −0.0011 (6) 0.0015 (7)
C8 0.0126 (7) 0.0116 (8) 0.0107 (8) −0.0007 (6) −0.0023 (6) 0.0007 (7)
C9 0.0127 (7) 0.0090 (8) 0.0129 (8) −0.0001 (6) 0.0020 (6) −0.0001 (7)
C10 0.0112 (7) 0.0078 (8) 0.0135 (8) 0.0005 (6) 0.0012 (6) 0.0011 (6)
N11 0.0076 (6) 0.0195 (8) 0.0118 (7) 0.0034 (6) 0.0017 (5) −0.0015 (6)
C12 0.0041 (10) 0.0098 (8) 0.0114 (13) 0.0021 (7) 0.0028 (7) −0.0018 (8)
C13 0.0085 (8) 0.0165 (10) 0.0059 (12) 0.0021 (7) 0.0002 (9) 0.0017 (8)
C14 0.0071 (11) 0.0177 (10) 0.0127 (9) 0.0050 (8) −0.0034 (9) 0.0015 (8)
C15 0.0086 (8) 0.0157 (9) 0.0120 (17) 0.0024 (7) −0.0011 (7) −0.0018 (11)
C16 0.0083 (8) 0.0165 (10) 0.0093 (12) 0.0008 (7) 0.0016 (9) −0.0005 (9)
C17 0.0035 (10) 0.0140 (9) 0.0132 (9) 0.0011 (8) −0.0014 (8) 0.0002 (7)
Cl1 0.01550 (19) 0.0375 (8) 0.0185 (3) 0.0082 (3) −0.00091 (18) 0.0091 (4)
F1 0.0077 (5) 0.0352 (9) 0.0190 (13) 0.0063 (5) −0.0013 (6) −0.0007 (9)
C12' 0.0041 (10) 0.0098 (8) 0.0114 (13) 0.0021 (7) 0.0028 (7) −0.0018 (8)
C13' 0.0085 (8) 0.0165 (10) 0.0059 (12) 0.0021 (7) 0.0002 (9) 0.0017 (8)
C14' 0.0071 (11) 0.0177 (10) 0.0127 (9) 0.0050 (8) −0.0034 (9) 0.0015 (8)
C15' 0.0086 (8) 0.0157 (9) 0.0120 (17) 0.0024 (7) −0.0011 (7) −0.0018 (11)
C16' 0.0083 (8) 0.0165 (10) 0.0093 (12) 0.0008 (7) 0.0016 (9) −0.0005 (9)
C17' 0.0035 (10) 0.0140 (9) 0.0132 (9) 0.0011 (8) −0.0014 (8) 0.0002 (7)
Cl1' 0.01550 (19) 0.0375 (8) 0.0185 (3) 0.0082 (3) −0.00091 (18) 0.0091 (4)
F1' 0.0077 (5) 0.0352 (9) 0.0190 (13) 0.0063 (5) −0.0013 (6) −0.0007 (9)
O18 0.0105 (5) 0.0228 (7) 0.0106 (6) 0.0042 (5) −0.0001 (4) −0.0030 (5)
C19 0.0114 (7) 0.0206 (9) 0.0098 (8) 0.0009 (7) −0.0015 (6) −0.0007 (7)
C20 0.0121 (7) 0.0224 (10) 0.0156 (9) 0.0028 (7) 0.0009 (6) −0.0040 (8)
C21 0.0169 (8) 0.0157 (9) 0.0160 (9) 0.0040 (7) 0.0016 (7) −0.0010 (7)
N22 0.0211 (7) 0.0188 (8) 0.0113 (7) 0.0053 (6) 0.0028 (6) −0.0004 (6)
C23 0.0275 (9) 0.0347 (12) 0.0133 (9) 0.0098 (9) 0.0015 (7) −0.0053 (9)
C24 0.0400 (12) 0.0615 (17) 0.0161 (10) 0.0193 (12) 0.0034 (9) 0.0049 (11)
O25 0.0590 (10) 0.0591 (12) 0.0235 (9) 0.0253 (9) 0.0179 (7) 0.0200 (8)
C26 0.0637 (15) 0.0314 (13) 0.0347 (14) 0.0212 (12) 0.0252 (12) 0.0158 (11)
C27 0.0396 (11) 0.0170 (10) 0.0228 (11) 0.0020 (8) 0.0143 (9) 0.0010 (8)
O28 0.0096 (5) 0.0212 (7) 0.0135 (6) 0.0038 (5) −0.0025 (4) −0.0022 (5)
C29 0.0123 (7) 0.0214 (10) 0.0145 (9) 0.0028 (7) −0.0052 (6) −0.0036 (7)
O30 0.0150 (5) 0.0276 (7) 0.0116 (6) 0.0001 (5) −0.0004 (5) −0.0023 (6)
O31 0.0141 (6) 0.0344 (8) 0.0232 (7) −0.0014 (5) 0.0020 (5) −0.0030 (6)
C32 0.0174 (8) 0.0181 (9) 0.0153 (9) −0.0011 (7) 0.0011 (7) 0.0000 (7)
C33 0.0192 (8) 0.0276 (11) 0.0159 (9) −0.0043 (8) −0.0005 (7) −0.0023 (8)
C34 0.0254 (9) 0.0197 (10) 0.0148 (9) 0.0011 (8) −0.0001 (7) −0.0006 (8)
C35 0.0201 (15) 0.0227 (11) 0.0159 (12) −0.0061 (15) 0.0000 (13) −0.0001 (9)
C36 0.0162 (13) 0.0209 (13) 0.0161 (12) −0.0027 (10) −0.0023 (10) −0.0003 (10)
C37 0.0196 (12) 0.0229 (15) 0.0133 (14) −0.0058 (11) −0.0012 (11) 0.0028 (12)
C38 0.0125 (10) 0.0247 (14) 0.0149 (14) −0.0037 (9) −0.0005 (10) 0.0013 (10)
C39 0.0134 (11) 0.0207 (15) 0.0111 (16) −0.0003 (10) 0.0009 (14) −0.0017 (15)
C35' 0.0201 (15) 0.0227 (11) 0.0159 (12) −0.0061 (15) 0.0000 (13) −0.0001 (9)
C36' 0.014 (5) 0.035 (5) 0.019 (4) 0.002 (4) 0.001 (3) −0.003 (4)
C37' 0.015 (4) 0.033 (5) 0.021 (5) 0.000 (3) −0.002 (3) −0.006 (4)
C38' 0.017 (4) 0.013 (4) 0.011 (5) −0.002 (3) −0.004 (4) 0.001 (4)
C39' 0.023 (4) 0.021 (5) 0.014 (6) 0.003 (3) 0.010 (5) −0.005 (5)
C40 0.0153 (7) 0.0154 (9) 0.0148 (9) −0.0042 (7) −0.0028 (7) −0.0027 (7)
O41 0.0185 (6) 0.0302 (8) 0.0215 (7) −0.0046 (6) −0.0012 (5) 0.0094 (6)
O42 0.0171 (6) 0.0288 (8) 0.0209 (7) −0.0047 (5) −0.0044 (5) 0.0085 (6)

Geometric parameters (Å, º)

N1—C2 1.319 (2) C24—O25 1.421 (3)
N1—C9 1.378 (2) C24—H24A 0.9900
C2—N3 1.343 (2) C24—H24B 0.9900
C2—H2 0.9500 O25—C26 1.428 (3)
N3—C4 1.333 (2) C26—C27 1.499 (3)
C4—N11 1.360 (2) C26—H26A 0.9900
C4—C10 1.442 (2) C26—H26B 0.9900
C5—C6 1.370 (2) C27—H27A 0.9900
C5—C10 1.417 (2) C27—H27B 0.9900
C5—H5 0.9500 O28—C29 1.433 (2)
C6—O18 1.3631 (19) C29—H29A 0.9800
C6—C7 1.424 (2) C29—H29B 0.9800
C7—O28 1.3585 (18) C29—H29C 0.9800
C7—C8 1.373 (2) O30—C32 1.319 (2)
C8—C9 1.414 (2) O30—H30 0.99 (3)
C8—H8 0.9500 O31—C32 1.212 (2)
C9—C10 1.404 (2) C32—C33 1.513 (2)
N11—C12 1.408 (2) C33—C34 1.521 (3)
N11—C12' 1.64 (3) C33—H33A 0.9900
N11—H11 0.84 (2) C33—H33B 0.9900
C12—C17 1.404 (3) C34—C35' 1.426 (12)
C12—C13 1.407 (3) C34—C35 1.559 (4)
C13—C14 1.389 (3) C34—H34A 0.9900
C13—H13 0.9500 C34—H34B 0.9900
C14—C15 1.387 (3) C35—C36 1.525 (4)
C14—Cl1 1.734 (3) C35—H35A 0.9900
C15—F1 1.335 (19) C35—H35B 0.9900
C15—C16 1.377 (3) C36—C37 1.527 (4)
C16—C17 1.397 (3) C36—H36A 0.9900
C16—H16 0.9500 C36—H36B 0.9900
C17—H17 0.9500 C37—C38 1.524 (4)
C12'—C13' 1.26 (4) C37—H37A 0.9900
C12'—C17' 1.31 (3) C37—H37B 0.9900
C13'—C14' 1.27 (4) C38—C39 1.540 (4)
C13'—H13' 0.9500 C38—H38A 0.9900
C14'—C15' 1.41 (4) C38—H38B 0.9900
C14'—Cl1' 1.92 (3) C39—C40 1.533 (4)
C15'—C16' 1.20 (4) C39—H39A 0.9900
C15'—F1' 1.395 (19) C39—H39B 0.9900
C16'—C17' 1.27 (4) C35'—C36' 1.522 (14)
C16'—H16' 0.9500 C35'—H35C 0.9900
C17'—H17' 0.9500 C35'—H35D 0.9900
O18—C19 1.435 (2) C36'—C37' 1.556 (12)
C19—C20 1.519 (2) C36'—H36C 0.9900
C19—H19A 0.9900 C36'—H36D 0.9900
C19—H19B 0.9900 C37'—C38' 1.469 (11)
C20—C21 1.515 (2) C37'—H37C 0.9900
C20—H20A 0.9900 C37'—H37D 0.9900
C20—H20B 0.9900 C38'—C39' 1.516 (15)
C21—N22 1.486 (2) C38'—H38C 0.9900
C21—H21A 0.9900 C38'—H38D 0.9900
C21—H21B 0.9900 C39'—C40 1.501 (13)
N22—C27 1.482 (2) C39'—H39C 0.9900
N22—C23 1.490 (2) C39'—H39D 0.9900
C23—C24 1.509 (3) C40—O42 1.221 (2)
C23—H23A 0.9900 C40—O41 1.300 (2)
C23—H23B 0.9900 O41—H41 1.01 (2)
C2—N1—C9 116.13 (14) O25—C26—C27 112.41 (18)
N1—C2—N3 128.05 (15) O25—C26—H26A 109.1
N1—C2—H2 116.0 C27—C26—H26A 109.1
N3—C2—H2 116.0 O25—C26—H26B 109.1
C4—N3—C2 116.72 (14) C27—C26—H26B 109.1
N3—C4—N11 118.80 (14) H26A—C26—H26B 107.9
N3—C4—C10 121.53 (15) N22—C27—C26 109.72 (18)
N11—C4—C10 119.66 (14) N22—C27—H27A 109.7
C6—C5—C10 119.83 (15) C26—C27—H27A 109.7
C6—C5—H5 120.1 N22—C27—H27B 109.7
C10—C5—H5 120.1 C26—C27—H27B 109.7
O18—C6—C5 125.13 (15) H27A—C27—H27B 108.2
O18—C6—C7 114.31 (13) C7—O28—C29 117.44 (13)
C5—C6—C7 120.56 (14) O28—C29—H29A 109.5
O28—C7—C8 125.43 (15) O28—C29—H29B 109.5
O28—C7—C6 114.31 (14) H29A—C29—H29B 109.5
C8—C7—C6 120.26 (14) O28—C29—H29C 109.5
C7—C8—C9 119.64 (15) H29A—C29—H29C 109.5
C7—C8—H8 120.2 H29B—C29—H29C 109.5
C9—C8—H8 120.2 C32—O30—H30 112.8 (15)
N1—C9—C10 121.46 (14) O31—C32—O30 124.29 (17)
N1—C9—C8 118.33 (15) O31—C32—C33 123.51 (16)
C10—C9—C8 120.21 (14) O30—C32—C33 112.16 (14)
C9—C10—C5 119.48 (14) C32—C33—C34 115.76 (15)
C9—C10—C4 116.09 (14) C32—C33—H33A 108.3
C5—C10—C4 124.43 (15) C34—C33—H33A 108.3
C4—N11—C12 128.84 (17) C32—C33—H33B 108.3
C4—N11—C12' 116.5 (11) C34—C33—H33B 108.3
C4—N11—H11 119.4 (13) H33A—C33—H33B 107.4
C12—N11—H11 111.4 (13) C35'—C34—C33 123.6 (5)
C12'—N11—H11 123.9 (17) C33—C34—C35 109.25 (18)
C17—C12—C13 119.82 (19) C33—C34—H34A 109.8
C17—C12—N11 123.1 (3) C35—C34—H34A 109.8
C13—C12—N11 117.1 (2) C33—C34—H34B 109.8
C14—C13—C12 119.7 (2) C35—C34—H34B 109.8
C14—C13—H13 120.2 H34A—C34—H34B 108.3
C12—C13—H13 120.2 C36—C35—C34 112.7 (2)
C15—C14—C13 119.6 (2) C36—C35—H35A 109.1
C15—C14—Cl1 121.1 (2) C34—C35—H35A 109.1
C13—C14—Cl1 119.2 (2) C36—C35—H35B 109.1
F1—C15—C16 110.4 (15) C34—C35—H35B 109.1
F1—C15—C14 127.9 (16) H35A—C35—H35B 107.8
C16—C15—C14 121.6 (2) C35—C36—C37 111.9 (2)
C15—C16—C17 119.50 (19) C35—C36—H36A 109.2
C15—C16—H16 120.3 C37—C36—H36A 109.2
C17—C16—H16 120.3 C35—C36—H36B 109.2
C16—C17—C12 119.7 (2) C37—C36—H36B 109.2
C16—C17—H17 120.1 H36A—C36—H36B 107.9
C12—C17—H17 120.1 C38—C37—C36 113.7 (2)
C13'—C12'—C17' 116 (3) C38—C37—H37A 108.8
C13'—C12'—N11 89 (2) C36—C37—H37A 108.8
C17'—C12'—N11 152 (3) C38—C37—H37B 108.8
C12'—C13'—C14' 122 (3) C36—C37—H37B 108.8
C12'—C13'—H13' 119.2 H37A—C37—H37B 107.7
C14'—C13'—H13' 119.2 C37—C38—C39 114.0 (2)
C13'—C14'—C15' 122 (3) C37—C38—H38A 108.7
C13'—C14'—Cl1' 145 (3) C39—C38—H38A 108.7
C15'—C14'—Cl1' 93 (2) C37—C38—H38B 108.7
C16'—C15'—F1' 99 (3) C39—C38—H38B 108.7
C16'—C15'—C14' 112 (3) H38A—C38—H38B 107.6
F1'—C15'—C14' 149 (4) C40—C39—C38 111.9 (2)
C15'—C16'—C17' 127 (3) C40—C39—H39A 109.2
C15'—C16'—H16' 116.4 C38—C39—H39A 109.2
C17'—C16'—H16' 116.4 C40—C39—H39B 109.2
C16'—C17'—C12' 121 (3) C38—C39—H39B 109.2
C16'—C17'—H17' 119.7 H39A—C39—H39B 107.9
C12'—C17'—H17' 119.7 C34—C35'—C36' 117.2 (8)
C6—O18—C19 117.35 (12) C34—C35'—H35C 108.0
O18—C19—C20 105.66 (12) C36'—C35'—H35C 108.0
O18—C19—H19A 110.6 C34—C35'—H35D 108.0
C20—C19—H19A 110.6 C36'—C35'—H35D 108.0
O18—C19—H19B 110.6 H35C—C35'—H35D 107.2
C20—C19—H19B 110.6 C35'—C36'—C37' 113.9 (8)
H19A—C19—H19B 108.7 C35'—C36'—H36C 108.8
C21—C20—C19 113.76 (13) C37'—C36'—H36C 108.8
C21—C20—H20A 108.8 C35'—C36'—H36D 108.8
C19—C20—H20A 108.8 C37'—C36'—H36D 108.8
C21—C20—H20B 108.8 H36C—C36'—H36D 107.7
C19—C20—H20B 108.8 C38'—C37'—C36' 114.0 (7)
H20A—C20—H20B 107.7 C38'—C37'—H37C 108.8
N22—C21—C20 115.03 (15) C36'—C37'—H37C 108.8
N22—C21—H21A 108.5 C38'—C37'—H37D 108.8
C20—C21—H21A 108.5 C36'—C37'—H37D 108.8
N22—C21—H21B 108.5 H37C—C37'—H37D 107.6
C20—C21—H21B 108.5 C37'—C38'—C39' 115.5 (8)
H21A—C21—H21B 107.5 C37'—C38'—H38C 108.4
C27—N22—C21 112.56 (14) C39'—C38'—H38C 108.4
C27—N22—C23 108.83 (15) C37'—C38'—H38D 108.4
C21—N22—C23 107.32 (14) C39'—C38'—H38D 108.4
N22—C23—C24 110.88 (17) H38C—C38'—H38D 107.5
N22—C23—H23A 109.5 C40—C39'—C38' 119.4 (8)
C24—C23—H23A 109.5 C40—C39'—H39C 107.5
N22—C23—H23B 109.5 C38'—C39'—H39C 107.5
C24—C23—H23B 109.5 C40—C39'—H39D 107.5
H23A—C23—H23B 108.1 C38'—C39'—H39D 107.5
O25—C24—C23 111.37 (19) H39C—C39'—H39D 107.0
O25—C24—H24A 109.4 O42—C40—O41 124.03 (16)
C23—C24—H24A 109.4 O42—C40—C39' 129.0 (6)
O25—C24—H24B 109.4 O41—C40—C39' 104.8 (5)
C23—C24—H24B 109.4 O42—C40—C39 118.8 (2)
H24A—C24—H24B 108.0 O41—C40—C39 117.10 (19)
C24—O25—C26 108.91 (17) C40—O41—H41 109.5
C9—N1—C2—N3 −0.2 (3) N11—C12'—C13'—C14' 171.7 (16)
N1—C2—N3—C4 −0.1 (3) C12'—C13'—C14'—C15' 1 (2)
C2—N3—C4—N11 −178.27 (15) C12'—C13'—C14'—Cl1' −168 (3)
C2—N3—C4—C10 1.1 (2) C13'—C14'—C15'—C16' −2 (5)
C10—C5—C6—O18 −179.65 (15) Cl1'—C14'—C15'—C16' 171 (4)
C10—C5—C6—C7 −0.4 (2) C13'—C14'—C15'—F1' 177 (6)
O18—C6—C7—O28 0.7 (2) Cl1'—C14'—C15'—F1' −10 (7)
C5—C6—C7—O28 −178.59 (15) F1'—C15'—C16'—C17' 177 (3)
O18—C6—C7—C8 −179.53 (15) C14'—C15'—C16'—C17' −4 (6)
C5—C6—C7—C8 1.2 (3) C15'—C16'—C17'—C12' 11 (6)
O28—C7—C8—C9 179.02 (15) C13'—C12'—C17'—C16' −11 (4)
C6—C7—C8—C9 −0.7 (2) N11—C12'—C17'—C16' −161 (4)
C2—N1—C9—C10 −0.5 (2) C5—C6—O18—C19 −1.1 (2)
C2—N1—C9—C8 179.41 (16) C7—C6—O18—C19 179.61 (14)
C7—C8—C9—N1 179.62 (15) C6—O18—C19—C20 174.33 (14)
C7—C8—C9—C10 −0.5 (2) O18—C19—C20—C21 166.04 (15)
N1—C9—C10—C5 −178.89 (15) C19—C20—C21—N22 54.0 (2)
C8—C9—C10—C5 1.2 (2) C20—C21—N22—C27 54.86 (19)
N1—C9—C10—C4 1.4 (2) C20—C21—N22—C23 174.57 (15)
C8—C9—C10—C4 −178.49 (15) C27—N22—C23—C24 −54.7 (2)
C6—C5—C10—C9 −0.7 (2) C21—N22—C23—C24 −176.76 (17)
C6—C5—C10—C4 178.92 (16) N22—C23—C24—O25 57.9 (2)
N3—C4—C10—C9 −1.7 (2) C23—C24—O25—C26 −59.2 (2)
N11—C4—C10—C9 177.61 (15) C24—O25—C26—C27 60.6 (2)
N3—C4—C10—C5 178.60 (16) C21—N22—C27—C26 173.58 (15)
N11—C4—C10—C5 −2.1 (3) C23—N22—C27—C26 54.74 (19)
N3—C4—N11—C12 −0.6 (3) O25—C26—C27—N22 −59.3 (2)
C10—C4—N11—C12 −179.94 (18) C8—C7—O28—C29 −3.9 (2)
N3—C4—N11—C12' −3.5 (12) C6—C7—O28—C29 175.88 (15)
C10—C4—N11—C12' 177.1 (11) O31—C32—C33—C34 41.3 (3)
C4—N11—C12—C17 −29.1 (3) O30—C32—C33—C34 −140.79 (17)
C4—N11—C12—C13 153.23 (19) C32—C33—C34—C35' −160.0 (6)
C17—C12—C13—C14 −1.3 (3) C32—C33—C34—C35 −174.15 (19)
N11—C12—C13—C14 176.4 (2) C33—C34—C35—C36 179.3 (2)
C12—C13—C14—C15 0.1 (3) C34—C35—C36—C37 179.9 (2)
C12—C13—C14—Cl1 178.38 (17) C35—C36—C37—C38 −178.5 (2)
C13—C14—C15—F1 −177 (2) C36—C37—C38—C39 −177.9 (2)
Cl1—C14—C15—F1 5 (2) C37—C38—C39—C40 −69.0 (3)
C13—C14—C15—C16 1.2 (4) C33—C34—C35'—C36' 169.2 (6)
Cl1—C14—C15—C16 −177.0 (2) C34—C35'—C36'—C37' 179.8 (8)
F1—C15—C16—C17 176.9 (19) C35'—C36'—C37'—C38' −67.5 (11)
C14—C15—C16—C17 −1.3 (4) C36'—C37'—C38'—C39' −169.1 (9)
C15—C16—C17—C12 0.1 (4) C37'—C38'—C39'—C40 −179.1 (9)
C13—C12—C17—C16 1.2 (3) C38'—C39'—C40—O42 −103.4 (10)
N11—C12—C17—C16 −176.4 (2) C38'—C39'—C40—O41 60.0 (11)
C4—N11—C12'—C13' 158.5 (10) C38—C39—C40—O42 −99.5 (3)
C4—N11—C12'—C17' −49 (5) C38—C39—C40—O41 83.0 (3)
C17'—C12'—C13'—C14' 5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···O42i 0.84 (2) 2.20 (2) 3.025 (2) 169.6 (18)
O41—H41···N22ii 1.01 1.78 2.6566 (19) 144
O30—H30···N1 0.99 (3) 1.65 (3) 2.6135 (19) 166 (2)
C5—H5···O42i 0.95 2.25 3.194 (2) 170
C2—H2···F1iii 0.95 2.15 3.07 (3) 163
C2—H2···F1′iii 0.95 2.32 3.253 (3) 166
C29—H29B···O18iv 0.98 2.65 3.6101 (19) 167
C23—H23B···O25v 0.99 2.57 3.220 (2) 123
C27—H27B···F1vi 0.99 2.71 3.68 (4) 166
C39—H39A···O30vii 0.99 2.50 3.255 (4) 133
C21—H21B···O31viii 0.99 2.29 3.234 (2) 160
C13—H13···O30ix 0.95 2.39 3.139 (3) 135
C13′—H13′···O30ix 0.95 2.53 3.268 (3) 135
Cg2···Cg2viii 3.5358 (11) 0 (1)
Cg2···Cg3viii 3.7909 (11) 1 (1)
Cg2···Cg3ix 3.7530 (11) 1 (1)
Cg3···Cg3viii 3.7934 (11) 0 (1)

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x, −y+2, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+3/2, y−1/2, −z+1/2; (vi) x+1, y, z; (vii) −x+3/2, y+1/2, −z+3/2; (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y+2, −z+1.

Funding Statement

This work was funded by Science and Engineering Research Board (SERB), New Delhi grant EEQ/2018/001172 to Dr. Rajesh G. Gonnade.

References

  1. Braga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti, M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12, 3534–3536.
  2. Braga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877–3879. [DOI] [PubMed]
  3. Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Caspari, W. A. (1928). J. Chem. Soc. pp. 3235–3241.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Fitton, A. & Goa, K. L. (1991). Drugs, 41, 780–798. [DOI] [PubMed]
  7. Gilday, J. P., Graham, A. S., Ymen, B. I. & Bohlin, M. (2005). US Patent US 2005/0209229 A1.
  8. Gonnade, R. G. (2015). PCT Int. Appl. WO 2015/170345 A1.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Grzesiak, M., Nitek, W., Rafalska-Łasocha, A. & Łasocha, W. (2012). Z. Kristallogr. 227, 629–634.
  11. Housty, J. & Hospital, M. (1967). Acta Cryst. 22, 288–295.
  12. Karki, S., Friščić, T. & Jones, W. (2009). CrystEngComm, 11, 470–481.
  13. Kobayashi, K. & Hagiwara, K. (2013). Targ Oncol, 8, 27–33. [DOI] [PMC free article] [PubMed]
  14. Krueger, E. L., Sinha, A. S., Desper, J. & Aakeröy, C. B. (2017). CrystEngComm, 19, 4605–4614.
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. Martins, I. C. B., Sardo, M., Santos, S. M., Fernandes, A., Antunes, A., André, V., Mafra, L. & Duarte, M. T. (2016). Cryst. Growth Des. 16, 154–166.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  20. Thompson, L. J., Voguri, R. S., Male, L. & Tremayne, M. (2011). CrystEngComm, 13, 4188–4195.
  21. Thorat, S. H., Patwadkar, M. V., Gonnade, R. G. & Vaidhyanathan, R. (2014). CrystEngComm, 16, 8638–8641.
  22. Thorat, S. H., Sahu, S. K., Patwadkar, M. V., Badiger, M. V. & Gonnade, R. G. (2015). J. Pharm. Sci. 104, 4207–4216. [DOI] [PubMed]
  23. Tothadi, S. & Phadkule, A. (2019). CrystEngComm, 21, 2481–2484.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Zhao, F.-H., Che, Y.-X. & Zheng, J.-M. (2012). Cryst. Growth Des. 12, 4712–4715.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020006623/pk2627sup1.cif

e-76-00884-sup1.cif (4.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006623/pk2627Isup2.hkl

e-76-00884-Isup2.hkl (402KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006623/pk2627Isup3.cml

CCDC reference: 2002536

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES