Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 5;76(Pt 6):794–797. doi: 10.1107/S2056989020005952

The crystal structure and Hirshfeld surface analysis of 1-(2,5-di­meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine

Mustapha Tiouabi a, Raphaël Tabacchi a, Helen Stoeckli-Evans b,*
PMCID: PMC7274006  PMID: 32523741

The title compound, 1-(2,5-di­meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine, was synthesized as a side-product during the synthesis of the inter­mediate, methyl 3,6-dimeth­oxy-2-(2-meth­oxy-2-oxoeth­yl)benzoate, necessary for the total synthesis of the isocoumarin 5,8-dimeth­oxy-3-methyl-1H-isochromen-1-one.

Keywords: crystal structure, piperidine, hydrogen bonding, Hirshfeld surface analysis, energy frameworks

Abstract

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction.

Chemical context  

During research on phytotoxins produced by the Ceratocystis fimbriata species (Tiouabi, 2005), the pathogenic agents responsible for the infections of plane, coffee and elm trees, analytical and spectroscopic studies enabled the isolation of a number of isocoumarins in small qu­anti­ties. In order to confirm their mol­ecular structures and especially to study their phytotoxicity and pathogenicity it was necessary to develop efficient methods for the total syntheses of these various isocoumarins. The title compound (3) was synthesized as a side product during the synthesis of the inter­mediate, methyl 3,6-dimeth­oxy-2-(2-meth­oxy-2-oxoeth­yl)benzoate (2) (see Fig. 1), necessary for the total synthesis of the isocoumarin 5,8-dimeth­oxy-3-methyl-1H-isochromen-1-one (Tiouabi, 2005).

Figure 1.

Figure 1

The reaction scheme resulting in the formation of the title compound, 3.

Structural commentary  

The mol­ecular structure of the title compound, 1-(2,5-di­meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine (3), is illus­trated in Fig. 2. The piperidine ring has a chair conformation with atoms N1 and C11 being displaced by −0.5171 (12) and 0.6876 (15) Å, respectively, from the mean plane of the remaining four C atoms (C9/C10/C12/C13). This mean plane is normal to the plane of the benzene ring (C1–C6), with a dihedral angle of 88.34 (9)°. Planes C2/O1/C7 and C5/O2/C8, involving the meth­oxy groups, are inclined to the benzene ring by 13.23 (15) and 10.45 (15)°, respectively.graphic file with name e-76-00794-scheme1.jpg

Figure 2.

Figure 2

The mol­ecular structure of compound 3, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal of 3, mol­ecules related by the glide plane are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction (Fig. 3 and Table 1). There are no other significant inter­molecular inter­actions present in the crystal.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of compound 3. The hydrogen bonds (Table 1) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O2i 0.98 2.51 3.495 (2) 180

Symmetry code: (i) Inline graphic.

Hirshfeld surface analysis and two-dimensional fingerprint plots  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17.5 (Turner et al., 2017). For an excellent explanation of the use of Hirshfeld surface analysis and other calculations, such as energy frameworks, to study the mol­ecular packing see the recent article by Tiekink and collaborators (Tan et al., 2019). The Hirshfeld surface is colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks (Turner et al., 2015; Tan et al., 2019) are represented by cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the E electrostatic, E dispersion and E total energy components, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energy.

A view of the Hirshfeld surface of 3 mapped over d norm is shown in Fig. 4. The short inter­atomic O⋯H/H⋯O contacts are indicated by the faint red spots. A full list of short inter­atomic contacts in the crystal of 3 are given in Table 2. The most significant contacts, apart from H⋯H contacts, are O⋯H and C⋯H contacts as confirmed by the two-dimensional fingerprint plots (Fig. 5). The principal inter­molecular contacts for 3, are delineated into H⋯H at 84.1% (Fig. 5 b), O⋯H/H⋯O at 8.3% (Fig. 5 c) and C⋯H/H⋯C at 7.6% (Fig. 5 d) contacts. The inter­molecular contacts are therefore dominated by dispersion forces (H⋯H at 84.1%; Fig. 5 b). This is confirmed by the energy frameworks shown in Fig. 6. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells, and obtained using the wave function calculated at the HF/3-21G level of theory.

Figure 4.

Figure 4

The Hirshfeld surface of compound 3 mapped over d norm, in the colour range −0.1434 to 1.2136 a.u..

Table 2. Short inter­atomic contacts (Å)a in the crystal of compound 3 .

Atom1⋯Atom2 Length Length − vdW
O2⋯H8B ii 2.515 −0.205
C4⋯H15C iii 2.830 −0.070
O2⋯H15B ii 2.686 −0.034
C2⋯H8A iv 2.918 0.018
C3⋯H14C iii 2.977 0.077
H7C⋯H17A iv 2.484 0.084
O1⋯H16A iv 2.814 0.094

Note: (a) Calculated using Mercury (Macrae et al., 2020). Symmetry codes: (ii) x, −y + Inline graphic, z − Inline graphic; (iii) x, y, z − 1; (iv) x − 1, y, z.

Figure 5.

Figure 5

(a) The full two-dimensional fingerprint plot for compound 3, and fingerprint plots delineated into (b) H⋯H at 84.1%, (c) O⋯H/H⋯O at 8.3% and (d) C⋯H/H⋯C at 7.6% contacts.

Figure 6.

Figure 6

The energy frameworks viewed down the b-axis direction comprising (a) electrostatic potential forces, (b) dispersion forces and (c) total energy for a cluster about a reference mol­ecule of 3. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for 1-(phen­yl)-2,2,6,6-tetra­methyl­piperidines gave 26 hits (see file S1 in the supporting information). A number of these structures involve heteroaryl and heterocyclic aluminium compounds, see for example CSD refcodes CEGLUY, CEGMF, CEGMEJ, CEGMIN, CEGMOT and CEGMUZ (Chen et al., 2017). They also include a number of borohydride derivatives, see for example CSD refcodes JAKZON, JAKZUT, JALBAC and JALBEG (Chernichenko et al., 2017). Only one compound has a meth­oxy substituent, viz. 1-(2-iodo-3-meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine (VAPCUM; Crosbie et al., 2012). In these eleven compounds, the piperidine ring has a chair conformation with the mean plane of the four planar C atoms being inclined to the plane of the benzene ring by dihedral angles varying from ca 83.0 to 90.0°. In compound 3 this dihedral angle is similar at 88.34 (9)°.

Synthesis and crystallization  

The synthesis of compound 3 is illustrated in Fig. 1. It arises as a result of the condensation of 2-bromo-1,4-di­meth­oxy­benzene (1) with tetra­methyl­piper­idene (HTMP). It is a side product obtained during the synthesis of methyl 3,6-dimeth­oxy-2-(2-meth­oxy-2-oxoeth­yl)benzoate (2) (Tiouabi, 2005). Colourless rod-like crystals of 3 were obtained by slow evaporation at room temperature of a solution in acetone.There are no analytical or spectroscopic data available for compound 3.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were fixed geometrically (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C17H27NO2
M r 277.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.8817 (10), 28.249 (4), 8.1369 (13)
β (°) 99.649 (12)
V3) 1559.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.10 × 0.10
 
Data collection
Diffractometer STOE IPDS 2
No. of measured, independent and observed [I > 2σ(I)] reflections 10596, 2770, 1695
R int 0.085
(sin θ/λ)max−1) 0.599
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.073, 0.83
No. of reflections 2770
No. of parameters 188
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.13

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989020005952/dj2006sup1.cif

e-76-00794-sup1.cif (876.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005952/dj2006Isup2.hkl

e-76-00794-Isup2.hkl (221.6KB, hkl)

CSD search S1. DOI: 10.1107/S2056989020005952/dj2006sup3.pdf

e-76-00794-sup3.pdf (100.7KB, pdf)

Supporting information file. DOI: 10.1107/S2056989020005952/dj2006Isup4.cml

CCDC reference: 2000223

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RT and HSE are grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

Crystal data

C17H27NO2 F(000) = 608
Mr = 277.39 Dx = 1.182 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.8817 (10) Å Cell parameters from 4940 reflections
b = 28.249 (4) Å θ = 1.4–25.5°
c = 8.1369 (13) Å µ = 0.08 mm1
β = 99.649 (12)° T = 173 K
V = 1559.4 (4) Å3 Rod, colourless
Z = 4 0.40 × 0.10 × 0.10 mm

Data collection

STOE IPDS 2 diffractometer 1695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.085
Plane graphite monochromator θmax = 25.2°, θmin = 1.4°
φ + ω scans h = −8→8
10596 measured reflections k = −33→33
2770 independent reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0237P)2] where P = (Fo2 + 2Fc2)/3
S = 0.83 (Δ/σ)max < 0.001
2770 reflections Δρmax = 0.13 e Å3
188 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0127 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.15231 (15) 0.11464 (4) 0.48898 (14) 0.0359 (3)
O2 0.47503 (17) 0.23289 (4) 0.44354 (15) 0.0389 (3)
N1 0.17336 (17) 0.10517 (4) 0.72612 (15) 0.0239 (3)
C1 0.1701 (2) 0.14010 (5) 0.59863 (18) 0.0240 (4)
C2 0.0023 (2) 0.14458 (5) 0.4777 (2) 0.0274 (4)
C3 −0.0050 (2) 0.17837 (6) 0.3529 (2) 0.0320 (4)
H3 −0.120713 0.181465 0.271592 0.038*
C4 0.1545 (2) 0.20752 (6) 0.3461 (2) 0.0326 (4)
H4 0.148437 0.230424 0.259885 0.039*
C5 0.3219 (2) 0.20347 (5) 0.4637 (2) 0.0286 (4)
C6 0.3285 (2) 0.17020 (5) 0.58934 (19) 0.0264 (4)
H6 0.443892 0.167808 0.671343 0.032*
C7 −0.3053 (2) 0.11190 (7) 0.3485 (2) 0.0420 (5)
H7C −0.398183 0.086893 0.366432 0.063*
H7B −0.248449 0.104630 0.248721 0.063*
H7A −0.374711 0.142279 0.333365 0.063*
C8 0.6384 (3) 0.23518 (6) 0.5748 (2) 0.0407 (5)
H8A 0.703032 0.204187 0.588607 0.061*
H8B 0.592985 0.244041 0.678454 0.061*
H8C 0.732223 0.258909 0.548061 0.061*
C9 0.1554 (2) 0.12313 (5) 0.89467 (19) 0.0269 (4)
C10 0.0977 (2) 0.08181 (6) 0.9977 (2) 0.0342 (4)
H10A 0.103522 0.092378 1.114443 0.041*
H10B −0.040201 0.072692 0.954118 0.041*
C11 0.2287 (2) 0.03873 (6) 0.9958 (2) 0.0381 (5)
H11A 0.365874 0.046683 1.046272 0.046*
H11B 0.182345 0.012857 1.061593 0.046*
C12 0.2215 (3) 0.02299 (6) 0.8172 (2) 0.0364 (4)
H12B 0.084985 0.013326 0.770843 0.044*
H12A 0.307259 −0.005084 0.815714 0.044*
C13 0.2870 (2) 0.06129 (5) 0.7049 (2) 0.0294 (4)
C14 −0.0136 (2) 0.15863 (6) 0.8748 (2) 0.0352 (4)
H14C −0.039727 0.167933 0.985055 0.053*
H14B −0.132032 0.144135 0.810935 0.053*
H14A 0.022371 0.186676 0.815626 0.053*
C15 0.3403 (2) 0.14765 (6) 0.9888 (2) 0.0361 (4)
H15C 0.316036 0.157724 1.098873 0.054*
H15B 0.371277 0.175361 0.925566 0.054*
H15A 0.451420 0.125506 1.002183 0.054*
C16 0.5112 (2) 0.06636 (6) 0.7429 (2) 0.0350 (4)
H16C 0.572685 0.036915 0.713805 0.053*
H16B 0.552574 0.072901 0.861923 0.053*
H16A 0.552219 0.092519 0.677366 0.053*
C17 0.2301 (2) 0.04478 (6) 0.5248 (2) 0.0387 (5)
H17A 0.280543 0.067303 0.450547 0.058*
H17B 0.086213 0.042978 0.495777 0.058*
H17C 0.287008 0.013449 0.512256 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0285 (6) 0.0478 (7) 0.0295 (7) −0.0066 (5) −0.0007 (5) 0.0043 (6)
O2 0.0453 (7) 0.0328 (7) 0.0391 (7) −0.0084 (6) 0.0085 (6) 0.0091 (6)
N1 0.0296 (7) 0.0217 (7) 0.0205 (7) 0.0021 (6) 0.0045 (6) 0.0027 (6)
C1 0.0292 (9) 0.0225 (8) 0.0210 (9) 0.0038 (7) 0.0058 (7) −0.0006 (7)
C2 0.0276 (9) 0.0319 (9) 0.0233 (9) 0.0011 (7) 0.0063 (8) −0.0023 (7)
C3 0.0353 (10) 0.0384 (10) 0.0218 (9) 0.0095 (8) 0.0032 (8) 0.0026 (8)
C4 0.0465 (11) 0.0275 (9) 0.0256 (9) 0.0094 (8) 0.0111 (9) 0.0059 (7)
C5 0.0362 (9) 0.0229 (8) 0.0283 (9) 0.0011 (7) 0.0098 (8) 0.0005 (7)
C6 0.0304 (9) 0.0230 (8) 0.0251 (8) 0.0027 (7) 0.0024 (7) −0.0004 (7)
C7 0.0308 (10) 0.0594 (12) 0.0329 (10) −0.0019 (9) −0.0032 (8) −0.0076 (9)
C8 0.0476 (11) 0.0392 (11) 0.0374 (11) −0.0115 (9) 0.0136 (10) −0.0044 (8)
C9 0.0334 (9) 0.0276 (9) 0.0197 (8) 0.0020 (7) 0.0045 (7) 0.0017 (7)
C10 0.0368 (10) 0.0400 (10) 0.0266 (9) 0.0011 (8) 0.0082 (8) 0.0080 (8)
C11 0.0397 (10) 0.0337 (10) 0.0409 (11) 0.0013 (8) 0.0068 (9) 0.0146 (8)
C12 0.0379 (10) 0.0248 (9) 0.0472 (11) 0.0019 (8) 0.0088 (9) 0.0065 (8)
C13 0.0318 (9) 0.0225 (8) 0.0340 (10) 0.0007 (7) 0.0063 (8) 0.0014 (7)
C14 0.0428 (10) 0.0355 (10) 0.0284 (10) 0.0095 (8) 0.0093 (8) 0.0006 (8)
C15 0.0427 (10) 0.0369 (10) 0.0270 (9) −0.0030 (8) 0.0010 (8) −0.0032 (8)
C16 0.0343 (9) 0.0309 (9) 0.0403 (10) 0.0064 (8) 0.0076 (8) 0.0036 (8)
C17 0.0426 (11) 0.0301 (9) 0.0437 (11) 0.0007 (8) 0.0085 (9) −0.0079 (9)

Geometric parameters (Å, º)

O1—C2 1.3743 (19) C9—C15 1.536 (2)
O1—C7 1.4204 (18) C10—C11 1.516 (2)
O2—C5 1.3732 (19) C10—H10A 0.9900
O2—C8 1.416 (2) C10—H10B 0.9900
N1—C1 1.4293 (19) C11—C12 1.513 (2)
N1—C9 1.4867 (19) C11—H11A 0.9900
N1—C13 1.4908 (19) C11—H11B 0.9900
C1—C2 1.392 (2) C12—C13 1.532 (2)
C1—C6 1.394 (2) C12—H12B 0.9900
C2—C3 1.388 (2) C12—H12A 0.9900
C3—C4 1.381 (2) C13—C17 1.526 (2)
C3—H3 0.9500 C13—C16 1.529 (2)
C4—C5 1.374 (2) C14—H14C 0.9800
C4—H4 0.9500 C14—H14B 0.9800
C5—C6 1.384 (2) C14—H14A 0.9800
C6—H6 0.9500 C15—H15C 0.9800
C7—H7C 0.9800 C15—H15B 0.9800
C7—H7B 0.9800 C15—H15A 0.9800
C7—H7A 0.9800 C16—H16C 0.9800
C8—H8A 0.9800 C16—H16B 0.9800
C8—H8B 0.9800 C16—H16A 0.9800
C8—H8C 0.9800 C17—H17A 0.9800
C9—C14 1.524 (2) C17—H17B 0.9800
C9—C10 1.528 (2) C17—H17C 0.9800
C2—O1—C7 117.22 (13) C9—C10—H10B 108.9
C5—O2—C8 117.75 (13) H10A—C10—H10B 107.7
C1—N1—C9 116.13 (11) C12—C11—C10 108.78 (14)
C1—N1—C13 115.76 (12) C12—C11—H11A 109.9
C9—N1—C13 121.11 (11) C10—C11—H11A 109.9
C2—C1—C6 118.02 (14) C12—C11—H11B 109.9
C2—C1—N1 119.07 (14) C10—C11—H11B 109.9
C6—C1—N1 122.90 (13) H11A—C11—H11B 108.3
O1—C2—C3 122.57 (14) C11—C12—C13 113.56 (14)
O1—C2—C1 117.18 (14) C11—C12—H12B 108.9
C3—C2—C1 120.24 (15) C13—C12—H12B 108.9
C4—C3—C2 120.51 (15) C11—C12—H12A 108.9
C4—C3—H3 119.7 C13—C12—H12A 108.9
C2—C3—H3 119.7 H12B—C12—H12A 107.7
C5—C4—C3 120.13 (15) N1—C13—C17 108.08 (12)
C5—C4—H4 119.9 N1—C13—C16 115.46 (12)
C3—C4—H4 119.9 C17—C13—C16 108.10 (14)
O2—C5—C4 115.91 (14) N1—C13—C12 107.81 (13)
O2—C5—C6 124.65 (14) C17—C13—C12 107.65 (13)
C4—C5—C6 119.42 (15) C16—C13—C12 109.49 (13)
C5—C6—C1 121.67 (14) C9—C14—H14C 109.5
C5—C6—H6 119.2 C9—C14—H14B 109.5
C1—C6—H6 119.2 H14C—C14—H14B 109.5
O1—C7—H7C 109.5 C9—C14—H14A 109.5
O1—C7—H7B 109.5 H14C—C14—H14A 109.5
H7C—C7—H7B 109.5 H14B—C14—H14A 109.5
O1—C7—H7A 109.5 C9—C15—H15C 109.5
H7C—C7—H7A 109.5 C9—C15—H15B 109.5
H7B—C7—H7A 109.5 H15C—C15—H15B 109.5
O2—C8—H8A 109.5 C9—C15—H15A 109.5
O2—C8—H8B 109.5 H15C—C15—H15A 109.5
H8A—C8—H8B 109.5 H15B—C15—H15A 109.5
O2—C8—H8C 109.5 C13—C16—H16C 109.5
H8A—C8—H8C 109.5 C13—C16—H16B 109.5
H8B—C8—H8C 109.5 H16C—C16—H16B 109.5
N1—C9—C14 107.86 (12) C13—C16—H16A 109.5
N1—C9—C10 108.36 (12) H16C—C16—H16A 109.5
C14—C9—C10 107.30 (14) H16B—C16—H16A 109.5
N1—C9—C15 115.10 (13) C13—C17—H17A 109.5
C14—C9—C15 108.04 (13) C13—C17—H17B 109.5
C10—C9—C15 109.90 (13) H17A—C17—H17B 109.5
C11—C10—C9 113.44 (14) C13—C17—H17C 109.5
C11—C10—H10A 108.9 H17A—C17—H17C 109.5
C9—C10—H10A 108.9 H17B—C17—H17C 109.5
C11—C10—H10B 108.9
C9—N1—C1—C2 −106.25 (16) C1—N1—C9—C14 46.76 (17)
C13—N1—C1—C2 102.61 (16) C13—N1—C9—C14 −163.75 (13)
C9—N1—C1—C6 73.77 (19) C1—N1—C9—C10 162.62 (12)
C13—N1—C1—C6 −77.38 (18) C13—N1—C9—C10 −47.89 (17)
C7—O1—C2—C3 13.5 (2) C1—N1—C9—C15 −73.91 (16)
C7—O1—C2—C1 −166.84 (14) C13—N1—C9—C15 75.58 (17)
C6—C1—C2—O1 −179.96 (14) N1—C9—C10—C11 50.81 (17)
N1—C1—C2—O1 0.1 (2) C14—C9—C10—C11 167.03 (14)
C6—C1—C2—C3 −0.3 (2) C15—C9—C10—C11 −75.74 (17)
N1—C1—C2—C3 179.71 (14) C9—C10—C11—C12 −57.94 (18)
O1—C2—C3—C4 −179.64 (15) C10—C11—C12—C13 58.42 (18)
C1—C2—C3—C4 0.7 (2) C1—N1—C13—C17 −46.30 (16)
C2—C3—C4—C5 −0.4 (2) C9—N1—C13—C17 164.11 (13)
C8—O2—C5—C4 170.51 (15) C1—N1—C13—C16 74.85 (17)
C8—O2—C5—C6 −11.2 (2) C9—N1—C13—C16 −74.74 (18)
C3—C4—C5—O2 177.94 (15) C1—N1—C13—C12 −162.40 (12)
C3—C4—C5—C6 −0.4 (2) C9—N1—C13—C12 48.01 (17)
O2—C5—C6—C1 −177.36 (15) C11—C12—C13—N1 −51.42 (17)
C4—C5—C6—C1 0.9 (2) C11—C12—C13—C17 −167.79 (14)
C2—C1—C6—C5 −0.5 (2) C11—C12—C13—C16 74.93 (18)
N1—C1—C6—C5 179.49 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O2i 0.98 2.51 3.495 (2) 180

Symmetry code: (i) x, −y+1/2, z+1/2.

Funding Statement

This work was funded by Swiss National Science Foundation and the University of Neuchâtel grant .

References

  1. Chen, S., Li, B., Wang, X., Huang, Y., Li, J., Zhu, H., Zhao, L., Frenking, G. & Roesky, H. W. (2017). Chem. Eur. J. 23, 13633–13637. [DOI] [PubMed]
  2. Chernichenko, K., Kótai, B., Nieger, M., Heikkinen, S., Pápai, I. & Repo, T. (2017). Dalton Trans. 46, 2263–2269. [DOI] [PubMed]
  3. Crosbie, E., Kennedy, A. R., Mulvey, R. E. & Robertson, S. D. (2012). Dalton Trans. 41, 1832–1839. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  6. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  12. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  13. Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.
  14. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  15. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989020005952/dj2006sup1.cif

e-76-00794-sup1.cif (876.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005952/dj2006Isup2.hkl

e-76-00794-Isup2.hkl (221.6KB, hkl)

CSD search S1. DOI: 10.1107/S2056989020005952/dj2006sup3.pdf

e-76-00794-sup3.pdf (100.7KB, pdf)

Supporting information file. DOI: 10.1107/S2056989020005952/dj2006Isup4.cml

CCDC reference: 2000223

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES