Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 19;76(Pt 6):848–856. doi: 10.1107/S2056989020006362

Synthesis and crystal structure of two manganese-based 12-metallacrown-4 complexes: Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6 and MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O

Curtis M Zaleski a,*, Matthias Zeller b
PMCID: PMC7274016  PMID: 32523752

The metallacrown (MC) complexes Na2(3-chloro­benzoate)2[12-MCMn(III) N(shi)-4](DMF)6, 1, and MnNa(3-chloro­benzoate)3[12-MCMn(III) N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2, where shi3− is salicyl­hydroximate and DMF is N,N-di­methyl­formamide, both have an overall square shape due to the presence of four ring MnIII ions and four shi3− ligands. The two MC complexes bind different cations in the central cavity of the mol­ecule: two Na+ ions in 1 and one MnII ion and one Na+ ion in 2.

Keywords: metallacrown, manganese complex, salicyl­hydroximate, crystal structure

Abstract

Similar synthetic schemes yield two different metallacrown (MC) complexes: bis­(μ-3-chloro­benzoato)hexa­kis­(di­methyl­formamide)­tetra­kis­(μ4-N,2-dioxido­benzene-1-carboximidato)tetra­manganese(III)disodium(I), [Mn4Na2(C7H4ClO2)2(C7H4NO3)4(C3H7NO)6] or Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1, and tetra-μ-aqua-tris­(μ-3-chloro­benzoato)(di­methyl­formamide)­tetra­kis­(μ4-N,2-dioxido­benzene-1-carboximidato)penta­manganese(III)sodi­um(I) di­methyl­formamide tetra­solvate 0.72-hydrate, [Mn5Na(C7H4ClO2)3(C7H4NO3)4(C3H7NO)(H2O)4]·4C3H7NO·0.718H2O or MnNa(3-chloro­benzo­ate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2, where shi3− is salicyl­hydrox­imate and DMF is N,N-di­methyl­formamide. Both complexes have the same framework consisting of four MnIII ions in the MC ring and four shi3− ligands, resulting in an overall square-shaped mol­ecule. The MnIII ions are either five- or six-coordinate with elongated bond lengths in the apical or axial direction, respectively. The structure of 1 is nearly planar, and the MC binds two Na+ ions on opposite faces of the MC central cavity. The 3-chloro­benzoate anions also bind on opposite faces of the MC and form bridges between the central Na+ ions and the ring MnIII ions. For 1 the metallacrown mol­ecule, except for the central Na+ ion, exhibits whole mol­ecule disorder over two sets of sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with opposite sense of rotation around the Na⋯Na axis. The occupancy ratio of the main disorder of the metallacrown mol­ecules and 3-chloro­benzoate anions refined to 0.9276 (9):0.0724 (9). The structure of 2 is slightly domed, and the MC binds both an MnII ion and an Na+ ion in the MC central cavity. The MnII ion is located on the convex side of the MC, while the Na+ ion binds to the concave side. Complex 2 represents the first instance of a [12-MCMn(III)N(shi)-4] mol­ecule binding both 3d transition metal and alkali metal ions in the central cavity. In addition, three 3-chloro­benzoate anions bind on the convex side of the MC and connect the MnII ion to three of the ring MnIII ions.

Chemical context  

The first 12-metallacrown-4 complex synthesized, Mn(acetate)2[12-MCMn(III)N(shi)-4], was based on the ligand salicyl­hydroxamic acid (H3shi) and manganese (Lah & Pecoraro, 1989). In this complex, four MnIII ions are located in the metallacrown (MC) ring and an MnII ion is trapped in the central MC cavity produced by the four triply deprotonated salicyl­hydroximate (shi3−) ligands. The MnII ion is further bound by two acetate anions that serve to balance the charge of the mol­ecule and to bridge between the ring MnIII ions and the central MnII ion. Since this initial report in 1989, the [12-MCMn(III)N(shi)-4] framework has been used to encapsulate not only manganese(II) but also alkali, alkaline earth, and lanthanide ions in the MC cavity (Mezei et al., 2007; Lah & Pecoraro, 1991; Koumousi et al., 2011; Azar et al., 2014). When only Na+ or K+ ions are incorporated into the [12-MCMn(III)N(shi)-4] framework, the two metal ions and their counter-anions are typically bound on opposite faces of the MC (Gibney et al., 1996). When lanthanide ions are bound to the MC cavity, four carboxyl­ate anions serve to tether the Ln III ion to the MC and typically an alkali metal ion is bound to the opposite face of the MC for charge balance (Travis et al., 2015, 2016). Furthermore, the bridging acetate anion of the original Mn(acetate)2[12-MCMn(III)N(shi)-4] mol­ecule can be substituted by other carboxyl­ate anions or even halide and pseudohalide anions (Gibney et al., 1996; Kessissoglou et al., 2002; Dendrinou-Samara et al., 2005; Boron et al., 2016) . This ability to substitute various components of the MC complex allows the properties of the mol­ecules to be tailored to a particular application. For instance, the single-mol­ecule magnet properties of a series of DyMX 4[12-MCMn(III)N(shi)-4] complexes, where M is Na+ or K+ and X is either acetate, tri­methyl­acetate, benzoate, or salicylate, are dictated by the identity of the carboxyl­ate anion even though the structures of the mol­ecules are strikingly similar (Boron et al., 2016). Moreover, [12-MCMn(III)N(shi)-4] complexes can be used as building blocks to form larger structures. They can be linked together to form either dimeric and trimeric systems or one-dimensional chains, and some of these larger structures have SMM-like behavior (Mengle et al., 2015; Zaleski et al., 2015; Alaimo et al., 2017; Wang et al., 2019).

Herein we present the first use of a halogenated benzoate anion to serve as the bridging ligand between the central cavity metal ion and the ring metal ions for a [12-MCMn(III)N(shi)-4] complex. The use of 3-chloro­benzoate leads to two different mol­ecules: Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1, where DMF is N,N-di­methyl­form­­amide, and MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2. Complex 1 is typical of other di-sodium MCs with the Na+ ions bonded to opposite faces of the MC. However, complex 2 represents a new structural motif in metallacrown chemistry. In 2 the central MnII ion is bonded to three carboxyl­ate anions as opposed to the typical number of two anions. This then facilitates the binding of an Na+ ion to the opposite face of the MC for charge-balance purposes. This is the first instance of a 3d transition metal ion and an alkali metal ion both binding to the central cavity of a 12-MC-4 complex.

Structural commentary  

Both 1 and 2 are based on the same overall 12-MC-4 framework. Four salicyl­hydroximate ligands and four ring Mn ions combine to generate a Mn–N–O repeat unit that recurs four times in a cyclic fashion. The fused five- and six-membered rings of the shi3− ligands place the metal ions at 90° relative to each other, giving an overall square-shaped mol­ecule. The ring Mn ions are either five- or six-coordinate in the structures, and the ligand atoms in the basal/equatorial planes are the same, consisting of trans six- and five-membered chelate rings: each six-membered chelate ring is formed by the phenolate oxygen atom and oxime nitro­gen atom of a shi3− ligand and each five-membered chelate ring is formed by the carbonyl oxygen atom and the oxime oxygen atom of a different shi3− ligand. The four Mn ions of the MC ring are assigned a 3+ oxidation state based on average bond lengths, the presence of elongated axial bond lengths typical of a high-spin d 4 electron configuration, bond-valence sum (BVS) values (Liu & Thorp, 1993), and overall charge-balance considerations (Table 1). The four MnIII ions and four shi3− ligands produce a neutral MC framework. The main differences between 1 and 2 are the metal ions bound to the central cavity and the number of the ancillary ligands that bind to the metal ions of the MC.graphic file with name e-76-00848-scheme1.jpg

Table 1. Average bond-length (Å) and bond-valence-sum (BVS) values (v. u.) used to support assigned oxidation states of the manganese ions of 1 and 2 .

  Avg. bond length BVS value Assigned oxidation state
1      
Mn1 1.944 3.05 3+
Mn2 2.027 3.12 3+
       
2      
Mn1 2.256 1.97 2+
Mn2 2.054 3.07 3+
Mn3 2.044 3.10 3+
Mn4 2.053 3.07 3+
Mn5 2.044 3.07 3+

For 1 the MC framework (ring MnIII ions and shi3− ligands) and the 3-chloro­benozate anions exhibit whole-mol­ecule disorder over two sets of sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with an opposite sense of rotation around the Na⋯Na axis. The occupancy ratio of the MC frameworks and 3-chloro­benzoate anions disorder refined to 0.9276 (9):0.0724 (9). In addition, the coordinated DMF mol­ecules show disorder as outlined in the Refinement section below. Thus, only the structures of the main moieties will be discussed. The MC framework is nearly planar, and the MC cavity, produced by the four oxime oxygen atoms of the four shi3− ligands, captures two Na+ ions on opposite faces of the MC (Fig. 1). The charge of the Na+ ions is balanced by two 3-chloro­benzoate anions that are also located on opposite faces of the MC. Each 3-chloro­benzoate connects one Na+ to a ring MnIII ion (Mn1). The Na+ ion (Na1) is seven-coordinate, and the coordination environment consists of the four oxime oxygen atoms, a carboxyl­ate oxygen atom from a 3-chloro­benzoate anion, a carbonyl oxygen atom of a terminal DMF mol­ecule, and a μ-carbonyl oxygen atom of a DMF mol­ecule that also bridges to Mn2 of the MC ring. A SHAPE (SHAPE 2.1; Llunell et al., 2013) analysis (Table 2) of the geometry yields the lowest continuous shape measure (CShM) values for a face-capped octa­hedron and a face-capped trigonal prism, 3.683 and 3.798, respectively (Llunell et al., 2013; Pinsky & Avnir, 1998; Casanova et al., 2004; Cirera et al., 2005). Although the CShM value is lower for the face-capped octa­hedron, it is difficult to accurately assign the geometry as both CShM values are relatively close. In addition, both CShM values are well over 3.0, which is considered an upper threshold value at which significant distortions occur (Cirera et al., 2005). The distortions may arise from the bonding nature of the MC framework. The four oxime oxygens of the MC cavity lie nearly in a plane due to the square shape of the mol­ecule imposed by the fused chelate rings of the shi3− ligands. Thus, this portion of the coordination environment is not flexible and likely leads to the distortion. Mn1 of the MC ring is five-coordinate with a basal ligand environment as described above. A carboxyl­ate oxygen atom of a 3-chloro­benzoate anion occupies the apical position. A SHAPE analysis (Table 3) reveals the geometry can be best described as square-pyramidal and the calculated tau (τ) value of 0.15 supports this assignment, where τ = 0 for an ideal square pyramid and 1.0 for an ideal trigonal prism (Addison et al., 1984). Mn2 is six-coordinate with an elongated Jahn–Teller axis, and the SHAPE analysis confirms a tetra­gonally distorted octa­hedral geometry (Table 4). The ligands along the axial axis consist of two carbonyl oxygen atoms of two DMF mol­ecules. The DMF mol­ecule associated with O9 binds in a terminal fashion, while the oxygen atom (O10) of the second DMF mol­ecule forms a one-atom μ-bridge to the central Na+ ion.

Figure 1.

Figure 1

The single-crystal X-ray structure of Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1, with displacement ellipsoids at the 50% probability level [symmetry code: (i) −x + 1, −y + 1, −z + 1]. (a) side view with only the metal atoms and heteroatoms of the axial ligands labelled for clarity and (b) top view with the axial ligand atoms omitted for clarity. In addition, hydrogen atoms and disorder have been omitted for clarity. Color scheme: green – Mn, yellow – sodium, red – oxygen, dark blue – nitro­gen, gray – carbon, and light blue – chlorine. All figures were generated with the program Mercury (Macrae et al., 2020).

Table 2. Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate sodium ion of 1 .

Heptagon 34.157
Hexagonal pyramid 19.758
Penta­gonal bipyramid 8.496
Capped octa­hedron 3.683
Capped trigonal prism 3.798
Johnson penta­gonal bipyramid 12.331
Johnson elongated triangular pyramid 21.938

Table 3. Continuous shape measurement (CShM) values (SHAPE 2.1) for the five-coordinate manganese ion of 1 .

Penta­gon 28.077
Vacant octa­hedron 1.468
Trigonal bipyramid 4.930
Square pyramid 0.712
Johnson trigonal bipyramid 8.311

Table 4. Continuous shape measurement (CShM) values (SHAPE 2.1) for the six-coordinate manganese ion of 1 .

Hexagon 31.700
Penta­gonal pyramid 27.764
Octa­hedron 0.872
Trigonal prism 16.422
Johnson penta­gonal pyramid 30.863

For 2 the MC is slightly domed with an Mn ion and Na ion bonded to opposite sides of the MC cavity. The Mn ion is bound on the convex side of the MC, and the Na ion is bonded to the concave side (Fig. 2). The Mn1 ion is assigned a 2+ oxidation state based an average bond length of 2.256 Å, a BVS value of 1.97 valence units (v. u.), and overall charge-balance considerations (Table 1). The total 3+ charge of the MnII and Na+ ions is counterbalanced by the presence of three 3-chloro­benzoate anions. The 3-chloro­benzoate anions bridge between Mn1 and three of the ring MnIII ions (Mn2, Mn4, and Mn5). The MnII ion is seven-coordinate with a coordination environment consisting of four oxime oxygen atoms from four different shi3− ligands and of three carboxyl­ate oxygen atoms from three different 3-chloro­benzoate anions. A SHAPE analysis of the geometry indicates that an unambiguous assignment is difficult as in the central Na+ ions in 1 (Table 5). The geometry is either face-capped octa­hedral (CShM = 1.589) or face-capped trigonal prismatic (CShM = 1.807). The Na+ ion of 2 is eight-coordinate with four oxime oxygen atoms from the shi3− ligands and four water mol­ecules. The SHAPE analysis indicates that the geometry can best be described as a biaugmented trigonal prism, where two of the rectangular faces of a trigonal prism are capped by an atom (Table 6). All of the ring MnIII ions are six-coordinate with an elongated Jahn–Teller axis. The SHAPE analysis confirms a tetra­gonally distorted octa­hedral geometry for each MnIII ion (Table 7). The axial ligands of Mn2, Mn4, and Mn5 consist of a carboxyl­ate oxygen atom from a 3-chloro­benzoate anion and an oxygen atom of a water mol­ecule that forms a one-atom μ-bridge to the Na+ ion. The axial ligands of Mn3 are a carbonyl oxygen atom of a terminal DMF mol­ecule and also an oxygen atom of a water mol­ecule that forms a one-atom μ-bridge to the Na+ ion. Lastly, there are four DMF mol­ecules located in the lattice. One of the DMF mol­ecules (associated with O27) is disordered due to the presence of a partially occupied water mol­ecule [0.718 (6) occupancy]. The occupancy ratio of the disordered DMF mol­ecule refined to 0.718 (6):0.282 (6).

Figure 2.

Figure 2

The single-crystal X-ray structure of MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2, with displacement ellipsoids at the 50% probability level. (a) side view with only the metal atoms and heteroatoms of the axial ligands labelled for clarity and (b) top view with the axial ligand atoms omitted for clarity. In addition, the lattice DMF mol­ecules, partially occupied water mol­ecule, hydrogen atoms, and disorder have been omitted for clarity. See Fig. 1 for additional display details.

Table 5. Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate manganese ion of 2 .

Heptagon 32.707
Hexagonal pyramid 20.417
Penta­gonal bipyramid 5.626
Capped octa­hedron 1.589
Capped trigonal prism 1.807
Johnson penta­gonal bipyramid 9.086
Johnson elongated triangular pyramid 20.152

Table 6. Continuous shape measurement (CShM) values (SHAPE 2.1) for the eight-coordinate sodium ion of 2 .

Octa­gon 30.163
Heptagonal pyramid 25.281
Hexagonal bipyramid 13.805
Cube 6.579
Square anti­prism 3.022
Triangular dodeca­hedron 3.398
Johnson gyrobifastigium 16.071
Johnson elongated triangular bipyramid 28.948
Johnson biaugmented trigonal prism 4.411
Biaugmented trigonal prism 2.764
Snub diphenoid 6.604
Triakis tetra­hedron 7.183
Elongated trigonal bipyramid 24.722

Table 7. Continuous shape measurement (CShM) values (SHAPE 2.1) for the six-coordinate manganese ions of 2 .

  Mn2 Mn3 Mn4 Mn5
Hexagon 30.762 30.538 30.590 30.154
Penta­gonal pyramid 27.834 27.546 27.453 27.158
Octa­hedron 1.320 1.219 1.257 1.127
Trigonal prism 15.522 15.883 16.455 16.107
Johnson penta­gonal pyramid 30.664 29.844 30.430 30.100

Supra­molecular features  

For 1, there are two intra­molecular C—H⋯O inter­actions and their symmetry equivalents per mol­ecule (Table 8): one inter­action is between a methyl group of a coordinated DMF mol­ecule to a carbonyl oxygen atom of a second coordinated DMF mol­ecule [C26—H26A⋯O11i; symmetry code: (i) −x + 1, −y + 1, −z + 1] and the other inter­action is between a methyl group of a coordinated DMF mol­ecule and a phenolate oxygen atom of a shi3− ligand (C30—H30C⋯O6) (Fig. 3). No strong directional inter­molecular forces are observed between the mol­ecules of 1; however, there are a few weak inter­molecular C—H⋯Cl inter­actions between the methyl groups of a coordinated DMF mol­ecule (associated with O11) and the chlorine atoms of 3-chloro­benzoate anions of neighboring MCs (Table 8; Fig. 4). These inter­actions generate a one-dimensional network, and these inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 8. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26A⋯O11i 0.98 2.65 3.56 (2) 155
C29—H29A⋯Cl1ii 0.98 2.78 3.702 (10) 156
C30—H30A⋯Cl1ii 0.98 2.79 3.699 (14) 154
C30—H30C⋯O6 0.98 2.54 3.125 (16) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Intra­molecular C—H⋯O inter­actions in 1 between the hydrogen atoms (white) of the methyl groups of the coordinated DMF mol­ecules and the MC [symmetry code: (i) −x + 1, −y + 1, −z + 1]. For clarity the disorder has been omitted and only the atoms involved in the hydrogen bonding have been labeled. See Fig. 1 for additional display details.

Figure 4.

Figure 4

Inter­molecular C—H⋯Cl inter­actions in 1 between the hydrogen atoms (white) of the methyl groups of the DMF associated with O11 and the chlorine atom of the neighboring 3-chloro­benzoate anion [symmetry code: (ii) x + 1, y, z + 1]. The inter­actions result in a one-dimensional network. For clarity the disorder has been omitted and only the atoms involved in the inter­actions have been labeled.

For 2 no strong directional inter­molecular inter­actions are observed between the mol­ecules, but several hydrogen bonds exist between the water mol­ecules coordinated to the Na+ ion and the carbonyl oxygen atoms of the DMF mol­ecules located in the lattice (Table 9; Fig. 5). In addition, the partially occupied water mol­ecule associated with O28 is hydrogen bonded to the phenolate oxygen atom of a shi3− ligand of one MC and to the chlorine atom of a 3-chloro­benzoate ligand of a neighboring MC (Fig. 6). These hydrogen-bonding inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 9. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O19—H19A⋯O24 0.80 (2) 2.00 (3) 2.749 (3) 155 (5)
O19—H19B⋯O27 0.83 (2) 2.03 (3) 2.826 (7) 161 (5)
O20—H20A⋯O24 0.83 (2) 2.00 (3) 2.788 (3) 160 (5)
O20—H20B⋯O25 0.86 (2) 1.96 (3) 2.751 (4) 153 (4)
O21—H21A⋯O26 0.83 (2) 1.96 (3) 2.737 (3) 155 (5)
O21—H21B⋯O25 0.86 (2) 2.10 (4) 2.787 (3) 136 (4)
O22—H22A⋯O26 0.84 (2) 1.93 (3) 2.729 (3) 158 (5)
O22—H22B⋯O27 0.84 (2) 1.90 (3) 2.705 (6) 160 (5)
O28—H28A⋯Cl3i 0.92 (2) 2.96 (2) 3.876 (5) 171 (6)
O28—H28B⋯O9 0.90 (2) 2.14 (2) 3.019 (5) 165 (8)

Symmetry code: (i) Inline graphic.

Figure 5.

Figure 5

Inter­molecular hydrogen bonding in 2 between the water mol­ecules coordinated to the Na+ ion and the carbonyl oxygen atoms of the lattice DMF mol­ecules. For clarity the inter­actions have been divided into two sections (a) and (b), only the hydrogen atoms (white) of the water mol­ecules have been included, the disorder and the partially occupied water mol­ecule have been omitted, and only the atoms involved in the inter­actions have been labeled. See Fig. 1 for additional display details.

Figure 6.

Figure 6

Inter­molecular hydrogen bonding in 2 between the partially occupied water mol­ecule and two neighboring MCs [symmetry code: (i) x − 1, y, z]. For clarity only the hydrogen atoms (white) of the water mol­ecule associated with O28 have been included and only the atoms involved in the inter­action have been labeled. See Fig. 1 for additional display details.

Database survey  

A survey of the Cambridge Structural Database (CSD version 5.41, update March 2020, Groom et al., 2016) reveals that there are 61 different structures with the [12-MCMn(III)N(shi)-4] framework as either a discrete mol­ecule or as a building block for a larger structure. Of those compounds, there are eight di-sodium MCs as in 1 and only five MCs with a central man­ganese ion as in 2. For the eight Na2 X 2[12-MCMn(III)N(shi)-4] structures, six MCs exist as individual mol­ecules with the counter-anions (X) of chloride (JILLOF; Lah & Pecoraro, 1991), bromide (TOXNID; Gibney et al., 1996), thio­cyanate (UFIXOW; Kessissoglou et al., 2002), acetate (TIWWON; Azar et al., 2014), chloro­acetate (ZOQTUW; Daly et al., 2014), and butyrate (DUCWAB; Mengle et al., 2015). The remaining two MCs are one-dimensional chains of Na2 X 2[12-MCMn(III)N(shi)-4] complexes with either propionate (DUCWIJ) or butyrate (DUCWEF) serving as linkers between the di-sodium MCs (Mengle et al., 2015).

For the five MnX 2[12-MCMn(III)N(shi)-4] structures, the bridg­ing ligands between the central cavity MnII ions and the ring MnIII ions include two acetate-based MCs (SEDBOS; Lah & Pecoraro, 1989; TODGAX; Marzaroli et al., 2019), a benzoate-based MC (FILGAJ, Dendrinou-Samara et al., 2005), a MC with formate ions that bind to the central cavity MnII ion and two 2-(2,4-di­chloro­phen­oxy)propionate ions that bind to another MnII ion located above the central cavity MnII ion (IDUYUB; Dendrinou-Samara et al., 2001), and one MC dimer with both acetate and 1,2,4-triazolate anions (ZUCYAZ; Zaleski et al., 2015). None of these structures contains an Na+ ion opposite the MnII ion; thus, complex 2 is the first example of a [12-MCMn(III)N(shi)-4] that binds both a 3d transition metal ion and an Na+ ion in the central cavity along with three bridging carboxyl­ate-based ligands. Lastly, there are nineteen [12-MCMn(III)N(shi)-4] structures (CSD version 5.41, update March 2020, Groom et al., 2016) with both Ln III ions and Na+ ions bound in the central cavity (Azar et al., 2014; Boron et al., 2016;, Travis et al., 2016; Wang et al., 2019) and two examples of a [12-MCMn(III)N(shi)-4] complex binding both the 4d transition metal ion YIII and a Na+ ion (TIWWIH; Azar et al., 2014; WUQNUT; Travis et al., 2015).

Synthesis and crystallization  

Materials

Manganese(II) acetate tetra­hydrate (99+%) and 3-chloro­benzoic acid (99+%) were purchased from Acros Organics. Salicyl­hydroxamic acid (99%) was purchased from Alfa Aesar. Sodium hydroxide (Certified ACS grade) was purchased from Fisher Scientific. N,N-Di­methyl­formamide (DMF, Certified ACS grade) was purchased from BDH Chemicals. All reagents were used as received without further purification.

Synthesis of Na2(3-chloro­benzoate)2[12-MCMn(III)N(shi)-4](DMF)6, 1.

Sodium hydroxide (0.1710 g, 4 mmol) and 3-chloro­benzoic acid (0.6271 g, 4 mmol) were mixed in 8 mL of DMF resulting in a clear and colorless solution. The NaOH did not com­pletely dissolve. In a separate vessel, salicyl­hydroxamic acid (H3shi; 0.3063 g, 2 mmol) was dissolved in 8 mL of DMF resulting in a clear and slightly yellow solution. In a third vessel, manganese(II) acetate tetra­hydrate (0.4907 g, 2 mmol) was dissolved in 8 mL of DMF resulting in a light-orange solution. The manganese(II) acetate solution was added to the H3shi solution resulting in a dark-brown color. The sodium hydroxide/3-chloro­benzoic acid mixture was then immediately added and no color change was observed. The solution was stirred overnight and then gravity filtered the next day. A dark-brown precipitate was recovered and discarded. Also, it was observed that not all of the NaOH had dissolved after stirring overnight. The filtrate was a dark-brown solution that was left for slow evaporation at room temperature. After seven days, dark-brown/black plate-shaped crystals were collected for X-ray analysis. The remaining crystals were collected, washed with cold DMF, and dried. The percentage yield of the reaction was 1% (0.0080 g, 0.0050 mmol) based on mangan­ese(II) acetate tetra­hydrate.

Synthesis of MnNa(3-chloro­benzoate)3[12-MCMn(III)N(shi)-4](DMF)(H2O)4·4DMF·0.72H2O, 2.

The stoichiometric ratios between the reactants and the volume of DMF were the same as for 1 with slightly different masses of the reactants: sodium hydroxide (0.1627 g, 4 mmol), 3-chloro­benzoic acid (0.6267 g, 4 mmol), H3shi (0.3072 g, 2 mmol), and manganese(II) acetate tetra­hydrate (0.4914 g, 2 mmol). In addition, the mixing order was altered: the sodium hydroxide/3-chloro­benzoic acid mixture was first added to the H3shi solution, followed by the addition of the manganese(II) acetate solution. Furthermore, when the solution was filtered after stirring overnight, no precipitate was recovered. It was also observed that not all of the NaOH had dissolved. The filtrate was a dark-brown solution that was left for slow evaporation at room temperature. After three days, dark-brown/black plate crystals were collected for X-ray analysis. The remaining crystals were collected, washed with cold DMF, and dried. The percentage yield of the reaction was 35% (0.2543 g, 0.1401 mmol) based on manganese(II) acetate tetra­hydrate.

Refinement  

For 1, the metallacrown mol­ecule, except the central Na, exhibits whole mol­ecule disorder over two sets of sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with opposite sense of rotation around the Na⋯Na axis. The DMF mol­ecules of O9 and O10 of the major moiety are additionally disordered. The DMF mol­ecule associated with O11 was found to be disordered independently from the main disorder.

To assist in the refinement of the disorder, the geometries of the two metallacrowns (Mn and salicyl­hydroximate ligands), of the 3-chloro­benzoate anions, and of each DMF mol­ecule were restrained to be similar to their disordered partner(s) (esd = 0.02 Å, SAME commands in SHELXL). The distances between Mn2 and O9 and Mn2B and O9B were restrained to be similar (esd = 0.02 Å; SADI restraint in SHELXL). All atoms of the minor moiety of the 3-chloro­benzoate (C15B–C21B, Cl1B) as well as of the minor disordered DMF mol­ecules of O10 (associated with O10B and O10C) were restrained to lie in the same plane (esd = 0.01 Å; FLAT restraint in SHELXL). All disordered atoms were restrained to have similar Uij components of their ADPs (esd = 0.01 Å2; SIMU restraint in SHELXL). The ADPs of C11 and C11B of a salicyl­hydroximate were constrained to be identical. Lastly, occupancies were constrained to sum up to unity for all sites using SUMP commands. Subject to the above conditions, the occupancy ratio of the main disorder of the metallacrown mol­ecules and 3-chloro­benzoate anions refined to 0.9276 (9):0.0724 (9). The occupancy rates for the additionally split DMF of O9 refined to 0.799 (3) (O9) and 0.129 (3) (O9C), and those of the additionally split DMF mol­ecule of O10 refined to 0.498 (3) (O10) and 0.430 (3) (O10C). The occupancy ratio of the DMF mol­ecules associated with O11 refined to 0.516 (5):0.484 (5).

For 2, a partially occupied water mol­ecule (O28) induces disorder for a neighboring DMF mol­ecule (of O27). The two disordered moieties were restrained to have similar geometries, and the carbon, oxygen, and nitro­gen atoms of the DMF mol­ecule restrained to have similar Uij components of the ADPs (esd = 0.01 Å2; SIMU restraint in SHELXL). Subject to these conditions the occupancy ratio refined to 0.718 (6):0.282 (6). Water hydrogen-atom positions were refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. The water hydrogen-atom positions of partially occupied O28 were further restrained based on hydrogen-bonding considerations.

For 1 and 2, all other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp 2 carbon atoms and 0.98 Å for methyl carbon atoms. The U iso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp 2-hybridized carbon atoms or 1.5 times for methyl carbon atoms). Additional crystallographic data and experimental parameters are provided in Table 10 and in the CIF.

Table 10. Experimental details.

  1 2
Crystal data
Chemical formula [Mn4Na2(C7H4ClO2)2(C7H4NO3)4(C3H7NO)6] [Mn5Na(C7H4ClO2)3(C7H4NO3)4(C3H7NO)(H2O)4]·4C3H7NO·0.718H2O
M r 1615.99 1815.30
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P n
Temperature (K) 150 150
a, b, c (Å) 12.0423 (8), 12.3722 (8), 12.6875 (9) 14.1955 (9), 16.3349 (11), 16.6144 (10)
α, β, γ (°) 102.839 (3), 111.628 (3), 90.722 (4) 90, 94.235 (2), 90
V3) 1704.0 (2) 3842.1 (4)
Z 1 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 7.45 1.00
Crystal size (mm) 0.18 × 0.08 × 0.04 0.45 × 0.23 × 0.09
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.528, 0.754 0.636, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 22753, 6871, 5590 118654, 27291, 24179
R int 0.048 0.038
(sin θ/λ)max−1) 0.640 0.771
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.128, 1.12 0.034, 0.091, 1.03
No. of reflections 6871 27291
No. of parameters 999 1079
No. of restraints 2038 143
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.57 0.82, −0.69
Absolute structure Flack x determined using 10010 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.000 (2)

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989020006362/mw2160sup1.cif

e-76-00848-sup1.cif (4.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989020006362/mw21601sup2.hkl

e-76-00848-1sup2.hkl (545.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989020006362/mw21602sup3.hkl

e-76-00848-2sup3.hkl (2.1MB, hkl)

CCDC references: 2003408, 2003407

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CMZ thanks the Department of Chemistry and Biochemistry for continued support.

supplementary crystallographic information

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Crystal data

[Mn4Na2(C7H4ClO2)2(C7H4NO3)4(C3H7NO)6] Z = 1
Mr = 1615.99 F(000) = 828
Triclinic, P1 Dx = 1.575 Mg m3
a = 12.0423 (8) Å Cu Kα radiation, λ = 1.54178 Å
b = 12.3722 (8) Å Cell parameters from 9922 reflections
c = 12.6875 (9) Å θ = 5.7–80.7°
α = 102.839 (3)° µ = 7.45 mm1
β = 111.628 (3)° T = 150 K
γ = 90.722 (4)° Plate, brown
V = 1704.0 (2) Å3 0.18 × 0.08 × 0.04 mm

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Data collection

Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) 6871 independent reflections
Radiation source: I-mu-S microsource X-ray tube 5590 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromator Rint = 0.048
Detector resolution: 7.4074 pixels mm-1 θmax = 80.8°, θmin = 5.1°
ω and phi scans h = −15→13
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −15→15
Tmin = 0.528, Tmax = 0.754 l = −16→16
22753 measured reflections

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.554P] where P = (Fo2 + 2Fc2)/3
6871 reflections (Δ/σ)max = 0.001
999 parameters Δρmax = 0.49 e Å3
2038 restraints Δρmin = −0.57 e Å3

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The metallacrown molecule, except the central Na, exhibits whole molecule disorder over two sites. Both moieties are centrosymmetric and are related to each other by a pseudo-mirror operation with opposite sense of rotation around the Na···Na axis. The DMF molecules of O9 and O10 of the major moiety are additionally disordered. The DMF molecule associated with O11 was found to be disordered independently from the main disorder.To assist in the refinement of the disorder, the geometries of the two metallacrowns (Mn and salicylhydroximate ligands), of the 3-chlorobenzoates, and of each DMF molecule were restrained to be similar to their disordered partner(s) (esd = 0.02 Angstrom, SAME commands in Shelxl). The distances between Mn2 and O9 and Mn2B and O9B were restrained to be similar (esd = 0.02 Angstrom; SADI restraint in Shexl). All atoms of the minor moiety of the 3-chlorobenzoate (C15B-C21B, Cl1B) as well as of the minor disordered DMF molecules of O10 (associated with O10B and O10C) were restrained to lie in the same plane (esd = 0.01 Angstrom; FLAT restraint in Shexl). All disordered atoms were restrained to have similar Uij components of their ADPs (esd = 0.01 Angstrom squared; SIMU restraint in Shexl). The ADPs of C11 and C11B of a salicylhydroximate were constrained to be identical. Occupancies were constrained to sum up to unity for all sites using SUMP commands.Subject to the above conditions, the occupancy ratio of the main disorder of the metallacrown molecules and 3-chlorobenzoates refined to 0.9276 (9) to 0.0724 (9). The occupancy rates for the additionally split DMF of O9 refined to 0.799 (3) (O9) and 0.047 (3) (O9C), and those of the additionally split DMF molecule of O10 refined to 0.498 (3) (O10) and 0.430 (3) (O10C). The occupancy ratio of the DMF molecules associated with O11 refined to 0.516 (5) to 0.484 (5).All hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms).

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Na1 0.56999 (10) 0.57176 (10) 0.43966 (10) 0.0414 (3)
Mn1 0.24955 (4) 0.51893 (4) 0.28749 (3) 0.02874 (13) 0.9276 (9)
O1 0.36731 (18) 0.57424 (17) 0.43743 (16) 0.0344 (4) 0.9276 (9)
N1 0.3344 (2) 0.6609 (2) 0.5069 (2) 0.0305 (6) 0.9276 (9)
O2 0.15555 (19) 0.61826 (18) 0.35629 (17) 0.0362 (5) 0.9276 (9)
C1 0.2226 (3) 0.6782 (2) 0.4602 (2) 0.0314 (6) 0.9276 (9)
C2 0.1718 (3) 0.7641 (3) 0.5235 (3) 0.0335 (6) 0.9276 (9)
C3 0.0508 (3) 0.7792 (3) 0.4687 (3) 0.0402 (7) 0.9276 (9)
H3 0.005415 0.733099 0.393366 0.048* 0.9276 (9)
C4 −0.0042 (3) 0.8584 (3) 0.5202 (4) 0.0502 (9) 0.9276 (9)
H4 −0.086603 0.866715 0.481564 0.060* 0.9276 (9)
C5 0.0625 (4) 0.9261 (3) 0.6294 (4) 0.0550 (10) 0.9276 (9)
H5 0.025976 0.982396 0.665490 0.066* 0.9276 (9)
C6 0.1820 (3) 0.9124 (3) 0.6865 (3) 0.0479 (8) 0.9276 (9)
H6 0.225812 0.958890 0.762110 0.057* 0.9276 (9)
C7 0.2394 (3) 0.8323 (3) 0.6359 (3) 0.0348 (6) 0.9276 (9)
O3 0.3544 (2) 0.82499 (18) 0.69636 (19) 0.0408 (5) 0.9276 (9)
Mn2 0.45555 (4) 0.72084 (3) 0.66609 (4) 0.02969 (13) 0.9276 (9)
O4 0.55221 (18) 0.61023 (17) 0.63426 (16) 0.0354 (5) 0.9276 (9)
N2 0.6542 (3) 0.6066 (3) 0.7316 (2) 0.0311 (5) 0.9276 (9)
O5 0.58685 (18) 0.75588 (16) 0.81973 (17) 0.0341 (4) 0.9276 (9)
C8 0.6678 (3) 0.6852 (2) 0.8243 (2) 0.0282 (5) 0.9276 (9)
C9 0.7740 (3) 0.6954 (2) 0.9320 (2) 0.0311 (6) 0.9276 (9)
C10 0.7776 (3) 0.7720 (3) 1.0336 (3) 0.0376 (7) 0.9276 (9)
H10 0.710856 0.813058 1.030807 0.045* 0.9276 (9)
C11 0.8760 (4) 0.7888 (3) 1.1372 (3) 0.0433 (8) 0.9276 (9)
H11 0.877246 0.840970 1.205149 0.052* 0.9276 (9)
C12 0.9734 (3) 0.7283 (3) 1.1409 (3) 0.0411 (8) 0.9276 (9)
H12 1.041641 0.739355 1.211940 0.049* 0.9276 (9)
C13 0.9720 (3) 0.6520 (3) 1.0422 (3) 0.0371 (7) 0.9276 (9)
H13 1.039585 0.611952 1.045876 0.045* 0.9276 (9)
C14 0.8715 (3) 0.6334 (2) 0.9365 (2) 0.0327 (6) 0.9276 (9)
O6 0.87716 (18) 0.55919 (17) 0.84463 (17) 0.0351 (4) 0.9276 (9)
O7 0.4914 (2) 0.6448 (2) 0.2744 (2) 0.0493 (6) 0.9276 (9)
O8 0.2903 (2) 0.62890 (18) 0.20310 (19) 0.0416 (5) 0.9276 (9)
C15 0.3932 (3) 0.6717 (3) 0.2175 (3) 0.0425 (8) 0.9276 (9)
C16 0.3907 (4) 0.7686 (3) 0.1615 (3) 0.0490 (8) 0.9276 (9)
C17 0.4971 (4) 0.8206 (4) 0.1678 (4) 0.0609 (10) 0.9276 (9)
H17 0.571452 0.792859 0.203596 0.073* 0.9276 (9)
C18 0.4945 (5) 0.9129 (4) 0.1219 (4) 0.0722 (11) 0.9276 (9)
H18 0.567092 0.947097 0.124945 0.087* 0.9276 (9)
C19 0.3878 (4) 0.9554 (4) 0.0721 (4) 0.0695 (11) 0.9276 (9)
H19 0.386444 1.019893 0.042921 0.083* 0.9276 (9)
C20 0.2836 (4) 0.9034 (3) 0.0653 (4) 0.0623 (10) 0.9276 (9)
Cl1 0.14996 (15) 0.96107 (12) 0.00820 (17) 0.0925 (5) 0.9276 (9)
C21 0.2836 (4) 0.8100 (3) 0.1093 (3) 0.0511 (9) 0.9276 (9)
H21 0.210193 0.774962 0.103365 0.061* 0.9276 (9)
Mn1B 0.7452 (6) 0.3952 (5) 0.6294 (5) 0.0326 (14) 0.0724 (9)
O1B 0.6406 (18) 0.5042 (16) 0.6240 (17) 0.037 (3) 0.0724 (9)
N1B 0.672 (4) 0.586 (4) 0.727 (3) 0.033 (3) 0.0724 (9)
O2B 0.8412 (18) 0.4978 (17) 0.7831 (16) 0.036 (4) 0.0724 (9)
C1B 0.776 (2) 0.577 (2) 0.8025 (19) 0.034 (3) 0.0724 (9)
C2B 0.824 (3) 0.655 (3) 0.919 (2) 0.032 (3) 0.0724 (9)
C3B 0.935 (3) 0.635 (3) 0.995 (3) 0.034 (3) 0.0724 (9)
H3B 0.976449 0.576909 0.969409 0.041* 0.0724 (9)
C4B 0.984 (3) 0.699 (4) 1.106 (3) 0.036 (4) 0.0724 (9)
H4B 1.063759 0.691764 1.153958 0.043* 0.0724 (9)
C5B 0.918 (4) 0.773 (4) 1.149 (3) 0.040 (4) 0.0724 (9)
H5B 0.947815 0.807198 1.230734 0.048* 0.0724 (9)
C6B 0.810 (3) 0.797 (3) 1.076 (3) 0.036 (3) 0.0724 (9)
H6B 0.771559 0.857868 1.102185 0.044* 0.0724 (9)
C7B 0.757 (2) 0.732 (3) 0.962 (2) 0.032 (3) 0.0724 (9)
O3B 0.6462 (18) 0.7482 (19) 0.8949 (14) 0.038 (3) 0.0724 (9)
Mn2B 0.5604 (5) 0.7006 (5) 0.7338 (5) 0.0350 (13) 0.0724 (9)
O4B 0.4731 (17) 0.6419 (17) 0.5750 (13) 0.033 (3) 0.0724 (9)
N2B 0.362 (2) 0.683 (3) 0.538 (2) 0.030 (3) 0.0724 (9)
O5B 0.4275 (17) 0.7945 (18) 0.7235 (16) 0.035 (3) 0.0724 (9)
C8B 0.3431 (19) 0.754 (2) 0.6197 (19) 0.032 (3) 0.0724 (9)
C9B 0.225 (2) 0.797 (3) 0.588 (3) 0.035 (3) 0.0724 (9)
C10B 0.218 (3) 0.887 (4) 0.674 (3) 0.043 (3) 0.0724 (9)
H10B 0.288680 0.919778 0.740071 0.051* 0.0724 (9)
C11B 0.111 (4) 0.926 (4) 0.664 (4) 0.049 (4) 0.0724 (9)
H11B 0.101534 0.974617 0.728600 0.059* 0.0724 (9)
C12B 0.016 (4) 0.895 (4) 0.556 (4) 0.047 (4) 0.0724 (9)
H12B −0.053806 0.934502 0.543132 0.056* 0.0724 (9)
C13B 0.020 (3) 0.808 (4) 0.469 (4) 0.040 (4) 0.0724 (9)
H13B −0.048873 0.782822 0.398704 0.048* 0.0724 (9)
C14B 0.127 (3) 0.758 (3) 0.484 (2) 0.035 (3) 0.0724 (9)
O6B 0.129 (2) 0.677 (2) 0.3929 (19) 0.037 (3) 0.0724 (9)
O7B 0.490 (3) 0.696 (3) 0.318 (3) 0.051 (4) 0.0724 (9)
O8B 0.300 (2) 0.709 (2) 0.276 (2) 0.047 (4) 0.0724 (9)
C15B 0.390 (3) 0.696 (3) 0.241 (3) 0.047 (3) 0.0724 (9)
C16B 0.382 (3) 0.7623 (18) 0.1506 (19) 0.051 (3) 0.0724 (9)
C17B 0.470 (3) 0.780 (2) 0.108 (2) 0.054 (3) 0.0724 (9)
H17B 0.543708 0.748879 0.135972 0.065* 0.0724 (9)
C18B 0.452 (3) 0.842 (3) 0.025 (3) 0.060 (3) 0.0724 (9)
H18B 0.513237 0.853317 −0.003499 0.071* 0.0724 (9)
C19B 0.345 (3) 0.887 (2) −0.016 (3) 0.065 (4) 0.0724 (9)
H19B 0.331301 0.929325 −0.072229 0.078* 0.0724 (9)
C20B 0.257 (2) 0.8705 (18) 0.025 (2) 0.070 (3) 0.0724 (9)
Cl1B 0.115 (2) 0.9218 (18) −0.018 (3) 0.0925 (5) 0.0724 (9)
C21B 0.275 (3) 0.8083 (19) 0.108 (2) 0.056 (4) 0.0724 (9)
H21B 0.213524 0.797456 0.135697 0.067* 0.0724 (9)
O9 0.5419 (5) 0.8294 (3) 0.5924 (3) 0.0481 (10) 0.799 (3)
C22 0.6216 (4) 0.9054 (4) 0.6379 (4) 0.0489 (10) 0.799 (3)
H22 0.653529 0.928859 0.720848 0.059* 0.799 (3)
N3 0.6678 (6) 0.9585 (6) 0.5808 (6) 0.0517 (10) 0.799 (3)
C23 0.6266 (5) 0.9227 (5) 0.4543 (5) 0.0600 (12) 0.799 (3)
H23A 0.561726 0.861942 0.424876 0.090* 0.799 (3)
H23B 0.693378 0.896688 0.432353 0.090* 0.799 (3)
H23C 0.596737 0.985511 0.420197 0.090* 0.799 (3)
C24 0.7588 (6) 1.0515 (5) 0.6389 (6) 0.0757 (15) 0.799 (3)
H24A 0.821658 1.042275 0.606856 0.113* 0.799 (3)
H24B 0.793968 1.055163 0.722846 0.113* 0.799 (3)
H24C 0.722857 1.120618 0.626793 0.113* 0.799 (3)
O9B 0.660 (3) 0.834 (2) 0.700 (2) 0.049 (4) 0.0724 (9)
C22B 0.632 (5) 0.861 (4) 0.609 (3) 0.052 (3) 0.0724 (9)
H22B 0.571330 0.812729 0.542712 0.062* 0.0724 (9)
N3B 0.677 (6) 0.951 (7) 0.590 (5) 0.058 (3) 0.0724 (9)
C23B 0.796 (4) 1.006 (5) 0.676 (4) 0.064 (4) 0.0724 (9)
H23D 0.818178 0.975947 0.745556 0.097* 0.0724 (9)
H23E 0.791073 1.086409 0.698493 0.097* 0.0724 (9)
H23F 0.856079 0.992314 0.641292 0.097* 0.0724 (9)
C24B 0.642 (6) 0.973 (5) 0.477 (4) 0.060 (3) 0.0724 (9)
H24D 0.588667 0.910268 0.418078 0.089* 0.0724 (9)
H24E 0.713852 0.984754 0.459956 0.089* 0.0724 (9)
H24F 0.600370 1.040785 0.476374 0.089* 0.0724 (9)
O9C 0.548 (4) 0.856 (3) 0.622 (2) 0.047 (3) 0.129 (3)
C22C 0.565 (2) 0.8569 (19) 0.534 (2) 0.052 (3) 0.129 (3)
H22C 0.528704 0.794608 0.469842 0.063* 0.129 (3)
N3C 0.629 (3) 0.9370 (19) 0.518 (3) 0.055 (3) 0.129 (3)
C23C 0.635 (3) 0.924 (3) 0.401 (2) 0.061 (4) 0.129 (3)
H23G 0.631105 0.844936 0.364179 0.091* 0.129 (3)
H23H 0.710969 0.962629 0.409399 0.091* 0.129 (3)
H23I 0.567681 0.956855 0.351625 0.091* 0.129 (3)
C24C 0.682 (3) 1.042 (2) 0.598 (3) 0.063 (3) 0.129 (3)
H24G 0.769182 1.046028 0.621857 0.094* 0.129 (3)
H24H 0.660782 1.049299 0.666440 0.094* 0.129 (3)
H24I 0.651117 1.101618 0.559181 0.094* 0.129 (3)
O10 0.3646 (15) 0.5947 (13) 0.7207 (11) 0.050 (2) 0.498 (3)
C25 0.3844 (9) 0.5822 (9) 0.8165 (9) 0.0508 (17) 0.498 (3)
H25 0.444775 0.633788 0.878917 0.061* 0.498 (3)
N4 0.3337 (8) 0.5069 (8) 0.8461 (7) 0.0573 (16) 0.498 (3)
C26 0.2464 (14) 0.4197 (11) 0.7651 (10) 0.061 (2) 0.498 (3)
H26A 0.239360 0.419362 0.685592 0.074* 0.498 (3)
H26B 0.168689 0.431241 0.771828 0.074* 0.498 (3)
H26C 0.270784 0.348077 0.781915 0.074* 0.498 (3)
C27 0.3757 (10) 0.4926 (8) 0.9663 (7) 0.078 (2) 0.498 (3)
H27A 0.307397 0.490705 0.990550 0.118* 0.498 (3)
H27B 0.435119 0.555054 1.019088 0.118* 0.498 (3)
H27C 0.412480 0.422581 0.969352 0.118* 0.498 (3)
O10B 0.430 (3) 0.565 (3) 0.746 (3) 0.052 (3) 0.0724 (9)
C25B 0.403 (3) 0.574 (4) 0.829 (3) 0.054 (3) 0.0724 (9)
H25B 0.425482 0.645023 0.882924 0.064* 0.0724 (9)
N4B 0.346 (3) 0.500 (4) 0.855 (3) 0.061 (3) 0.0724 (9)
C26B 0.304 (6) 0.389 (4) 0.786 (4) 0.060 (4) 0.0724 (9)
H26D 0.268902 0.389297 0.702961 0.072* 0.0724 (9)
H26E 0.243759 0.357363 0.808227 0.072* 0.0724 (9)
H26F 0.371986 0.343190 0.798921 0.072* 0.0724 (9)
C27B 0.320 (6) 0.525 (5) 0.961 (4) 0.064 (4) 0.0724 (9)
H27D 0.376487 0.586970 1.018656 0.096* 0.0724 (9)
H27E 0.327125 0.459207 0.992693 0.096* 0.0724 (9)
H27F 0.237628 0.546113 0.941661 0.096* 0.0724 (9)
O10C 0.3646 (16) 0.5782 (15) 0.7088 (13) 0.044 (2) 0.430 (3)
C25C 0.3444 (9) 0.5894 (10) 0.7974 (11) 0.055 (2) 0.430 (3)
H25C 0.372376 0.658121 0.854651 0.066* 0.430 (3)
N4C 0.2856 (7) 0.5110 (8) 0.8186 (8) 0.0576 (18) 0.430 (3)
C26C 0.2425 (17) 0.4073 (12) 0.7344 (10) 0.057 (2) 0.430 (3)
H26G 0.211898 0.420372 0.655676 0.068* 0.430 (3)
H26H 0.177617 0.370439 0.747059 0.068* 0.430 (3)
H26I 0.308084 0.359783 0.742299 0.068* 0.430 (3)
C27C 0.2624 (11) 0.5265 (10) 0.9256 (8) 0.078 (2) 0.430 (3)
H27G 0.176493 0.531502 0.907383 0.117* 0.430 (3)
H27H 0.308219 0.595349 0.981014 0.117* 0.430 (3)
H27I 0.287025 0.463077 0.960265 0.117* 0.430 (3)
O11 0.7624 (12) 0.6718 (11) 0.5247 (13) 0.070 (2) 0.516 (5)
C28 0.8618 (9) 0.6462 (9) 0.5798 (8) 0.081 (2) 0.516 (5)
H28 0.888305 0.581081 0.544658 0.098* 0.516 (5)
N5 0.9360 (7) 0.7053 (7) 0.6879 (6) 0.0660 (17) 0.516 (5)
C29 0.9012 (9) 0.7930 (8) 0.7480 (8) 0.085 (2) 0.516 (5)
H29A 0.962890 0.818732 0.826930 0.102* 0.516 (5)
H29B 0.825322 0.770472 0.753081 0.102* 0.516 (5)
H29C 0.889915 0.853440 0.707767 0.102* 0.516 (5)
C30 1.0409 (11) 0.7016 (12) 0.7730 (12) 0.111 (3) 0.516 (5)
H30A 1.049979 0.759235 0.843300 0.133* 0.516 (5)
H30B 1.106599 0.714629 0.747737 0.133* 0.516 (5)
H30C 1.043252 0.628128 0.790383 0.133* 0.516 (5)
O11B 0.7653 (12) 0.6424 (12) 0.5394 (12) 0.071 (3) 0.484 (5)
C28B 0.8447 (8) 0.6931 (9) 0.6316 (8) 0.0738 (19) 0.484 (5)
H28B 0.833496 0.757837 0.681652 0.089* 0.484 (5)
N5B 0.9554 (8) 0.6444 (9) 0.6556 (9) 0.085 (2) 0.484 (5)
C29B 0.9812 (11) 0.5603 (10) 0.5813 (10) 0.101 (3) 0.484 (5)
H29D 0.998150 0.495775 0.615537 0.121* 0.484 (5)
H29E 1.051586 0.585401 0.568425 0.121* 0.484 (5)
H29F 0.912325 0.539235 0.506523 0.121* 0.484 (5)
C30B 1.0546 (10) 0.6572 (10) 0.7364 (10) 0.083 (2) 0.484 (5)
H30D 1.109659 0.611626 0.709900 0.100* 0.484 (5)
H30E 1.046275 0.634324 0.802484 0.100* 0.484 (5)
H30F 1.086556 0.735893 0.760885 0.100* 0.484 (5)

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0352 (6) 0.0476 (6) 0.0379 (6) −0.0037 (5) 0.0062 (5) 0.0175 (5)
Mn1 0.0276 (2) 0.0299 (2) 0.0214 (2) −0.00225 (18) 0.00067 (18) 0.00714 (17)
O1 0.0329 (11) 0.0366 (10) 0.0249 (9) 0.0039 (8) 0.0045 (8) 0.0014 (8)
N1 0.0294 (13) 0.0317 (14) 0.0247 (13) 0.0010 (11) 0.0054 (10) 0.0048 (10)
O2 0.0320 (12) 0.0387 (11) 0.0277 (10) 0.0003 (9) 0.0011 (9) 0.0058 (8)
C1 0.0313 (14) 0.0330 (13) 0.0267 (12) −0.0014 (11) 0.0049 (11) 0.0118 (10)
C2 0.0333 (16) 0.0316 (13) 0.0340 (15) −0.0014 (12) 0.0096 (12) 0.0109 (12)
C3 0.0362 (18) 0.0388 (17) 0.0414 (15) 0.0029 (13) 0.0102 (14) 0.0093 (13)
C4 0.0359 (18) 0.046 (2) 0.057 (2) 0.0055 (15) 0.0095 (16) 0.0043 (16)
C5 0.040 (2) 0.0463 (18) 0.066 (2) 0.0065 (17) 0.0161 (18) −0.0051 (18)
C6 0.0374 (19) 0.0424 (18) 0.0506 (18) 0.0011 (15) 0.0107 (16) −0.0041 (15)
C7 0.0334 (15) 0.0308 (14) 0.0375 (15) 0.0004 (12) 0.0106 (13) 0.0081 (12)
O3 0.0346 (11) 0.0403 (11) 0.0347 (11) 0.0007 (9) 0.0042 (9) −0.0004 (9)
Mn2 0.0302 (3) 0.0294 (2) 0.0228 (2) −0.00059 (18) 0.00305 (18) 0.00582 (17)
O4 0.0301 (10) 0.0379 (10) 0.0232 (9) 0.0036 (8) −0.0044 (8) 0.0035 (8)
N2 0.0299 (14) 0.0313 (16) 0.0221 (11) −0.0011 (10) −0.0012 (10) 0.0066 (9)
O5 0.0354 (11) 0.0318 (10) 0.0268 (10) −0.0016 (8) 0.0036 (9) 0.0052 (8)
C8 0.0324 (14) 0.0261 (12) 0.0225 (11) −0.0014 (10) 0.0050 (10) 0.0086 (9)
C9 0.0330 (15) 0.0289 (14) 0.0252 (13) −0.0055 (11) 0.0026 (12) 0.0095 (11)
C10 0.0452 (18) 0.0338 (15) 0.0247 (15) −0.0036 (13) 0.0028 (13) 0.0078 (12)
C11 0.054 (2) 0.0376 (17) 0.0245 (15) −0.0037 (15) 0.0004 (15) 0.0060 (12)
C12 0.0431 (18) 0.0389 (19) 0.0249 (15) −0.0089 (15) −0.0050 (14) 0.0074 (12)
C13 0.0368 (17) 0.0365 (15) 0.0255 (15) −0.0095 (13) −0.0036 (12) 0.0108 (13)
C14 0.0335 (16) 0.0305 (13) 0.0234 (13) −0.0082 (11) −0.0028 (12) 0.0100 (11)
O6 0.0314 (11) 0.0370 (10) 0.0260 (10) −0.0012 (8) −0.0001 (8) 0.0060 (8)
O7 0.0480 (14) 0.0542 (15) 0.0490 (14) 0.0048 (12) 0.0149 (12) 0.0253 (12)
O8 0.0453 (13) 0.0394 (11) 0.0360 (11) −0.0052 (10) 0.0067 (10) 0.0172 (9)
C15 0.0537 (19) 0.0391 (16) 0.0358 (16) 0.0008 (15) 0.0160 (14) 0.0133 (13)
C16 0.056 (2) 0.0463 (17) 0.0471 (17) −0.0025 (15) 0.0187 (15) 0.0193 (14)
C17 0.064 (2) 0.062 (2) 0.062 (2) −0.0036 (18) 0.0241 (19) 0.0258 (18)
C18 0.080 (3) 0.069 (2) 0.076 (3) −0.012 (2) 0.032 (2) 0.031 (2)
C19 0.090 (3) 0.055 (2) 0.076 (2) −0.002 (2) 0.036 (2) 0.0341 (19)
C20 0.075 (2) 0.0500 (19) 0.067 (2) 0.0059 (18) 0.0235 (19) 0.0303 (17)
Cl1 0.0912 (11) 0.0753 (9) 0.1192 (12) 0.0196 (7) 0.0257 (9) 0.0640 (10)
C21 0.058 (2) 0.0462 (17) 0.0495 (18) −0.0017 (16) 0.0162 (16) 0.0212 (15)
Mn1B 0.035 (3) 0.030 (3) 0.026 (3) 0.005 (2) 0.004 (2) 0.008 (2)
O1B 0.032 (5) 0.035 (5) 0.028 (5) −0.003 (5) −0.004 (5) 0.005 (5)
N1B 0.031 (5) 0.032 (5) 0.024 (4) 0.000 (4) −0.002 (4) 0.007 (4)
O2B 0.030 (6) 0.038 (6) 0.027 (6) 0.003 (5) −0.004 (5) 0.006 (5)
C1B 0.034 (4) 0.032 (4) 0.024 (4) −0.002 (4) −0.001 (4) 0.006 (4)
C2B 0.032 (4) 0.032 (4) 0.022 (4) −0.004 (4) −0.001 (4) 0.008 (4)
C3B 0.036 (5) 0.034 (4) 0.023 (5) −0.005 (4) −0.002 (4) 0.008 (4)
C4B 0.041 (5) 0.034 (5) 0.023 (5) −0.002 (5) −0.001 (5) 0.009 (5)
C5B 0.045 (5) 0.037 (5) 0.025 (5) −0.004 (5) −0.002 (5) 0.007 (5)
C6B 0.041 (5) 0.035 (5) 0.024 (5) −0.004 (5) 0.002 (5) 0.007 (5)
C7B 0.034 (4) 0.029 (4) 0.024 (4) −0.002 (4) 0.002 (4) 0.008 (4)
O3B 0.038 (4) 0.035 (4) 0.030 (4) 0.000 (4) 0.002 (4) 0.006 (4)
Mn2B 0.033 (2) 0.034 (2) 0.030 (2) 0.005 (2) 0.004 (2) 0.006 (2)
O4B 0.030 (4) 0.032 (4) 0.027 (4) 0.007 (4) 0.003 (4) 0.002 (4)
N2B 0.029 (4) 0.032 (4) 0.025 (4) 0.002 (4) 0.007 (4) 0.005 (4)
O5B 0.036 (5) 0.032 (5) 0.025 (4) 0.005 (4) 0.009 (4) −0.008 (4)
C8B 0.030 (4) 0.031 (4) 0.029 (4) 0.000 (4) 0.007 (4) 0.006 (4)
C9B 0.032 (4) 0.034 (4) 0.035 (4) 0.001 (4) 0.009 (4) 0.006 (4)
C10B 0.035 (5) 0.039 (5) 0.046 (5) 0.003 (5) 0.011 (5) −0.001 (4)
C11B 0.037 (5) 0.041 (5) 0.054 (5) 0.005 (5) 0.009 (5) −0.003 (5)
C12B 0.037 (5) 0.041 (5) 0.052 (5) 0.005 (5) 0.011 (5) 0.002 (5)
C13B 0.034 (5) 0.037 (5) 0.043 (5) 0.003 (5) 0.010 (5) 0.008 (5)
C14B 0.033 (4) 0.034 (4) 0.035 (4) 0.000 (4) 0.010 (4) 0.010 (4)
O6B 0.036 (5) 0.036 (5) 0.033 (5) 0.002 (5) 0.005 (4) 0.009 (4)
O7B 0.055 (6) 0.048 (6) 0.047 (6) 0.000 (6) 0.012 (6) 0.021 (6)
O8B 0.053 (6) 0.042 (6) 0.044 (6) 0.001 (6) 0.012 (6) 0.018 (5)
C15B 0.053 (4) 0.046 (4) 0.044 (4) −0.001 (4) 0.016 (4) 0.021 (4)
C16B 0.059 (4) 0.049 (4) 0.051 (4) −0.001 (4) 0.020 (4) 0.022 (4)
C17B 0.063 (5) 0.055 (5) 0.057 (5) −0.005 (5) 0.029 (5) 0.028 (5)
C18B 0.072 (5) 0.058 (5) 0.065 (5) −0.007 (5) 0.035 (5) 0.032 (5)
C19B 0.079 (5) 0.057 (5) 0.071 (5) −0.003 (5) 0.032 (5) 0.034 (5)
C20B 0.079 (4) 0.059 (4) 0.081 (4) 0.004 (4) 0.026 (4) 0.040 (4)
Cl1B 0.0912 (11) 0.0753 (9) 0.1192 (12) 0.0196 (7) 0.0257 (9) 0.0640 (10)
C21B 0.065 (5) 0.050 (5) 0.058 (5) 0.001 (5) 0.021 (5) 0.026 (5)
O9 0.0485 (17) 0.051 (2) 0.044 (2) −0.0092 (17) 0.0126 (18) 0.0199 (15)
C22 0.051 (2) 0.049 (2) 0.046 (2) −0.0063 (19) 0.0210 (17) 0.0076 (17)
N3 0.053 (2) 0.050 (2) 0.056 (2) −0.0056 (17) 0.0258 (17) 0.0119 (16)
C23 0.062 (3) 0.063 (2) 0.057 (3) −0.004 (2) 0.019 (2) 0.024 (2)
C24 0.071 (3) 0.069 (3) 0.083 (3) −0.019 (3) 0.033 (3) 0.006 (3)
O9B 0.050 (5) 0.046 (5) 0.048 (5) −0.002 (5) 0.015 (5) 0.014 (5)
C22B 0.053 (4) 0.051 (4) 0.051 (4) −0.005 (4) 0.019 (4) 0.014 (4)
N3B 0.057 (4) 0.057 (4) 0.059 (4) −0.008 (4) 0.024 (4) 0.013 (4)
C23B 0.061 (6) 0.062 (6) 0.067 (6) −0.010 (6) 0.025 (6) 0.010 (6)
C24B 0.060 (5) 0.058 (5) 0.060 (5) −0.005 (5) 0.021 (5) 0.015 (5)
O9C 0.051 (5) 0.044 (5) 0.046 (5) −0.001 (5) 0.015 (5) 0.018 (5)
C22C 0.054 (4) 0.051 (4) 0.053 (4) −0.005 (4) 0.020 (4) 0.015 (4)
N3C 0.057 (4) 0.055 (4) 0.058 (4) −0.007 (4) 0.025 (4) 0.015 (4)
C23C 0.063 (6) 0.059 (6) 0.061 (6) 0.000 (6) 0.023 (6) 0.020 (6)
C24C 0.060 (4) 0.062 (4) 0.063 (4) −0.007 (4) 0.022 (4) 0.013 (4)
O10 0.052 (3) 0.047 (4) 0.045 (4) −0.013 (3) 0.008 (3) 0.017 (3)
C25 0.067 (4) 0.047 (3) 0.041 (3) −0.011 (3) 0.025 (3) 0.010 (2)
N4 0.082 (4) 0.049 (2) 0.050 (3) −0.012 (3) 0.035 (3) 0.012 (2)
C26 0.075 (4) 0.057 (4) 0.058 (5) −0.011 (3) 0.034 (4) 0.011 (4)
C27 0.111 (5) 0.072 (4) 0.053 (3) −0.022 (4) 0.036 (4) 0.012 (3)
O10B 0.063 (5) 0.049 (5) 0.042 (5) −0.012 (5) 0.019 (5) 0.010 (5)
C25B 0.068 (4) 0.049 (4) 0.043 (4) −0.012 (4) 0.022 (4) 0.010 (4)
N4B 0.082 (4) 0.055 (4) 0.048 (4) −0.016 (4) 0.032 (4) 0.009 (4)
C26B 0.080 (6) 0.057 (5) 0.049 (5) −0.015 (5) 0.034 (5) 0.009 (5)
C27B 0.090 (6) 0.058 (5) 0.048 (5) −0.016 (5) 0.034 (5) 0.010 (5)
O10C 0.050 (3) 0.044 (4) 0.036 (3) −0.008 (3) 0.015 (3) 0.014 (3)
C25C 0.069 (4) 0.049 (3) 0.044 (4) −0.015 (3) 0.019 (3) 0.009 (3)
N4C 0.080 (4) 0.053 (3) 0.042 (3) −0.018 (3) 0.029 (3) 0.007 (3)
C26C 0.077 (4) 0.058 (4) 0.041 (4) −0.019 (4) 0.036 (4) 0.002 (3)
C27C 0.110 (5) 0.069 (4) 0.054 (4) −0.025 (4) 0.038 (4) 0.003 (3)
O11 0.061 (3) 0.075 (5) 0.073 (4) −0.030 (3) 0.024 (3) 0.020 (3)
C28 0.083 (4) 0.086 (4) 0.078 (4) −0.026 (4) 0.033 (3) 0.024 (3)
N5 0.068 (3) 0.075 (4) 0.058 (3) −0.018 (3) 0.025 (3) 0.025 (3)
C29 0.087 (5) 0.091 (5) 0.081 (5) −0.015 (4) 0.034 (4) 0.028 (4)
C30 0.098 (5) 0.114 (6) 0.110 (6) −0.022 (5) 0.025 (5) 0.035 (5)
O11B 0.059 (4) 0.089 (6) 0.060 (4) −0.041 (4) 0.023 (3) 0.008 (4)
C28B 0.081 (4) 0.083 (4) 0.063 (4) −0.031 (4) 0.037 (3) 0.014 (3)
N5B 0.085 (4) 0.088 (5) 0.084 (4) −0.020 (4) 0.029 (3) 0.035 (4)
C29B 0.100 (5) 0.103 (6) 0.114 (6) −0.006 (5) 0.047 (5) 0.043 (5)
C30B 0.078 (4) 0.086 (5) 0.104 (5) 0.011 (4) 0.046 (4) 0.042 (4)

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Geometric parameters (Å, º)

Na1—O11B 2.272 (12) C13B—C14B 1.409 (19)
Na1—O7 2.347 (3) C13B—H13B 0.9500
Na1—O11 2.357 (12) C14B—O6B 1.351 (18)
Na1—O7B 2.38 (3) O7B—C15B 1.241 (19)
Na1—O4B 2.430 (19) O8B—C15B 1.307 (19)
Na1—O1 2.431 (2) C15B—C16B 1.525 (18)
Na1—O1Bi 2.46 (2) C16B—C21B 1.381 (18)
Na1—O4i 2.465 (2) C16B—C17B 1.392 (19)
Na1—O4 2.498 (2) C17B—C18B 1.395 (19)
Na1—O1B 2.51 (2) C17B—H17B 0.9500
Na1—O10Bi 2.57 (3) C18B—C19B 1.38 (2)
Na1—O1i 2.585 (2) C18B—H18B 0.9500
Mn1—O6i 1.852 (2) C19B—C20B 1.367 (19)
Mn1—O1 1.873 (2) C19B—H19B 0.9500
Mn1—O2 1.960 (2) C20B—C21B 1.392 (19)
Mn1—N2i 1.974 (3) C20B—Cl1B 1.760 (18)
Mn1—O8 2.063 (2) C21B—H21B 0.9500
O1—N1 1.389 (3) O9—C22 1.211 (6)
N1—C1 1.299 (4) C22—N3 1.329 (6)
N1—Mn2 1.973 (2) C22—H22 0.9500
O2—C1 1.306 (3) N3—C24 1.437 (7)
C1—C2 1.465 (4) N3—C23 1.453 (8)
C2—C3 1.400 (5) C23—H23A 0.9800
C2—C7 1.414 (4) C23—H23B 0.9800
C3—C4 1.370 (5) C23—H23C 0.9800
C3—H3 0.9500 C24—H24A 0.9800
C4—C5 1.383 (5) C24—H24B 0.9800
C4—H4 0.9500 C24—H24C 0.9800
C5—C6 1.384 (5) O9B—C22B 1.20 (2)
C5—H5 0.9500 C22B—N3B 1.34 (2)
C6—C7 1.392 (5) C22B—H22B 0.9500
C6—H6 0.9500 N3B—C24B 1.43 (2)
C7—O3 1.328 (4) N3B—C23B 1.48 (2)
O3—Mn2 1.859 (2) C23B—H23D 0.9800
Mn2—O4 1.879 (2) C23B—H23E 0.9800
Mn2—O5 1.955 (2) C23B—H23F 0.9800
Mn2—O9 2.236 (4) C24B—H24D 0.9800
Mn2—O10 2.261 (15) C24B—H24E 0.9800
O4—N2 1.394 (3) C24B—H24F 0.9800
N2—C8 1.305 (4) O9C—C22C 1.208 (18)
O5—C8 1.311 (3) C22C—N3C 1.348 (17)
C8—C9 1.467 (4) C22C—H22C 0.9500
C9—C14 1.401 (4) N3C—C24C 1.419 (19)
C9—C10 1.406 (4) N3C—C23C 1.49 (2)
C10—C11 1.378 (5) C23C—H23G 0.9800
C10—H10 0.9500 C23C—H23H 0.9800
C11—C12 1.392 (5) C23C—H23I 0.9800
C11—H11 0.9500 C24C—H24G 0.9800
C12—C13 1.385 (5) C24C—H24H 0.9800
C12—H12 0.9500 C24C—H24I 0.9800
C13—C14 1.405 (4) O10—C25 1.196 (10)
C13—H13 0.9500 C25—N4 1.301 (9)
C14—O6 1.339 (4) C25—H25 0.9500
O7—C15 1.232 (4) N4—C26 1.417 (11)
O8—C15 1.274 (4) N4—C27 1.472 (9)
C15—C16 1.518 (4) C26—H26A 0.9800
C16—C21 1.380 (5) C26—H26B 0.9800
C16—C17 1.394 (6) C26—H26C 0.9800
C17—C18 1.389 (6) C27—H27A 0.9800
C17—H17 0.9500 C27—H27B 0.9800
C18—C19 1.376 (7) C27—H27C 0.9800
C18—H18 0.9500 O10B—C25B 1.197 (18)
C19—C20 1.367 (6) C25B—N4B 1.305 (17)
C19—H19 0.9500 C25B—H25B 0.9500
C20—C21 1.390 (5) N4B—C26B 1.426 (18)
C20—Cl1 1.739 (4) N4B—C27B 1.461 (17)
C21—H21 0.9500 C26B—H26D 0.9800
Mn1B—O6Bi 1.85 (3) C26B—H26E 0.9800
Mn1B—O1B 1.852 (15) C26B—H26F 0.9800
Mn1B—O2B 1.988 (16) C27B—H27D 0.9800
Mn1B—N2Bi 2.04 (2) C27B—H27E 0.9800
Mn1B—O8Bi 2.13 (3) C27B—H27F 0.9800
O1B—N1B 1.378 (18) O10C—C25C 1.214 (12)
N1B—C1B 1.290 (18) C25C—N4C 1.324 (10)
N1B—Mn2B 1.981 (15) C25C—H25C 0.9500
O2B—C1B 1.299 (17) N4C—C26C 1.422 (11)
C1B—C2B 1.472 (17) N4C—C27C 1.456 (10)
C2B—C3B 1.394 (19) C26C—H26G 0.9800
C2B—C7B 1.395 (18) C26C—H26H 0.9800
C3B—C4B 1.35 (2) C26C—H26I 0.9800
C3B—H3B 0.9500 C27C—H27G 0.9800
C4B—C5B 1.37 (2) C27C—H27H 0.9800
C4B—H4B 0.9500 C27C—H27I 0.9800
C5B—C6B 1.38 (2) O11—C28 1.230 (14)
C5B—H5B 0.9500 C28—N5 1.359 (10)
C6B—C7B 1.393 (19) C28—H28 0.9500
C6B—H6B 0.9500 N5—C30 1.335 (11)
C7B—O3B 1.342 (18) N5—C29 1.347 (11)
O3B—Mn2B 1.867 (15) C29—H29A 0.9800
Mn2B—O4B 1.860 (15) C29—H29B 0.9800
Mn2B—O5B 1.971 (15) C29—H29C 0.9800
Mn2B—O9B 2.233 (18) C30—H30A 0.9800
Mn2B—O10B 2.35 (3) C30—H30B 0.9800
O4B—N2B 1.388 (18) C30—H30C 0.9800
N2B—C8B 1.291 (18) O11B—C28B 1.229 (13)
O5B—C8B 1.314 (18) C28B—N5B 1.427 (12)
C8B—C9B 1.470 (17) C28B—H28B 0.9500
C9B—C14B 1.388 (18) N5B—C30B 1.234 (11)
C9B—C10B 1.402 (19) N5B—C29B 1.362 (12)
C10B—C11B 1.36 (2) C29B—H29D 0.9800
C10B—H10B 0.9500 C29B—H29E 0.9800
C11B—C12B 1.39 (2) C29B—H29F 0.9800
C11B—H11B 0.9500 C30B—H30D 0.9800
C12B—C13B 1.38 (2) C30B—H30E 0.9800
C12B—H12B 0.9500 C30B—H30F 0.9800
O7—Na1—O11 98.5 (3) Na1—O4B—Na1i 83.3 (5)
O11B—Na1—O7B 103.5 (8) C8B—N2B—O4B 113.9 (17)
O11B—Na1—O4B 104.1 (7) C8B—O5B—Mn2B 106.1 (12)
O7B—Na1—O4B 95.0 (10) N2B—C8B—O5B 122.5 (17)
O7—Na1—O1 84.47 (9) N2B—C8B—C9B 116.9 (17)
O11—Na1—O1 143.6 (5) O5B—C8B—C9B 120.3 (17)
O7—Na1—O1Bi 82.6 (5) C14B—C9B—C10B 120.7 (19)
O11—Na1—O1Bi 169.1 (6) C14B—C9B—C8B 126 (2)
O1—Na1—O1Bi 25.5 (4) C10B—C9B—C8B 113 (2)
O7—Na1—O4i 100.06 (9) C11B—C10B—C9B 120 (2)
O11—Na1—O4i 148.2 (4) C11B—C10B—H10B 120.0
O1—Na1—O4i 64.14 (7) C9B—C10B—H10B 120.0
O7—Na1—O4 134.56 (10) C10B—C11B—C12B 119 (2)
O11—Na1—O4 90.7 (4) C10B—C11B—H11B 120.5
O1—Na1—O4 63.73 (7) C12B—C11B—H11B 120.5
O4i—Na1—O4 94.37 (7) C13B—C12B—C11B 121 (2)
O11B—Na1—O1B 73.7 (6) C13B—C12B—H12B 119.6
O7B—Na1—O1B 157.2 (10) C11B—C12B—H12B 119.6
O4B—Na1—O1B 64.6 (6) C12B—C13B—C14B 120 (2)
O1Bi—Na1—O1B 94.6 (5) C12B—C13B—H13B 120.1
O7—Na1—O10Bi 68.1 (8) C14B—C13B—H13B 120.1
O11—Na1—O10Bi 104.5 (9) O6B—C14B—C9B 125 (2)
O1—Na1—O10Bi 110.1 (8) O6B—C14B—C13B 117 (2)
O4i—Na1—O10Bi 60.0 (7) C9B—C14B—C13B 118.1 (19)
O4—Na1—O10Bi 151.2 (7) C15B—O7B—Na1 133 (2)
O7—Na1—O1i 159.24 (10) O7B—C15B—O8B 116 (3)
O11—Na1—O1i 93.7 (3) O7B—C15B—C16B 118 (2)
O1—Na1—O1i 95.56 (7) O8B—C15B—C16B 112 (2)
O4i—Na1—O1i 61.99 (7) C21B—C16B—C17B 117.9 (19)
O4—Na1—O1i 61.49 (7) C21B—C16B—C15B 115 (2)
O6i—Mn1—O1 166.65 (9) C17B—C16B—C15B 127 (2)
O6i—Mn1—O2 97.56 (9) C16B—C17B—C18B 122 (2)
O1—Mn1—O2 81.08 (8) C16B—C17B—H17B 119.2
O6i—Mn1—N2i 88.87 (10) C18B—C17B—H17B 119.2
O1—Mn1—N2i 87.74 (10) C19B—C18B—C17B 119 (2)
O2—Mn1—N2i 157.65 (14) C19B—C18B—H18B 120.6
O6i—Mn1—O8 93.89 (9) C17B—C18B—H18B 120.6
O1—Mn1—O8 99.46 (9) C20B—C19B—C18B 120 (2)
O2—Mn1—O8 95.44 (9) C20B—C19B—H19B 119.8
N2i—Mn1—O8 105.50 (15) C18B—C19B—H19B 119.8
O6i—Mn1—Na1 146.74 (7) C19B—C20B—C21B 120 (2)
O1—Mn1—Na1 38.59 (7) C19B—C20B—Cl1B 126 (2)
O2—Mn1—Na1 115.38 (6) C21B—C20B—Cl1B 114.1 (19)
N2i—Mn1—Na1 62.51 (10) C16B—C21B—C20B 121 (2)
O8—Mn1—Na1 79.18 (7) C16B—C21B—H21B 119.6
N1—O1—Mn1 114.10 (16) C20B—C21B—H21B 119.6
N1—O1—Na1 122.13 (17) C22—O9—Mn2 132.4 (3)
Mn1—O1—Na1 112.69 (9) O9—C22—N3 125.0 (5)
N1—O1—Na1i 104.77 (17) O9—C22—H22 117.5
Mn1—O1—Na1i 114.52 (10) N3—C22—H22 117.5
Na1—O1—Na1i 84.44 (7) C22—N3—C24 122.8 (6)
C1—N1—O1 113.2 (2) C22—N3—C23 119.9 (6)
C1—N1—Mn2 130.7 (2) C24—N3—C23 117.3 (5)
O1—N1—Mn2 115.42 (18) N3—C23—H23A 109.5
C1—O2—Mn1 111.39 (18) N3—C23—H23B 109.5
N1—C1—O2 119.4 (3) H23A—C23—H23B 109.5
N1—C1—C2 120.4 (3) N3—C23—H23C 109.5
O2—C1—C2 120.2 (3) H23A—C23—H23C 109.5
C3—C2—C7 119.0 (3) H23B—C23—H23C 109.5
C3—C2—C1 117.8 (3) N3—C24—H24A 109.5
C7—C2—C1 123.1 (3) N3—C24—H24B 109.5
C4—C3—C2 122.1 (3) H24A—C24—H24B 109.5
C4—C3—H3 118.9 N3—C24—H24C 109.5
C2—C3—H3 118.9 H24A—C24—H24C 109.5
C3—C4—C5 118.8 (3) H24B—C24—H24C 109.5
C3—C4—H4 120.6 C22B—O9B—Mn2B 126 (2)
C5—C4—H4 120.6 O9B—C22B—N3B 127 (3)
C4—C5—C6 120.5 (3) O9B—C22B—H22B 116.5
C4—C5—H5 119.7 N3B—C22B—H22B 116.5
C6—C5—H5 119.7 C22B—N3B—C24B 123 (4)
C5—C6—C7 121.5 (3) C22B—N3B—C23B 118 (3)
C5—C6—H6 119.2 C24B—N3B—C23B 115 (3)
C7—C6—H6 119.2 N3B—C23B—H23D 109.5
O3—C7—C6 117.7 (3) N3B—C23B—H23E 109.5
O3—C7—C2 124.3 (3) H23D—C23B—H23E 109.5
C6—C7—C2 118.0 (3) N3B—C23B—H23F 109.5
C7—O3—Mn2 130.2 (2) H23D—C23B—H23F 109.5
O3—Mn2—O4 177.31 (10) H23E—C23B—H23F 109.5
O3—Mn2—O5 99.21 (9) N3B—C24B—H24D 109.5
O4—Mn2—O5 81.99 (8) N3B—C24B—H24E 109.5
O3—Mn2—N1 90.03 (10) H24D—C24B—H24E 109.5
O4—Mn2—N1 88.64 (9) N3B—C24B—H24F 109.5
O5—Mn2—N1 170.20 (10) H24D—C24B—H24F 109.5
O3—Mn2—O9 94.22 (15) H24E—C24B—H24F 109.5
O4—Mn2—O9 88.08 (15) O9C—C22C—N3C 127 (2)
O5—Mn2—O9 94.23 (13) O9C—C22C—H22C 116.6
N1—Mn2—O9 88.30 (14) N3C—C22C—H22C 116.6
O3—Mn2—O10 90.2 (4) C22C—N3C—C24C 127 (2)
O4—Mn2—O10 87.3 (4) C22C—N3C—C23C 118 (2)
O5—Mn2—O10 90.4 (4) C24C—N3C—C23C 114.3 (19)
N1—Mn2—O10 86.3 (4) N3C—C23C—H23G 109.5
O9—Mn2—O10 173.0 (4) N3C—C23C—H23H 109.5
O3—Mn2—Na1i 135.89 (7) H23G—C23C—H23H 109.5
O4—Mn2—Na1i 41.44 (7) N3C—C23C—H23I 109.5
O5—Mn2—Na1i 105.92 (6) H23G—C23C—H23I 109.5
N1—Mn2—Na1i 64.73 (8) H23H—C23C—H23I 109.5
O9—Mn2—Na1i 118.86 (11) N3C—C24C—H24G 109.5
O10—Mn2—Na1i 54.6 (4) N3C—C24C—H24H 109.5
N2—O4—Mn2 113.37 (16) H24G—C24C—H24H 109.5
N2—O4—Na1i 109.1 (2) N3C—C24C—H24I 109.5
Mn2—O4—Na1i 108.25 (10) H24G—C24C—H24I 109.5
N2—O4—Na1 117.9 (2) H24H—C24C—H24I 109.5
Mn2—O4—Na1 118.03 (9) C25—O10—Mn2 129.0 (12)
Na1i—O4—Na1 85.62 (7) C25—O10—Na1i 118.5 (11)
C8—N2—O4 113.7 (2) Mn2—O10—Na1i 85.8 (4)
C8—N2—Mn1i 129.8 (2) O10—C25—N4 128.2 (11)
O4—N2—Mn1i 116.43 (18) O10—C25—H25 115.9
C8—O5—Mn2 111.17 (17) N4—C25—H25 115.9
N2—C8—O5 119.5 (2) C25—N4—C26 124.1 (8)
N2—C8—C9 120.0 (3) C25—N4—C27 122.8 (8)
O5—C8—C9 120.4 (2) C26—N4—C27 112.4 (8)
C14—C9—C10 119.4 (3) N4—C26—H26A 109.5
C14—C9—C8 122.6 (3) N4—C26—H26B 109.5
C10—C9—C8 118.0 (3) H26A—C26—H26B 109.5
C11—C10—C9 121.4 (3) N4—C26—H26C 109.5
C11—C10—H10 119.3 H26A—C26—H26C 109.5
C9—C10—H10 119.3 H26B—C26—H26C 109.5
C10—C11—C12 119.1 (3) N4—C27—H27A 109.5
C10—C11—H11 120.5 N4—C27—H27B 109.5
C12—C11—H11 120.5 H27A—C27—H27B 109.5
C13—C12—C11 120.7 (3) N4—C27—H27C 109.5
C13—C12—H12 119.6 H27A—C27—H27C 109.5
C11—C12—H12 119.6 H27B—C27—H27C 109.5
C12—C13—C14 120.6 (3) C25B—O10B—Mn2B 122 (3)
C12—C13—H13 119.7 O10B—C25B—N4B 128 (3)
C14—C13—H13 119.7 O10B—C25B—H25B 115.8
O6—C14—C9 124.0 (3) N4B—C25B—H25B 115.8
O6—C14—C13 117.1 (3) C25B—N4B—C26B 125 (2)
C9—C14—C13 118.9 (3) C25B—N4B—C27B 122 (2)
C14—O6—Mn1i 127.7 (2) C26B—N4B—C27B 113 (2)
C15—O7—Na1 136.2 (2) N4B—C26B—H26D 109.5
C15—O8—Mn1 128.5 (2) N4B—C26B—H26E 109.5
O7—C15—O8 126.6 (3) H26D—C26B—H26E 109.5
O7—C15—C16 118.6 (3) N4B—C26B—H26F 109.5
O8—C15—C16 114.8 (3) H26D—C26B—H26F 109.5
C21—C16—C17 119.2 (3) H26E—C26B—H26F 109.5
C21—C16—C15 120.3 (3) N4B—C27B—H27D 109.5
C17—C16—C15 120.4 (4) N4B—C27B—H27E 109.5
C18—C17—C16 120.0 (4) H27D—C27B—H27E 109.5
C18—C17—H17 120.0 N4B—C27B—H27F 109.5
C16—C17—H17 120.0 H27D—C27B—H27F 109.5
C19—C18—C17 120.6 (4) H27E—C27B—H27F 109.5
C19—C18—H18 119.7 O10C—C25C—N4C 123.6 (13)
C17—C18—H18 119.7 O10C—C25C—H25C 118.2
C20—C19—C18 119.1 (4) N4C—C25C—H25C 118.2
C20—C19—H19 120.5 C25C—N4C—C26C 119.4 (9)
C18—C19—H19 120.5 C25C—N4C—C27C 122.6 (9)
C19—C20—C21 121.5 (4) C26C—N4C—C27C 118.0 (9)
C19—C20—Cl1 118.8 (3) N4C—C26C—H26G 109.5
C21—C20—Cl1 119.6 (3) N4C—C26C—H26H 109.5
C16—C21—C20 119.7 (4) H26G—C26C—H26H 109.5
C16—C21—H21 120.2 N4C—C26C—H26I 109.5
C20—C21—H21 120.2 H26G—C26C—H26I 109.5
O6Bi—Mn1B—O1B 157.3 (13) H26H—C26C—H26I 109.5
O6Bi—Mn1B—O2B 97.0 (9) N4C—C27C—H27G 109.5
O1B—Mn1B—O2B 82.3 (7) N4C—C27C—H27H 109.5
O6Bi—Mn1B—Na1 123.3 (8) H27G—C27C—H27H 109.5
O1B—Mn1B—Na1 37.8 (7) N4C—C27C—H27I 109.5
O2B—Mn1B—Na1 106.4 (6) H27G—C27C—H27I 109.5
N2Bi—Mn1B—Na1 62.9 (11) H27H—C27C—H27I 109.5
O8Bi—Mn1B—Na1 133.0 (8) C28—O11—Na1 131.9 (9)
Na1i—Mn1B—Na1 54.83 (9) O11—C28—N5 124.1 (14)
N1B—O1B—Mn1B 114.0 (12) O11—C28—H28 117.9
N1B—O1B—Na1 116 (3) N5—C28—H28 117.9
Mn1B—O1B—Na1 115.3 (10) C30—N5—C29 96.8 (8)
Na1i—O1B—Na1 85.4 (5) C30—N5—C28 141.0 (10)
C1B—N1B—O1B 112.7 (14) C29—N5—C28 121.7 (9)
C1B—N1B—Mn2B 129.9 (15) N5—C29—H29A 109.5
O1B—N1B—Mn2B 117.2 (12) C30—C29—H29A 68.1
C1B—O2B—Mn1B 107.6 (13) N5—C29—H29B 109.5
N1B—C1B—O2B 122.6 (16) C30—C29—H29B 124.3
N1B—C1B—C2B 120.6 (17) H29A—C29—H29B 109.5
O2B—C1B—C2B 116.7 (16) N5—C29—H29C 109.5
C3B—C2B—C7B 119.3 (18) C30—C29—H29C 124.1
C3B—C2B—C1B 116 (2) H29A—C29—H29C 109.5
C7B—C2B—C1B 124 (2) H29B—C29—H29C 109.5
C4B—C3B—C2B 120 (2) N5—C30—H30A 109.5
C4B—C3B—H3B 119.9 C29—C30—H30A 67.7
C2B—C3B—H3B 119.9 N5—C30—H30B 109.5
C3B—C4B—C5B 121 (2) C29—C30—H30B 122.9
C3B—C4B—H4B 119.7 H30A—C30—H30B 109.5
C5B—C4B—H4B 119.7 N5—C30—H30C 109.5
C4B—C5B—C6B 120 (2) C29—C30—H30C 125.5
C4B—C5B—H5B 119.9 H30A—C30—H30C 109.5
C6B—C5B—H5B 119.9 H30B—C30—H30C 109.5
C5B—C6B—C7B 119 (2) C28B—O11B—Na1 148.6 (14)
C5B—C6B—H6B 120.4 O11B—C28B—N5B 112.8 (13)
C7B—C6B—H6B 120.4 O11B—C28B—H28B 123.6
O3B—C7B—C6B 119 (2) N5B—C28B—H28B 123.6
O3B—C7B—C2B 122 (2) C30B—N5B—C29B 96.1 (9)
C6B—C7B—C2B 119.1 (19) C30B—N5B—C28B 137.8 (11)
C7B—O3B—Mn2B 130.8 (17) C29B—N5B—C28B 126.2 (10)
O4B—Mn2B—O3B 175.4 (11) N5B—C29B—H29D 109.5
O4B—Mn2B—O5B 84.3 (7) C30B—C29B—H29D 89.2
O3B—Mn2B—O5B 97.7 (8) N5B—C29B—H29E 109.5
O4B—Mn2B—N1B 88.4 (8) C30B—C29B—H29E 86.1
O3B—Mn2B—N1B 89.1 (9) H29D—C29B—H29E 109.5
O5B—Mn2B—N1B 170.3 (15) N5B—C29B—H29F 109.5
O4B—Mn2B—O9B 92.2 (11) C30B—C29B—H29F 148.8
O3B—Mn2B—O9B 91.9 (11) H29D—C29B—H29F 109.5
O5B—Mn2B—O9B 89.5 (12) H29E—C29B—H29F 109.5
N1B—Mn2B—O9B 97 (2) N5B—C30B—H30D 109.5
O4B—Mn2B—O10B 80.9 (12) C29B—C30B—H30D 65.3
O3B—Mn2B—O10B 95.2 (12) N5B—C30B—H30E 109.5
O5B—Mn2B—O10B 84.4 (13) C29B—C30B—H30E 119.3
N1B—Mn2B—O10B 88 (2) H30D—C30B—H30E 109.5
O9B—Mn2B—O10B 171.2 (12) N5B—C30B—H30F 109.5
N2B—O4B—Mn2B 111.7 (13) C29B—C30B—H30F 129.9
N2B—O4B—Na1 121.3 (16) H30D—C30B—H30F 109.5
Mn2B—O4B—Na1 122.1 (9) H30E—C30B—H30F 109.5
O6i—Mn1—O1—N1 −93.3 (4) Mn1B—O1B—N1B—C1B 8 (7)
O2—Mn1—O1—N1 −8.2 (2) Na1i—O1B—N1B—C1B 136 (5)
N2i—Mn1—O1—N1 −168.8 (2) Na1—O1B—N1B—C1B −130 (4)
O8—Mn1—O1—N1 85.9 (2) Mn1B—O1B—N1B—Mn2B −176 (3)
Na1—Mn1—O1—N1 144.9 (2) Na1i—O1B—N1B—Mn2B −48 (5)
O6i—Mn1—O1—Na1 121.7 (4) Na1—O1B—N1B—Mn2B 47 (5)
O2—Mn1—O1—Na1 −153.16 (11) O1B—N1B—C1B—O2B −2 (8)
N2i—Mn1—O1—Na1 46.26 (16) Mn2B—N1B—C1B—O2B −178 (4)
O8—Mn1—O1—Na1 −59.08 (11) O1B—N1B—C1B—C2B −178 (4)
O6i—Mn1—O1—Na1i 27.4 (4) Mn2B—N1B—C1B—C2B 6 (9)
O2—Mn1—O1—Na1i 112.53 (11) Mn1B—O2B—C1B—N1B −4 (6)
N2i—Mn1—O1—Na1i −48.05 (16) Mn1B—O2B—C1B—C2B 172 (3)
O8—Mn1—O1—Na1i −153.39 (10) N1B—C1B—C2B—C3B 177 (5)
Na1—Mn1—O1—Na1i −94.32 (11) O2B—C1B—C2B—C3B 1 (6)
Mn1—O1—N1—C1 8.2 (3) N1B—C1B—C2B—C7B 9 (7)
Na1—O1—N1—C1 149.4 (2) O2B—C1B—C2B—C7B −168 (4)
Na1i—O1—N1—C1 −117.9 (2) C7B—C2B—C3B—C4B −8 (7)
Mn1—O1—N1—Mn2 179.54 (12) C1B—C2B—C3B—C4B −177 (4)
Na1—O1—N1—Mn2 −39.2 (3) C2B—C3B—C4B—C5B 9 (8)
Na1i—O1—N1—Mn2 53.5 (2) C3B—C4B—C5B—C6B −11 (9)
O1—N1—C1—O2 −2.0 (4) C4B—C5B—C6B—C7B 12 (9)
Mn2—N1—C1—O2 −171.8 (2) C5B—C6B—C7B—O3B 173 (5)
O1—N1—C1—C2 178.0 (3) C5B—C6B—C7B—C2B −10 (7)
Mn2—N1—C1—C2 8.2 (5) C3B—C2B—C7B—O3B −175 (4)
Mn1—O2—C1—N1 −4.7 (3) C1B—C2B—C7B—O3B −6 (7)
Mn1—O2—C1—C2 175.3 (2) C3B—C2B—C7B—C6B 8 (7)
N1—C1—C2—C3 179.8 (3) C1B—C2B—C7B—C6B 177 (4)
O2—C1—C2—C3 −0.2 (4) C6B—C7B—O3B—Mn2B 166 (3)
N1—C1—C2—C7 0.3 (5) C2B—C7B—O3B—Mn2B −11 (6)
O2—C1—C2—C7 −179.7 (3) C7B—O3B—Mn2B—O5B −168 (3)
C7—C2—C3—C4 0.4 (5) C7B—O3B—Mn2B—N1B 19 (4)
C1—C2—C3—C4 −179.1 (3) C7B—O3B—Mn2B—O9B −79 (3)
C2—C3—C4—C5 0.5 (6) C7B—O3B—Mn2B—O10B 106 (3)
C3—C4—C5—C6 −1.3 (7) C7B—O3B—Mn2B—Na1i 72 (4)
C4—C5—C6—C7 1.1 (7) O5B—Mn2B—O4B—N2B −6 (3)
C5—C6—C7—O3 179.7 (4) N1B—Mn2B—O4B—N2B 168 (3)
C5—C6—C7—C2 −0.2 (6) O9B—Mn2B—O4B—N2B −95 (3)
C3—C2—C7—O3 179.6 (3) O10B—Mn2B—O4B—N2B 79 (3)
C1—C2—C7—O3 −0.9 (5) Na1i—Mn2B—O4B—N2B 114 (3)
C3—C2—C7—C6 −0.6 (5) O5B—Mn2B—O4B—Na1 149.3 (15)
C1—C2—C7—C6 178.9 (3) N1B—Mn2B—O4B—Na1 −37 (2)
C6—C7—O3—Mn2 172.7 (3) O9B—Mn2B—O4B—Na1 60.0 (14)
C2—C7—O3—Mn2 −7.5 (5) O10B—Mn2B—O4B—Na1 −125.4 (15)
C7—O3—Mn2—O5 −165.5 (3) Na1i—Mn2B—O4B—Na1 −90.4 (10)
C7—O3—Mn2—N1 11.2 (3) O5B—Mn2B—O4B—Na1i −120.3 (11)
C7—O3—Mn2—O9 99.5 (3) N1B—Mn2B—O4B—Na1i 53 (2)
C7—O3—Mn2—O10 −75.1 (5) O9B—Mn2B—O4B—Na1i 150.4 (10)
C7—O3—Mn2—Na1i −41.0 (3) O10B—Mn2B—O4B—Na1i −35.1 (11)
O5—Mn2—O4—N2 4.1 (3) Mn2B—O4B—N2B—C8B 1 (5)
N1—Mn2—O4—N2 −173.0 (3) Na1—O4B—N2B—C8B −155 (3)
O9—Mn2—O4—N2 98.6 (3) Na1i—O4B—N2B—C8B 113 (4)
O10—Mn2—O4—N2 −86.7 (4) Mn2B—O4B—N2B—Mn1Bi −171.8 (18)
Na1i—Mn2—O4—N2 −121.2 (3) Na1—O4B—N2B—Mn1Bi 33 (4)
O5—Mn2—O4—Na1i 125.30 (10) Na1i—O4B—N2B—Mn1Bi −60 (3)
N1—Mn2—O4—Na1i −51.81 (11) O4B—N2B—C8B—O5B 10 (6)
O9—Mn2—O4—Na1i −140.15 (12) Mn1Bi—N2B—C8B—O5B 180 (3)
O10—Mn2—O4—Na1i 34.6 (4) O4B—N2B—C8B—C9B −177 (4)
O5—Mn2—O4—Na1 −139.85 (12) Mn1Bi—N2B—C8B—C9B −6 (7)
N1—Mn2—O4—Na1 43.04 (13) Mn2B—O5B—C8B—N2B −14 (5)
O9—Mn2—O4—Na1 −45.30 (14) Mn2B—O5B—C8B—C9B 173 (3)
O10—Mn2—O4—Na1 129.4 (4) N2B—C8B—C9B—C14B 9 (7)
Na1i—Mn2—O4—Na1 94.85 (11) O5B—C8B—C9B—C14B −177 (4)
Mn2—O4—N2—C8 −4.4 (4) N2B—C8B—C9B—C10B −169 (4)
Na1i—O4—N2—C8 −125.2 (3) O5B—C8B—C9B—C10B 5 (6)
Na1—O4—N2—C8 139.5 (3) C14B—C9B—C10B—C11B 9 (8)
Mn2—O4—N2—Mn1i 172.36 (18) C8B—C9B—C10B—C11B −172 (5)
Na1i—O4—N2—Mn1i 51.6 (3) C9B—C10B—C11B—C12B −15 (9)
Na1—O4—N2—Mn1i −43.7 (4) C10B—C11B—C12B—C13B 13 (10)
O4—N2—C8—O5 1.8 (5) C11B—C12B—C13B—C14B −6 (9)
Mn1i—N2—C8—O5 −174.4 (3) C10B—C9B—C14B—O6B 175 (4)
O4—N2—C8—C9 −177.1 (3) C8B—C9B—C14B—O6B −3 (8)
Mn1i—N2—C8—C9 6.6 (6) C10B—C9B—C14B—C13B −2 (8)
Mn2—O5—C8—N2 1.5 (4) C8B—C9B—C14B—C13B 180 (4)
Mn2—O5—C8—C9 −179.5 (2) C12B—C13B—C14B—O6B −176 (5)
N2—C8—C9—C14 9.0 (5) C12B—C13B—C14B—C9B 1 (8)
O5—C8—C9—C14 −170.0 (3) C9B—C14B—O6B—Mn1Bi −6 (7)
N2—C8—C9—C10 −172.1 (3) C13B—C14B—O6B—Mn1Bi 171 (3)
O5—C8—C9—C10 8.9 (4) Na1—O7B—C15B—O8B 65 (5)
C14—C9—C10—C11 1.0 (5) Na1—O7B—C15B—C16B −158 (2)
C8—C9—C10—C11 −177.9 (3) Mn1Bi—O8B—C15B—O7B −55 (4)
C9—C10—C11—C12 −0.1 (5) Mn1Bi—O8B—C15B—C16B 165.6 (15)
C10—C11—C12—C13 −0.1 (6) O7B—C15B—C16B—C21B −149 (3)
C11—C12—C13—C14 −0.7 (5) O8B—C15B—C16B—C21B −9 (3)
C10—C9—C14—O6 −179.5 (3) O7B—C15B—C16B—C17B 31 (3)
C8—C9—C14—O6 −0.6 (5) O8B—C15B—C16B—C17B 170 (3)
C10—C9—C14—C13 −1.7 (4) C21B—C16B—C17B—C18B 0.0 (4)
C8—C9—C14—C13 177.1 (3) C15B—C16B—C17B—C18B −179.9 (3)
C12—C13—C14—O6 179.5 (3) C16B—C17B—C18B—C19B 0.0 (7)
C12—C13—C14—C9 1.6 (5) C17B—C18B—C19B—C20B 0.0 (9)
C9—C14—O6—Mn1i −24.5 (4) C18B—C19B—C20B—C21B 0.0 (10)
C13—C14—O6—Mn1i 157.7 (2) C18B—C19B—C20B—Cl1B −179.8 (6)
Na1—O7—C15—O8 −30.3 (6) C17B—C16B—C21B—C20B −0.1 (7)
Na1—O7—C15—C16 147.0 (3) C15B—C16B—C21B—C20B 179.9 (5)
Mn1—O8—C15—O7 10.4 (5) C19B—C20B—C21B—C16B 0.1 (9)
Mn1—O8—C15—C16 −167.0 (2) Cl1B—C20B—C21B—C16B 179.8 (5)
O7—C15—C16—C21 −172.1 (4) Mn2—O9—C22—N3 176.2 (6)
O8—C15—C16—C21 5.5 (5) O9—C22—N3—C24 177.2 (7)
O7—C15—C16—C17 4.4 (6) O9—C22—N3—C23 −3.0 (11)
O8—C15—C16—C17 −178.1 (4) Mn2B—O9B—C22B—N3B 168 (7)
C21—C16—C17—C18 0.0 (6) O9B—C22B—N3B—C24B 177 (7)
C15—C16—C17—C18 −176.5 (4) O9B—C22B—N3B—C23B 20 (13)
C16—C17—C18—C19 1.4 (7) O9C—C22C—N3C—C24C −6 (6)
C17—C18—C19—C20 −1.9 (7) O9C—C22C—N3C—C23C −178 (4)
C18—C19—C20—C21 1.1 (7) Mn2—O10—C25—N4 −177.7 (9)
C18—C19—C20—Cl1 177.2 (4) Na1i—O10—C25—N4 −68.3 (17)
C17—C16—C21—C20 −0.8 (6) O10—C25—N4—C26 3 (2)
C15—C16—C21—C20 175.7 (4) O10—C25—N4—C27 172.9 (15)
C19—C20—C21—C16 0.2 (7) Mn2B—O10B—C25B—N4B −170 (3)
Cl1—C20—C21—C16 −175.8 (3) Na1i—O10B—C25B—N4B −4 (5)
O6Bi—Mn1B—O1B—N1B −97 (4) O10B—C25B—N4B—C26B 0.0 (4)
O2B—Mn1B—O1B—N1B −8 (4) O10B—C25B—N4B—C27B 180.0 (4)
N2Bi—Mn1B—O1B—N1B 178 (4) Na1i—O10C—C25C—N4C −40.6 (17)
O8Bi—Mn1B—O1B—N1B 77 (4) O10C—C25C—N4C—C26C −0.2 (4)
Na1i—Mn1B—O1B—N1B 126 (4) O10C—C25C—N4C—C27C −179.9 (4)
Na1—Mn1B—O1B—N1B −138 (4) Na1—O11—C28—N5 −125.3 (14)
O6Bi—Mn1B—O1B—Na1i 136 (2) O11—C28—N5—C30 175.4 (15)
O2B—Mn1B—O1B—Na1i −134.1 (13) O11—C28—N5—C29 5.8 (15)
N2Bi—Mn1B—O1B—Na1i 52.0 (16) C28—N5—C29—C30 173.4 (12)
O8Bi—Mn1B—O1B—Na1i −49.0 (13) C28—N5—C30—C29 −171.1 (16)
Na1—Mn1B—O1B—Na1i 96.1 (11) Na1—O11B—C28B—N5B 137.6 (17)
O6Bi—Mn1B—O1B—Na1 40 (3) O11B—C28B—N5B—C30B −173.2 (14)
O2B—Mn1B—O1B—Na1 129.8 (13) O11B—C28B—N5B—C29B 8.4 (15)
N2Bi—Mn1B—O1B—Na1 −44.1 (16) C28B—N5B—C29B—C30B 178.9 (14)
O8Bi—Mn1B—O1B—Na1 −145.1 (12) C28B—N5B—C30B—C29B −178.6 (17)
Na1i—Mn1B—O1B—Na1 −96.1 (10)

Symmetry code: (i) −x+1, −y+1, −z+1.

Bis(µ-3-chlorobenzoato)hexakis(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium(I) (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C26—H26A···O11i 0.98 2.65 3.56 (2) 155
C29—H29A···Cl1ii 0.98 2.78 3.702 (10) 156
C30—H30A···Cl1ii 0.98 2.79 3.699 (14) 154
C30—H30C···O6 0.98 2.54 3.125 (16) 119

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1.

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Crystal data

[Mn5Na(C7H4ClO2)3(C7H4NO3)4(C3H7NO)(H2O)4]·4C3H7NO·0.718H2O F(000) = 1856
Mr = 1815.30 Dx = 1.569 Mg m3
Monoclinic, Pn Mo Kα radiation, λ = 0.71073 Å
a = 14.1955 (9) Å Cell parameters from 9812 reflections
b = 16.3349 (11) Å θ = 2.8–33.2°
c = 16.6144 (10) Å µ = 1.00 mm1
β = 94.235 (2)° T = 150 K
V = 3842.1 (4) Å3 Plate, brown
Z = 2 0.45 × 0.23 × 0.09 mm

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Data collection

Bruker AXS D8 Quest CMOS diffractometer 27291 independent reflections
Radiation source: fine focus sealed tube X-ray source 24179 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromator Rint = 0.038
Detector resolution: 10.4167 pixels mm-1 θmax = 33.3°, θmin = 2.3°
ω and phi scans h = −21→21
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −24→25
Tmin = 0.636, Tmax = 0.747 l = −25→25
118654 measured reflections

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9214P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
27291 reflections Δρmax = 0.82 e Å3
1079 parameters Δρmin = −0.69 e Å3
143 restraints Absolute structure: Flack x determined using 10010 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.000 (2)

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. A partially occupied water molecule (O28) induces disorder for a neighboring DMF molecule (of O27). The two disordered moieties were restrained to have similar geometries, and the carbon, oxygen, and nitrogen atoms of the DMF molecule restrained to have similar Uij components of the ADPs (esd = 0.01 Angstrom squared; SIMU restraint in Shexl). Subject to these conditions the occupancy ratio refined to 0.718 (6) to 0.282 (6). Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water H atom positions of partially occupied O28 were further restrained based on hydrogen bonding considerations. All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms).

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.94848 (3) 0.74796 (2) 0.12192 (2) 0.01712 (7)
Mn2 0.88182 (3) 0.55381 (2) 0.20529 (2) 0.01784 (7)
Mn3 0.84120 (3) 0.80306 (2) 0.32631 (2) 0.02092 (8)
Mn4 0.79257 (3) 0.92045 (2) 0.07682 (2) 0.01758 (7)
Mn5 0.80131 (3) 0.66570 (2) −0.04269 (2) 0.01977 (7)
Cl1 1.43537 (7) 0.72511 (8) 0.22049 (9) 0.0627 (3)
Cl2 1.36255 (7) 0.88134 (7) 0.04017 (8) 0.0566 (3)
Cl3 1.37297 (7) 0.65953 (6) 0.00448 (8) 0.0499 (2)
Na1 0.72158 (8) 0.72202 (7) 0.14880 (7) 0.0237 (2)
O1 0.87675 (13) 0.66896 (10) 0.22245 (10) 0.0181 (3)
O2 0.87704 (14) 0.55137 (12) 0.32112 (11) 0.0224 (3)
O3 0.82492 (18) 0.77918 (14) 0.43375 (12) 0.0327 (5)
O4 0.85092 (14) 0.82488 (11) 0.21559 (11) 0.0221 (4)
O5 0.79567 (16) 0.91481 (12) 0.32656 (11) 0.0263 (4)
O6 0.74502 (16) 1.02397 (12) 0.09454 (11) 0.0259 (4)
O7 0.82177 (13) 0.80836 (11) 0.05780 (10) 0.0174 (3)
O8 0.75439 (13) 0.91719 (11) −0.03804 (11) 0.0197 (3)
O9 0.73472 (17) 0.67929 (12) −0.14280 (12) 0.0279 (4)
O10 0.85109 (13) 0.65224 (11) 0.06581 (10) 0.0188 (3)
O11 0.80267 (15) 0.54635 (11) −0.03933 (12) 0.0239 (4)
O12 0.87122 (16) 0.44136 (11) 0.19019 (12) 0.0256 (4)
O13 1.06930 (15) 0.68575 (14) 0.17489 (15) 0.0333 (5)
O14 1.03540 (14) 0.55599 (13) 0.20912 (13) 0.0266 (4)
O15 1.01555 (14) 0.86423 (12) 0.12682 (12) 0.0250 (4)
O16 0.93343 (15) 0.96135 (13) 0.05707 (13) 0.0286 (4)
O17 1.01332 (17) 0.73627 (14) 0.00900 (13) 0.0314 (4)
O18 0.93645 (17) 0.66595 (14) −0.09162 (13) 0.0304 (4)
O19 0.70789 (16) 0.57678 (14) 0.19746 (13) 0.0282 (4)
H19A 0.686 (3) 0.571 (3) 0.2404 (19) 0.042*
H19B 0.672 (3) 0.551 (3) 0.165 (2) 0.042*
O20 0.68174 (15) 0.76328 (14) 0.28274 (13) 0.0281 (4)
H20A 0.665 (3) 0.725 (2) 0.310 (3) 0.042*
H20B 0.645 (3) 0.804 (2) 0.289 (3) 0.042*
O21 0.63857 (15) 0.85442 (15) 0.10221 (13) 0.0299 (4)
H21A 0.602 (3) 0.850 (3) 0.061 (2) 0.045*
H21B 0.599 (3) 0.882 (3) 0.127 (3) 0.045*
O22 0.65301 (15) 0.66842 (13) 0.02323 (14) 0.0281 (4)
H22A 0.615 (3) 0.699 (3) −0.004 (3) 0.042*
H22B 0.626 (3) 0.6235 (19) 0.028 (3) 0.042*
O23 0.98758 (19) 0.84110 (16) 0.36432 (15) 0.0389 (5)
O24 0.63713 (17) 0.61014 (15) 0.34356 (13) 0.0329 (4)
O25 0.56256 (19) 0.89325 (19) 0.24735 (16) 0.0446 (6)
O26 0.54987 (17) 0.79780 (16) −0.03879 (16) 0.0369 (5)
O28 0.5391 (3) 0.6059 (3) −0.1628 (3) 0.0623 (14) 0.718 (6)
H28A 0.497 (5) 0.6239 (18) −0.127 (4) 0.093* 0.718 (6)
H28B 0.598 (3) 0.624 (6) −0.148 (5) 0.093* 0.718 (6)
N1 0.87138 (15) 0.68908 (13) 0.30410 (12) 0.0173 (3)
N2 0.81668 (16) 0.90282 (13) 0.19300 (12) 0.0195 (4)
N3 0.79729 (15) 0.78406 (12) −0.02184 (11) 0.0163 (3)
N4 0.86362 (15) 0.57017 (12) 0.08839 (12) 0.0174 (3)
N5 1.1422 (2) 0.86518 (17) 0.34591 (17) 0.0360 (6)
N6 0.61309 (18) 0.59868 (17) 0.47635 (15) 0.0290 (5)
N7 0.4892 (3) 1.0103 (3) 0.2817 (2) 0.0583 (11)
N8 0.4921 (2) 0.86435 (19) −0.1525 (2) 0.0380 (6)
C1 0.86952 (16) 0.62440 (15) 0.35126 (14) 0.0187 (4)
C2 0.86233 (18) 0.63451 (17) 0.43869 (14) 0.0210 (4)
C3 0.8751 (2) 0.56420 (18) 0.48703 (16) 0.0261 (5)
H3 0.884687 0.512773 0.462218 0.031*
C4 0.8740 (2) 0.5686 (2) 0.57046 (17) 0.0321 (6)
H4 0.882371 0.520732 0.602696 0.038*
C5 0.8604 (2) 0.6443 (2) 0.60579 (17) 0.0358 (7)
H5 0.861196 0.648234 0.662886 0.043*
C6 0.8456 (2) 0.7142 (2) 0.55925 (16) 0.0332 (6)
H6 0.835577 0.765191 0.584798 0.040*
C7 0.8454 (2) 0.71057 (18) 0.47441 (15) 0.0248 (5)
C8 0.78751 (19) 0.94529 (15) 0.25412 (15) 0.0213 (4)
C9 0.7475 (2) 1.02746 (16) 0.24081 (15) 0.0231 (5)
C10 0.7290 (3) 1.07315 (19) 0.30896 (18) 0.0354 (7)
H10 0.740587 1.049507 0.360992 0.042*
C11 0.6941 (4) 1.1521 (2) 0.3022 (2) 0.0518 (11)
H11 0.682379 1.182691 0.349058 0.062*
C12 0.6762 (3) 1.1862 (2) 0.2253 (2) 0.0452 (9)
H12 0.652336 1.240365 0.219919 0.054*
C13 0.6930 (2) 1.14180 (17) 0.15718 (17) 0.0305 (6)
H13 0.679519 1.165580 0.105426 0.037*
C14 0.7298 (2) 1.06154 (15) 0.16324 (15) 0.0217 (4)
C15 0.76197 (17) 0.84357 (14) −0.06743 (13) 0.0163 (4)
C16 0.73348 (17) 0.82784 (15) −0.15250 (14) 0.0188 (4)
C17 0.7173 (2) 0.89589 (17) −0.20221 (16) 0.0266 (5)
H17 0.723889 0.949159 −0.179553 0.032*
C18 0.6918 (3) 0.8877 (2) −0.28359 (18) 0.0364 (7)
H18 0.683475 0.934520 −0.317235 0.044*
C19 0.6785 (3) 0.8092 (2) −0.31541 (18) 0.0370 (7)
H19 0.658535 0.802855 −0.370895 0.044*
C20 0.6938 (2) 0.74110 (18) −0.26811 (16) 0.0278 (5)
H20 0.684501 0.688270 −0.291265 0.033*
C21 0.72295 (18) 0.74846 (15) −0.18567 (14) 0.0197 (4)
C22 0.83631 (17) 0.51901 (15) 0.03055 (15) 0.0190 (4)
C23 0.84626 (17) 0.43050 (14) 0.04471 (15) 0.0197 (4)
C24 0.8402 (2) 0.37860 (16) −0.02240 (17) 0.0245 (5)
H24 0.829900 0.401564 −0.074839 0.029*
C25 0.8490 (2) 0.29459 (17) −0.0142 (2) 0.0306 (6)
H25 0.844732 0.260176 −0.060464 0.037*
C26 0.8642 (2) 0.26108 (17) 0.0632 (2) 0.0319 (6)
H26 0.869740 0.203475 0.069847 0.038*
C27 0.8711 (2) 0.31183 (17) 0.13012 (19) 0.0297 (6)
H27 0.881245 0.288262 0.182318 0.036*
C28 0.86365 (18) 0.39730 (15) 0.12278 (16) 0.0208 (4)
C29 1.09125 (18) 0.61447 (17) 0.19911 (16) 0.0231 (5)
C30 1.19483 (18) 0.59768 (17) 0.21915 (16) 0.0232 (5)
C31 1.2604 (2) 0.66010 (19) 0.20837 (19) 0.0291 (5)
H31 1.240250 0.711423 0.186383 0.035*
C32 1.3555 (2) 0.6458 (2) 0.2304 (2) 0.0343 (6)
C33 1.3867 (2) 0.5711 (2) 0.26120 (19) 0.0326 (6)
H33 1.452044 0.562114 0.275118 0.039*
C34 1.3216 (2) 0.5096 (2) 0.27153 (18) 0.0296 (6)
H34 1.342280 0.458220 0.292975 0.036*
C35 1.2258 (2) 0.52263 (18) 0.25067 (17) 0.0256 (5)
H35 1.181605 0.480122 0.257983 0.031*
C36 1.00847 (19) 0.92630 (16) 0.08202 (16) 0.0229 (5)
C37 1.09942 (19) 0.96143 (16) 0.05575 (15) 0.0228 (5)
C38 1.1799 (2) 0.91298 (18) 0.06101 (17) 0.0275 (5)
H38 1.177235 0.858381 0.080410 0.033*
C39 1.2644 (2) 0.9450 (2) 0.0377 (2) 0.0318 (6)
C40 1.2704 (2) 1.0247 (2) 0.01019 (18) 0.0318 (6)
H40 1.328891 1.046305 −0.004390 0.038*
C41 1.1894 (2) 1.07257 (18) 0.00434 (17) 0.0291 (6)
H41 1.192473 1.127102 −0.015157 0.035*
C42 1.1037 (2) 1.04164 (17) 0.02669 (16) 0.0255 (5)
H42 1.048582 1.074773 0.022236 0.031*
C43 1.0099 (2) 0.69213 (16) −0.05311 (17) 0.0267 (5)
C44 1.1038 (2) 0.66875 (17) −0.08435 (17) 0.0273 (5)
C45 1.1853 (2) 0.67586 (18) −0.0333 (2) 0.0311 (6)
H45 1.182075 0.696497 0.019891 0.037*
C46 1.2717 (2) 0.65257 (19) −0.0605 (2) 0.0353 (7)
C47 1.2781 (3) 0.6242 (2) −0.1388 (2) 0.0407 (8)
H47 1.337575 0.609879 −0.157422 0.049*
C48 1.1958 (3) 0.6172 (2) −0.1893 (2) 0.0375 (7)
H48 1.199314 0.597953 −0.242982 0.045*
C49 1.1085 (3) 0.63816 (18) −0.16235 (18) 0.0318 (6)
H49 1.052487 0.631654 −0.196770 0.038*
C50 1.0534 (3) 0.8454 (2) 0.3205 (2) 0.0372 (7)
H50 1.040451 0.833992 0.264771 0.045*
C51 1.1663 (3) 0.8825 (2) 0.4306 (2) 0.0439 (8)
H51A 1.197463 0.936011 0.435834 0.066*
H51B 1.209159 0.840091 0.453451 0.066*
H51C 1.108709 0.883197 0.459604 0.066*
C52 1.2180 (3) 0.8640 (3) 0.2919 (3) 0.0493 (9)
H52A 1.194479 0.841259 0.239647 0.074*
H52B 1.269913 0.829932 0.315277 0.074*
H52C 1.240804 0.919863 0.284372 0.074*
C53 0.6344 (2) 0.56990 (19) 0.40588 (18) 0.0287 (5)
H53 0.648914 0.513254 0.402979 0.034*
C54 0.5930 (3) 0.6854 (3) 0.4853 (3) 0.0496 (10)
H54A 0.652425 0.715561 0.495198 0.074*
H54B 0.553887 0.693345 0.530827 0.074*
H54C 0.559159 0.705839 0.435730 0.074*
C55 0.6146 (3) 0.5472 (3) 0.5480 (2) 0.0473 (9)
H55A 0.630461 0.490895 0.533684 0.071*
H55B 0.552273 0.548074 0.569726 0.071*
H55C 0.662057 0.567908 0.588780 0.071*
C56 0.5413 (3) 0.9439 (3) 0.2970 (3) 0.0561 (12)
H56 0.564073 0.934855 0.351475 0.067*
C57 0.4582 (5) 1.0323 (4) 0.1996 (3) 0.0798 (19)
H57A 0.485907 0.994340 0.162163 0.120*
H57B 0.478695 1.088213 0.188577 0.120*
H57C 0.389196 1.029137 0.192349 0.120*
C58 0.4721 (4) 1.0682 (5) 0.3470 (4) 0.086 (2)
H58A 0.492393 1.123106 0.332017 0.129*
H58B 0.507917 1.050939 0.396783 0.129*
H58C 0.404530 1.069058 0.355617 0.129*
C59 0.5163 (2) 0.7986 (2) −0.1100 (2) 0.0371 (7)
H59 0.507364 0.747153 −0.136144 0.045*
C60 0.5023 (3) 0.9463 (2) −0.1198 (3) 0.0470 (9)
H60A 0.546487 0.977347 −0.150636 0.071*
H60B 0.526599 0.943363 −0.063153 0.071*
H60C 0.440667 0.973627 −0.123632 0.071*
C61 0.4571 (4) 0.8571 (3) −0.2372 (3) 0.0595 (12)
H61A 0.484238 0.900789 −0.268536 0.089*
H61B 0.388059 0.861744 −0.241617 0.089*
H61C 0.475446 0.803758 −0.258093 0.089*
O27 0.6052 (6) 0.5130 (3) 0.0592 (4) 0.0320 (11) 0.718 (6)
C62 0.6006 (3) 0.4733 (3) −0.0046 (3) 0.0298 (8) 0.718 (6)
H62 0.594657 0.502532 −0.054164 0.036* 0.718 (6)
N9 0.6034 (3) 0.3918 (2) −0.0072 (2) 0.0237 (7) 0.718 (6)
C63 0.6113 (4) 0.3432 (3) 0.0650 (3) 0.0378 (10) 0.718 (6)
H63A 0.566156 0.297783 0.059700 0.057* 0.718 (6)
H63B 0.597531 0.377271 0.111236 0.057* 0.718 (6)
H63C 0.675588 0.321378 0.073329 0.057* 0.718 (6)
C64 0.6022 (12) 0.3530 (7) −0.0877 (6) 0.045 (3) 0.718 (6)
H64A 0.594719 0.395288 −0.129559 0.067* 0.718 (6)
H64B 0.549386 0.314372 −0.094251 0.067* 0.718 (6)
H64C 0.661727 0.323691 −0.092731 0.067* 0.718 (6)
O27B 0.616 (2) 0.5054 (13) 0.0773 (14) 0.061 (6) 0.282 (6)
C62B 0.6184 (8) 0.4417 (9) 0.0424 (8) 0.041 (2) 0.282 (6)
H62B 0.635682 0.396191 0.075905 0.049* 0.282 (6)
N9B 0.6016 (8) 0.4235 (9) −0.0353 (8) 0.047 (3) 0.282 (6)
C63B 0.5828 (10) 0.4949 (11) −0.0902 (9) 0.057 (4) 0.282 (6)
H63D 0.642836 0.517217 −0.105915 0.085* 0.282 (6)
H63E 0.548678 0.537152 −0.062287 0.085* 0.282 (6)
H63F 0.544488 0.477096 −0.138570 0.085* 0.282 (6)
C64B 0.599 (2) 0.3423 (13) −0.0723 (17) 0.035 (5) 0.282 (6)
H64D 0.557796 0.343515 −0.122357 0.052* 0.282 (6)
H64E 0.574243 0.302599 −0.034928 0.052* 0.282 (6)
H64F 0.662842 0.326207 −0.084474 0.052* 0.282 (6)

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.02092 (15) 0.01406 (15) 0.01640 (14) 0.00043 (12) 0.00155 (11) 0.00134 (12)
Mn2 0.02549 (16) 0.01237 (15) 0.01608 (15) 0.00079 (12) 0.00443 (12) 0.00244 (12)
Mn3 0.03305 (19) 0.01683 (16) 0.01285 (14) 0.00786 (14) 0.00139 (13) 0.00027 (12)
Mn4 0.02744 (17) 0.01202 (15) 0.01300 (14) 0.00354 (13) −0.00050 (12) −0.00084 (11)
Mn5 0.03203 (19) 0.01313 (15) 0.01381 (14) 0.00237 (13) −0.00060 (13) −0.00134 (12)
Cl1 0.0331 (4) 0.0563 (6) 0.0964 (9) −0.0184 (4) −0.0115 (5) 0.0191 (6)
Cl2 0.0388 (4) 0.0540 (6) 0.0789 (8) 0.0107 (4) 0.0175 (5) 0.0049 (5)
Cl3 0.0371 (4) 0.0388 (5) 0.0747 (7) −0.0005 (3) 0.0096 (4) −0.0113 (4)
Na1 0.0287 (5) 0.0207 (5) 0.0222 (5) 0.0017 (4) 0.0046 (4) 0.0016 (4)
O1 0.0289 (8) 0.0132 (7) 0.0126 (7) 0.0023 (6) 0.0039 (6) −0.0002 (5)
O2 0.0317 (9) 0.0178 (8) 0.0180 (8) 0.0020 (7) 0.0046 (7) 0.0030 (6)
O3 0.0571 (14) 0.0270 (10) 0.0143 (8) 0.0167 (10) 0.0049 (8) 0.0022 (7)
O4 0.0367 (10) 0.0145 (8) 0.0152 (7) 0.0095 (7) 0.0035 (7) 0.0020 (6)
O5 0.0431 (11) 0.0203 (9) 0.0152 (8) 0.0099 (8) 0.0007 (7) −0.0009 (6)
O6 0.0463 (11) 0.0153 (8) 0.0157 (8) 0.0106 (8) −0.0002 (7) −0.0002 (6)
O7 0.0257 (8) 0.0144 (7) 0.0118 (6) 0.0013 (6) −0.0005 (6) −0.0025 (5)
O8 0.0293 (9) 0.0135 (7) 0.0159 (7) 0.0018 (6) −0.0009 (6) −0.0003 (6)
O9 0.0475 (12) 0.0165 (8) 0.0183 (8) 0.0005 (8) −0.0062 (8) −0.0019 (7)
O10 0.0296 (8) 0.0117 (7) 0.0149 (7) 0.0012 (6) 0.0012 (6) 0.0013 (6)
O11 0.0376 (10) 0.0144 (8) 0.0193 (8) 0.0025 (7) −0.0003 (7) −0.0017 (6)
O12 0.0425 (11) 0.0133 (8) 0.0218 (9) −0.0002 (7) 0.0077 (8) 0.0034 (6)
O13 0.0239 (9) 0.0294 (11) 0.0461 (13) 0.0035 (8) −0.0003 (9) 0.0146 (9)
O14 0.0233 (9) 0.0235 (9) 0.0331 (10) 0.0012 (7) 0.0031 (7) −0.0009 (8)
O15 0.0310 (9) 0.0206 (9) 0.0230 (9) −0.0066 (7) −0.0004 (7) 0.0021 (7)
O16 0.0293 (9) 0.0240 (10) 0.0323 (10) −0.0050 (7) 0.0006 (8) 0.0030 (8)
O17 0.0374 (11) 0.0285 (10) 0.0305 (10) −0.0010 (8) 0.0170 (9) −0.0079 (8)
O18 0.0393 (11) 0.0305 (11) 0.0226 (9) 0.0025 (8) 0.0097 (8) −0.0028 (8)
O19 0.0326 (10) 0.0308 (11) 0.0220 (9) −0.0035 (8) 0.0083 (8) 0.0001 (8)
O20 0.0267 (9) 0.0295 (10) 0.0286 (10) 0.0059 (8) 0.0052 (7) 0.0044 (8)
O21 0.0283 (10) 0.0340 (11) 0.0275 (10) 0.0060 (8) 0.0022 (8) −0.0021 (8)
O22 0.0306 (10) 0.0203 (9) 0.0334 (10) −0.0040 (7) 0.0025 (8) 0.0017 (8)
O23 0.0461 (13) 0.0329 (12) 0.0356 (12) −0.0029 (10) −0.0113 (10) −0.0017 (9)
O24 0.0390 (11) 0.0357 (12) 0.0248 (9) −0.0002 (9) 0.0075 (8) 0.0008 (8)
O25 0.0397 (13) 0.0560 (17) 0.0387 (13) 0.0115 (11) 0.0076 (10) 0.0007 (12)
O26 0.0323 (11) 0.0356 (12) 0.0420 (13) −0.0004 (9) −0.0024 (9) 0.0028 (10)
O28 0.047 (2) 0.061 (3) 0.081 (3) −0.008 (2) 0.015 (2) −0.015 (2)
N1 0.0230 (9) 0.0170 (9) 0.0120 (8) 0.0031 (7) 0.0019 (7) 0.0005 (7)
N2 0.0312 (10) 0.0126 (8) 0.0145 (8) 0.0060 (7) 0.0009 (7) 0.0001 (7)
N3 0.0245 (9) 0.0141 (8) 0.0103 (7) 0.0009 (7) 0.0006 (6) −0.0010 (6)
N4 0.0235 (9) 0.0118 (8) 0.0171 (8) 0.0011 (6) 0.0035 (7) 0.0019 (7)
N5 0.0488 (15) 0.0284 (13) 0.0294 (12) 0.0025 (11) −0.0073 (11) −0.0042 (10)
N6 0.0276 (11) 0.0357 (13) 0.0244 (11) −0.0027 (9) 0.0074 (9) −0.0019 (9)
N7 0.0481 (18) 0.080 (3) 0.0462 (19) 0.0328 (19) −0.0014 (15) −0.0175 (18)
N8 0.0335 (13) 0.0356 (15) 0.0437 (16) 0.0034 (11) −0.0053 (11) −0.0023 (12)
C1 0.0184 (9) 0.0215 (11) 0.0165 (9) 0.0029 (8) 0.0022 (7) 0.0029 (8)
C2 0.0212 (10) 0.0259 (12) 0.0160 (9) 0.0046 (9) 0.0030 (8) 0.0040 (8)
C3 0.0286 (12) 0.0286 (13) 0.0214 (11) 0.0037 (10) 0.0044 (9) 0.0083 (10)
C4 0.0385 (15) 0.0379 (16) 0.0204 (11) 0.0077 (12) 0.0059 (11) 0.0113 (11)
C5 0.0440 (16) 0.0474 (19) 0.0166 (11) 0.0171 (14) 0.0059 (11) 0.0078 (11)
C6 0.0454 (16) 0.0395 (16) 0.0147 (10) 0.0142 (13) 0.0025 (10) 0.0024 (10)
C7 0.0301 (12) 0.0301 (13) 0.0142 (10) 0.0083 (10) 0.0021 (9) 0.0042 (9)
C8 0.0321 (12) 0.0159 (10) 0.0157 (9) 0.0051 (9) −0.0005 (8) −0.0011 (8)
C9 0.0345 (12) 0.0169 (10) 0.0174 (10) 0.0075 (9) 0.0002 (9) −0.0033 (8)
C10 0.061 (2) 0.0251 (14) 0.0201 (12) 0.0167 (13) 0.0028 (12) −0.0035 (10)
C11 0.100 (3) 0.0296 (16) 0.0257 (14) 0.0324 (19) 0.0044 (17) −0.0060 (12)
C12 0.085 (3) 0.0230 (14) 0.0272 (14) 0.0277 (16) 0.0026 (16) −0.0030 (11)
C13 0.0494 (17) 0.0179 (12) 0.0242 (12) 0.0126 (11) 0.0020 (11) −0.0003 (9)
C14 0.0322 (12) 0.0134 (10) 0.0189 (10) 0.0045 (8) −0.0013 (9) −0.0019 (8)
C15 0.0216 (10) 0.0140 (9) 0.0135 (9) −0.0001 (7) 0.0026 (7) −0.0006 (7)
C16 0.0248 (10) 0.0180 (10) 0.0136 (9) 0.0005 (8) 0.0018 (8) 0.0015 (8)
C17 0.0436 (15) 0.0191 (11) 0.0164 (10) 0.0021 (10) −0.0033 (10) 0.0022 (8)
C18 0.061 (2) 0.0290 (15) 0.0179 (11) 0.0055 (13) −0.0065 (12) 0.0041 (10)
C19 0.064 (2) 0.0288 (15) 0.0163 (11) 0.0072 (14) −0.0078 (12) −0.0019 (10)
C20 0.0434 (15) 0.0240 (12) 0.0153 (10) 0.0023 (11) −0.0020 (10) −0.0038 (9)
C21 0.0256 (11) 0.0198 (11) 0.0136 (9) 0.0003 (8) 0.0016 (8) −0.0016 (8)
C22 0.0223 (10) 0.0154 (10) 0.0199 (10) 0.0006 (8) 0.0047 (8) −0.0018 (8)
C23 0.0214 (10) 0.0133 (9) 0.0248 (11) −0.0006 (8) 0.0043 (8) −0.0010 (8)
C24 0.0290 (12) 0.0165 (10) 0.0283 (12) 0.0010 (9) 0.0046 (10) −0.0027 (9)
C25 0.0383 (15) 0.0153 (11) 0.0380 (15) 0.0002 (10) 0.0023 (12) −0.0064 (10)
C26 0.0429 (16) 0.0138 (11) 0.0396 (16) 0.0000 (10) 0.0070 (13) −0.0009 (10)
C27 0.0413 (15) 0.0142 (11) 0.0345 (14) 0.0010 (10) 0.0087 (12) 0.0026 (10)
C28 0.0234 (10) 0.0138 (10) 0.0258 (11) −0.0003 (8) 0.0065 (9) 0.0016 (8)
C29 0.0234 (11) 0.0234 (12) 0.0224 (11) 0.0018 (9) 0.0007 (9) 0.0004 (9)
C30 0.0216 (10) 0.0260 (12) 0.0220 (11) 0.0029 (9) 0.0010 (8) 0.0006 (9)
C31 0.0282 (12) 0.0247 (13) 0.0339 (14) −0.0010 (10) −0.0012 (10) 0.0050 (11)
C32 0.0263 (13) 0.0376 (16) 0.0382 (16) −0.0050 (11) −0.0038 (11) 0.0041 (13)
C33 0.0244 (12) 0.0424 (17) 0.0304 (14) 0.0055 (11) −0.0023 (10) −0.0014 (12)
C34 0.0322 (13) 0.0312 (14) 0.0254 (12) 0.0096 (11) 0.0025 (10) 0.0016 (10)
C35 0.0289 (12) 0.0237 (12) 0.0246 (11) 0.0038 (9) 0.0051 (9) 0.0026 (9)
C36 0.0296 (12) 0.0185 (11) 0.0204 (10) −0.0057 (9) 0.0003 (9) −0.0017 (8)
C37 0.0306 (12) 0.0196 (11) 0.0180 (10) −0.0062 (9) 0.0008 (9) −0.0018 (8)
C38 0.0340 (13) 0.0227 (12) 0.0261 (12) −0.0026 (10) 0.0044 (10) 0.0004 (10)
C39 0.0318 (14) 0.0326 (15) 0.0322 (14) −0.0012 (11) 0.0103 (11) −0.0008 (11)
C40 0.0350 (14) 0.0359 (15) 0.0255 (12) −0.0101 (12) 0.0092 (11) −0.0029 (11)
C41 0.0420 (15) 0.0256 (13) 0.0206 (11) −0.0092 (11) 0.0079 (10) −0.0003 (9)
C42 0.0360 (13) 0.0203 (11) 0.0204 (11) −0.0047 (10) 0.0032 (10) 0.0003 (9)
C43 0.0395 (14) 0.0190 (11) 0.0238 (11) 0.0041 (10) 0.0165 (10) 0.0035 (9)
C44 0.0375 (14) 0.0185 (11) 0.0280 (12) 0.0046 (10) 0.0171 (11) 0.0038 (9)
C45 0.0392 (15) 0.0206 (12) 0.0354 (14) 0.0032 (10) 0.0163 (12) 0.0011 (10)
C46 0.0390 (15) 0.0218 (13) 0.0471 (18) 0.0033 (11) 0.0157 (14) 0.0017 (12)
C47 0.0508 (19) 0.0258 (14) 0.0492 (19) 0.0122 (13) 0.0282 (16) 0.0025 (13)
C48 0.057 (2) 0.0253 (14) 0.0334 (15) 0.0121 (13) 0.0249 (14) 0.0018 (11)
C49 0.0488 (17) 0.0207 (12) 0.0277 (13) 0.0092 (11) 0.0158 (12) 0.0046 (10)
C50 0.055 (2) 0.0286 (15) 0.0258 (13) 0.0032 (13) −0.0120 (13) −0.0041 (11)
C51 0.062 (2) 0.0400 (19) 0.0284 (15) 0.0055 (16) −0.0091 (15) −0.0044 (13)
C52 0.059 (2) 0.042 (2) 0.048 (2) −0.0021 (17) 0.0097 (18) −0.0092 (16)
C53 0.0343 (14) 0.0271 (13) 0.0252 (12) −0.0022 (10) 0.0069 (10) −0.0024 (10)
C54 0.048 (2) 0.046 (2) 0.057 (2) 0.0014 (16) 0.0213 (18) −0.0219 (18)
C55 0.048 (2) 0.066 (3) 0.0284 (15) −0.0069 (18) 0.0088 (14) 0.0098 (16)
C56 0.051 (2) 0.083 (3) 0.0343 (18) 0.029 (2) 0.0017 (16) −0.0045 (19)
C57 0.098 (4) 0.087 (4) 0.051 (3) 0.052 (4) −0.015 (3) −0.008 (3)
C58 0.073 (3) 0.118 (5) 0.066 (3) 0.053 (4) −0.001 (3) −0.040 (3)
C59 0.0301 (14) 0.0285 (15) 0.052 (2) −0.0021 (11) −0.0044 (13) −0.0048 (13)
C60 0.057 (2) 0.0282 (16) 0.055 (2) 0.0054 (15) 0.0016 (18) −0.0017 (15)
C61 0.054 (2) 0.072 (3) 0.050 (2) 0.017 (2) −0.0142 (19) −0.010 (2)
O27 0.036 (3) 0.0222 (17) 0.038 (3) −0.0084 (14) 0.003 (2) −0.0039 (16)
C62 0.0279 (17) 0.0263 (19) 0.035 (2) −0.0040 (14) −0.0005 (15) 0.0004 (16)
N9 0.0237 (14) 0.0196 (15) 0.0271 (16) −0.0022 (12) −0.0025 (12) −0.0004 (12)
C63 0.037 (2) 0.031 (2) 0.045 (3) 0.0007 (17) 0.0017 (18) 0.0116 (19)
C64 0.041 (5) 0.055 (5) 0.037 (4) 0.002 (4) −0.002 (3) −0.006 (3)
O27B 0.049 (8) 0.073 (10) 0.061 (10) −0.017 (8) −0.004 (8) −0.041 (8)
C62B 0.029 (4) 0.043 (5) 0.049 (5) −0.006 (4) −0.006 (4) −0.004 (5)
N9B 0.029 (4) 0.050 (6) 0.063 (6) −0.004 (4) −0.002 (4) −0.020 (5)
C63B 0.034 (6) 0.090 (11) 0.045 (7) −0.007 (6) −0.002 (5) −0.022 (7)
C64B 0.030 (7) 0.024 (6) 0.051 (11) −0.010 (5) 0.015 (8) −0.023 (8)

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Geometric parameters (Å, º)

Mn1—O15 2.123 (2) C11—C12 1.400 (5)
Mn1—O13 2.127 (2) C11—H11 0.9500
Mn1—O17 2.158 (2) C12—C13 1.379 (4)
Mn1—O10 2.2439 (19) C12—H12 0.9500
Mn1—O7 2.2496 (18) C13—C14 1.412 (4)
Mn1—O1 2.3965 (17) C13—H13 0.9500
Mn1—O4 2.4973 (18) C15—C16 1.464 (3)
Mn1—Na1 3.3115 (12) C16—C17 1.394 (3)
Mn2—O12 1.8585 (19) C16—C21 1.412 (3)
Mn2—O1 1.9047 (17) C17—C18 1.380 (4)
Mn2—O2 1.9310 (19) C17—H17 0.9500
Mn2—N4 1.959 (2) C18—C19 1.394 (5)
Mn2—O14 2.177 (2) C18—H18 0.9500
Mn2—O19 2.491 (2) C19—C20 1.370 (4)
Mn2—Na1 3.6455 (12) C19—H19 0.9500
Mn3—O3 1.858 (2) C20—C21 1.407 (3)
Mn3—O4 1.8888 (18) C20—H20 0.9500
Mn3—O5 1.9366 (19) C22—C23 1.470 (3)
Mn3—N1 1.952 (2) C23—C24 1.398 (4)
Mn3—O23 2.216 (3) C23—C28 1.411 (4)
Mn3—O20 2.414 (2) C24—C25 1.384 (4)
Mn3—Na1 3.5489 (12) C24—H24 0.9500
Mn4—O6 1.8523 (19) C25—C26 1.400 (5)
Mn4—O7 1.9088 (17) C25—H25 0.9500
Mn4—O8 1.9457 (18) C26—C27 1.384 (4)
Mn4—N2 1.957 (2) C26—H26 0.9500
Mn4—O16 2.156 (2) C27—C28 1.405 (4)
Mn4—O21 2.501 (2) C27—H27 0.9500
Mn4—Na1 3.6236 (12) C29—C30 1.509 (4)
Mn5—O9 1.865 (2) C30—C35 1.392 (4)
Mn5—O10 1.8997 (18) C30—C31 1.401 (4)
Mn5—O11 1.9504 (18) C31—C32 1.393 (4)
Mn5—N3 1.966 (2) C31—H31 0.9500
Mn5—O18 2.138 (2) C32—C33 1.383 (5)
Mn5—O22 2.444 (2) C33—C34 1.385 (5)
Mn5—Na1 3.5750 (11) C33—H33 0.9500
Cl1—C32 1.737 (3) C34—C35 1.394 (4)
Cl2—C39 1.737 (3) C34—H34 0.9500
Cl3—C46 1.737 (4) C35—H35 0.9500
Na1—O22 2.401 (3) C36—C37 1.507 (4)
Na1—O20 2.432 (2) C37—C38 1.387 (4)
Na1—O19 2.519 (3) C37—C42 1.399 (4)
Na1—O21 2.556 (3) C38—C39 1.390 (4)
Na1—O7 2.572 (2) C38—H38 0.9500
Na1—O1 2.589 (2) C39—C40 1.385 (5)
Na1—O10 2.637 (2) C40—C41 1.387 (5)
Na1—O4 2.669 (2) C40—H40 0.9500
O1—N1 1.403 (2) C41—C42 1.393 (4)
O2—C1 1.301 (3) C41—H41 0.9500
O3—C7 1.330 (3) C42—H42 0.9500
O4—N2 1.404 (3) C43—C44 1.514 (4)
O5—C8 1.300 (3) C44—C45 1.388 (5)
O6—C14 1.328 (3) C44—C49 1.395 (4)
O7—N3 1.400 (2) C45—C46 1.391 (4)
O8—C15 1.305 (3) C45—H45 0.9500
O9—C21 1.339 (3) C46—C47 1.389 (5)
O10—N4 1.400 (3) C47—C48 1.393 (6)
O11—C22 1.301 (3) C47—H47 0.9500
O12—C28 1.329 (3) C48—C49 1.392 (4)
O13—C29 1.263 (3) C48—H48 0.9500
O14—C29 1.260 (3) C49—H49 0.9500
O15—C36 1.257 (3) C50—H50 0.9500
O16—C36 1.253 (4) C51—H51A 0.9800
O17—C43 1.257 (3) C51—H51B 0.9800
O18—C43 1.257 (4) C51—H51C 0.9800
O19—H19A 0.80 (2) C52—H52A 0.9800
O19—H19B 0.83 (2) C52—H52B 0.9800
O20—H20A 0.83 (2) C52—H52C 0.9800
O20—H20B 0.86 (2) C53—H53 0.9500
O21—H21A 0.83 (2) C54—H54A 0.9800
O21—H21B 0.86 (2) C54—H54B 0.9800
O22—H22A 0.84 (2) C54—H54C 0.9800
O22—H22B 0.84 (2) C55—H55A 0.9800
O23—C50 1.228 (5) C55—H55B 0.9800
O24—C53 1.229 (4) C55—H55C 0.9800
O25—C56 1.221 (5) C56—H56 0.9500
O26—C59 1.242 (4) C57—H57A 0.9800
O28—H28A 0.92 (2) C57—H57B 0.9800
O28—H28B 0.90 (2) C57—H57C 0.9800
N1—C1 1.317 (3) C58—H58A 0.9800
N2—C8 1.321 (3) C58—H58B 0.9800
N3—C15 1.309 (3) C58—H58C 0.9800
N4—C22 1.310 (3) C59—H59 0.9500
N5—C50 1.338 (5) C60—H60A 0.9800
N5—C51 1.451 (4) C60—H60B 0.9800
N5—C52 1.451 (5) C60—H60C 0.9800
N6—C53 1.317 (4) C61—H61A 0.9800
N6—C54 1.455 (5) C61—H61B 0.9800
N6—C55 1.457 (5) C61—H61C 0.9800
N7—C56 1.327 (6) O27—C62 1.240 (7)
N7—C57 1.448 (6) C62—N9 1.334 (5)
N7—C58 1.472 (6) C62—H62 0.9500
N8—C59 1.317 (5) N9—C63 1.435 (6)
N8—C60 1.447 (5) N9—C64 1.479 (10)
N8—C61 1.462 (5) C63—H63A 0.9800
C1—C2 1.473 (3) C63—H63B 0.9800
C2—C7 1.405 (4) C63—H63C 0.9800
C2—C3 1.405 (4) C64—H64A 0.9800
C3—C4 1.389 (4) C64—H64B 0.9800
C3—H3 0.9500 C64—H64C 0.9800
C4—C5 1.388 (5) O27B—C62B 1.193 (19)
C4—H4 0.9500 C62B—N9B 1.329 (16)
C5—C6 1.387 (4) C62B—H62B 0.9500
C5—H5 0.9500 N9B—C64B 1.462 (17)
C6—C7 1.411 (4) N9B—C63B 1.492 (19)
C6—H6 0.9500 C63B—H63D 0.9800
C8—C9 1.468 (4) C63B—H63E 0.9800
C9—C10 1.397 (4) C63B—H63F 0.9800
C9—C14 1.409 (4) C64B—H64D 0.9800
C10—C11 1.383 (4) C64B—H64E 0.9800
C10—H10 0.9500 C64B—H64F 0.9800
O15—Mn1—O13 93.78 (9) C50—N5—C52 121.7 (3)
O15—Mn1—O17 83.90 (8) C51—N5—C52 118.0 (3)
O13—Mn1—O17 86.26 (10) C53—N6—C54 119.8 (3)
O15—Mn1—O10 154.16 (7) C53—N6—C55 122.0 (3)
O13—Mn1—O10 106.98 (8) C54—N6—C55 118.1 (3)
O17—Mn1—O10 82.32 (8) C56—N7—C57 120.6 (4)
O15—Mn1—O7 88.08 (7) C56—N7—C58 120.3 (4)
O13—Mn1—O7 175.86 (9) C57—N7—C58 118.7 (4)
O17—Mn1—O7 90.26 (8) C59—N8—C60 122.6 (3)
O10—Mn1—O7 70.26 (6) C59—N8—C61 120.4 (3)
O15—Mn1—O1 131.86 (7) C60—N8—C61 117.0 (4)
O13—Mn1—O1 79.95 (8) O2—C1—N1 120.1 (2)
O17—Mn1—O1 142.05 (7) O2—C1—C2 119.7 (2)
O10—Mn1—O1 68.52 (6) N1—C1—C2 120.2 (2)
O7—Mn1—O1 101.55 (6) C7—C2—C3 120.0 (2)
O15—Mn1—O4 78.10 (7) C7—C2—C1 122.8 (2)
O13—Mn1—O4 116.73 (8) C3—C2—C1 117.2 (2)
O17—Mn1—O4 151.39 (8) C4—C3—C2 121.2 (3)
O10—Mn1—O4 104.86 (7) C4—C3—H3 119.4
O7—Mn1—O4 67.28 (6) C2—C3—H3 119.4
O1—Mn1—O4 63.44 (6) C5—C4—C3 118.7 (3)
O15—Mn1—Na1 123.17 (6) C5—C4—H4 120.7
O13—Mn1—Na1 130.21 (6) C3—C4—H4 120.7
O17—Mn1—Na1 125.97 (7) C6—C5—C4 121.2 (3)
O10—Mn1—Na1 52.50 (5) C6—C5—H5 119.4
O7—Mn1—Na1 50.83 (5) C4—C5—H5 119.4
O1—Mn1—Na1 50.92 (5) C5—C6—C7 120.8 (3)
O4—Mn1—Na1 52.46 (5) C5—C6—H6 119.6
O12—Mn2—O1 173.08 (9) C7—C6—H6 119.6
O12—Mn2—O2 96.07 (8) O3—C7—C2 124.6 (2)
O1—Mn2—O2 82.34 (8) O3—C7—C6 117.1 (3)
O12—Mn2—N4 89.86 (8) C2—C7—C6 118.1 (3)
O1—Mn2—N4 90.57 (8) O5—C8—N2 119.9 (2)
O2—Mn2—N4 168.31 (8) O5—C8—C9 119.8 (2)
O12—Mn2—O14 95.23 (9) N2—C8—C9 120.3 (2)
O1—Mn2—O14 91.62 (8) C10—C9—C14 119.9 (2)
O2—Mn2—O14 94.59 (8) C10—C9—C8 117.4 (2)
N4—Mn2—O14 94.89 (8) C14—C9—C8 122.7 (2)
O12—Mn2—O19 94.11 (9) C11—C10—C9 121.3 (3)
O1—Mn2—O19 79.10 (8) C11—C10—H10 119.3
O2—Mn2—O19 86.99 (8) C9—C10—H10 119.3
N4—Mn2—O19 82.53 (8) C10—C11—C12 119.0 (3)
O14—Mn2—O19 170.31 (8) C10—C11—H11 120.5
O12—Mn2—Na1 131.87 (7) C12—C11—H11 120.5
O1—Mn2—Na1 42.64 (6) C13—C12—C11 120.6 (3)
O2—Mn2—Na1 101.83 (6) C13—C12—H12 119.7
N4—Mn2—Na1 66.90 (6) C11—C12—H12 119.7
O14—Mn2—Na1 126.85 (6) C12—C13—C14 121.0 (3)
O19—Mn2—Na1 43.60 (5) C12—C13—H13 119.5
O3—Mn3—O4 176.78 (11) C14—C13—H13 119.5
O3—Mn3—O5 97.50 (9) O6—C14—C9 125.0 (2)
O4—Mn3—O5 82.68 (8) O6—C14—C13 116.8 (2)
O3—Mn3—N1 91.49 (9) C9—C14—C13 118.2 (2)
O4—Mn3—N1 87.88 (8) O8—C15—N3 120.4 (2)
O5—Mn3—N1 167.83 (8) O8—C15—C16 119.9 (2)
O3—Mn3—O23 88.03 (11) N3—C15—C16 119.7 (2)
O4—Mn3—O23 95.18 (10) C17—C16—C21 119.5 (2)
O5—Mn3—O23 92.36 (10) C17—C16—C15 117.0 (2)
N1—Mn3—O23 96.15 (9) C21—C16—C15 123.5 (2)
O3—Mn3—O20 92.93 (10) C18—C17—C16 121.5 (3)
O4—Mn3—O20 83.86 (8) C18—C17—H17 119.2
O5—Mn3—O20 87.05 (9) C16—C17—H17 119.2
N1—Mn3—O20 84.30 (8) C17—C18—C19 118.6 (3)
O23—Mn3—O20 178.93 (9) C17—C18—H18 120.7
O3—Mn3—Na1 129.36 (9) C19—C18—H18 120.7
O4—Mn3—Na1 47.62 (7) C20—C19—C18 121.2 (3)
O5—Mn3—Na1 102.36 (6) C20—C19—H19 119.4
N1—Mn3—Na1 65.50 (6) C18—C19—H19 119.4
O23—Mn3—Na1 136.27 (7) C19—C20—C21 120.8 (3)
O20—Mn3—Na1 43.10 (5) C19—C20—H20 119.6
O6—Mn4—O7 171.16 (9) C21—C20—H20 119.6
O6—Mn4—O8 95.88 (8) O9—C21—C20 117.5 (2)
O7—Mn4—O8 81.92 (7) O9—C21—C16 124.2 (2)
O6—Mn4—N2 90.97 (8) C20—C21—C16 118.3 (2)
O7—Mn4—N2 89.88 (8) O11—C22—N4 120.3 (2)
O8—Mn4—N2 168.33 (9) O11—C22—C23 120.3 (2)
O6—Mn4—O16 95.41 (9) N4—C22—C23 119.3 (2)
O7—Mn4—O16 93.26 (8) C24—C23—C28 119.8 (2)
O8—Mn4—O16 93.06 (8) C24—C23—C22 118.0 (2)
N2—Mn4—O16 95.69 (9) C28—C23—C22 122.2 (2)
O6—Mn4—O21 91.92 (9) C25—C24—C23 121.6 (3)
O7—Mn4—O21 79.48 (8) C25—C24—H24 119.2
O8—Mn4—O21 88.28 (8) C23—C24—H24 119.2
N2—Mn4—O21 82.04 (9) C24—C25—C26 119.0 (3)
O16—Mn4—O21 172.37 (8) C24—C25—H25 120.5
O6—Mn4—Na1 130.59 (7) C26—C25—H25 120.5
O7—Mn4—Na1 42.75 (6) C27—C26—C25 120.1 (3)
O8—Mn4—Na1 103.60 (6) C27—C26—H26 120.0
N2—Mn4—Na1 64.87 (7) C25—C26—H26 120.0
O16—Mn4—Na1 127.67 (6) C26—C27—C28 121.7 (3)
O21—Mn4—Na1 44.83 (6) C26—C27—H27 119.2
O9—Mn5—O10 171.38 (10) C28—C27—H27 119.2
O9—Mn5—O11 98.50 (9) O12—C28—C27 117.7 (2)
O10—Mn5—O11 81.66 (8) O12—C28—C23 124.4 (2)
O9—Mn5—N3 91.18 (8) C27—C28—C23 118.0 (2)
O10—Mn5—N3 87.72 (8) O14—C29—O13 126.7 (3)
O11—Mn5—N3 168.08 (8) O14—C29—C30 116.5 (2)
O9—Mn5—O18 94.05 (10) O13—C29—C30 116.8 (2)
O10—Mn5—O18 94.57 (9) C35—C30—C31 119.6 (3)
O11—Mn5—O18 90.32 (9) C35—C30—C29 121.3 (2)
N3—Mn5—O18 95.95 (9) C31—C30—C29 119.0 (2)
O9—Mn5—O22 90.05 (9) C32—C31—C30 119.0 (3)
O10—Mn5—O22 81.33 (8) C32—C31—H31 120.5
O11—Mn5—O22 90.71 (8) C30—C31—H31 120.5
N3—Mn5—O22 82.29 (8) C33—C32—C31 121.5 (3)
O18—Mn5—O22 175.58 (8) C33—C32—Cl1 120.0 (2)
O9—Mn5—Na1 126.17 (7) C31—C32—Cl1 118.5 (3)
O10—Mn5—Na1 46.01 (6) C32—C33—C34 119.1 (3)
O11—Mn5—Na1 103.58 (6) C32—C33—H33 120.4
N3—Mn5—Na1 64.84 (6) C34—C33—H33 120.4
O18—Mn5—Na1 133.61 (6) C33—C34—C35 120.4 (3)
O22—Mn5—Na1 41.99 (6) C33—C34—H34 119.8
O22—Na1—O20 142.14 (9) C35—C34—H34 119.8
O22—Na1—O19 84.23 (8) C30—C35—C34 120.2 (3)
O20—Na1—O19 86.48 (8) C30—C35—H35 119.9
O22—Na1—O21 84.10 (8) C34—C35—H35 119.9
O20—Na1—O21 84.80 (8) O16—C36—O15 126.4 (3)
O19—Na1—O21 148.18 (9) O16—C36—C37 117.1 (2)
O22—Na1—O7 84.00 (7) O15—C36—C37 116.5 (2)
O20—Na1—O7 124.20 (8) C38—C37—C42 120.0 (3)
O19—Na1—O7 139.85 (8) C38—C37—C36 118.9 (2)
O21—Na1—O7 67.70 (7) C42—C37—C36 121.1 (3)
O22—Na1—O1 124.38 (8) C37—C38—C39 119.4 (3)
O20—Na1—O1 84.69 (7) C37—C38—H38 120.3
O19—Na1—O1 67.42 (7) C39—C38—H38 120.3
O21—Na1—O1 141.60 (8) C40—C39—C38 121.4 (3)
O7—Na1—O1 88.47 (6) C40—C39—Cl2 120.2 (2)
O22—Na1—O10 69.00 (7) C38—C39—Cl2 118.4 (2)
O20—Na1—O10 144.74 (8) C39—C40—C41 118.8 (3)
O19—Na1—O10 80.45 (7) C39—C40—H40 120.6
O21—Na1—O10 122.08 (7) C41—C40—H40 120.6
O7—Na1—O10 59.51 (6) C40—C41—C42 120.8 (3)
O1—Na1—O10 60.05 (6) C40—C41—H41 119.6
O22—Na1—O4 144.38 (8) C42—C41—H41 119.6
O20—Na1—O4 69.17 (7) C41—C42—C37 119.5 (3)
O19—Na1—O4 121.77 (8) C41—C42—H42 120.2
O21—Na1—O4 83.15 (7) C37—C42—H42 120.2
O7—Na1—O4 60.39 (6) O17—C43—O18 126.4 (3)
O1—Na1—O4 58.61 (6) O17—C43—C44 116.4 (3)
O10—Na1—O4 90.27 (6) O18—C43—C44 117.2 (2)
O22—Na1—Mn1 105.39 (6) C45—C44—C49 120.2 (3)
O20—Na1—Mn1 112.47 (7) C45—C44—C43 119.0 (3)
O19—Na1—Mn1 105.23 (6) C49—C44—C43 120.8 (3)
O21—Na1—Mn1 106.39 (6) C44—C45—C46 119.6 (3)
O7—Na1—Mn1 42.69 (4) C44—C45—H45 120.2
O1—Na1—Mn1 45.93 (4) C46—C45—H45 120.2
O10—Na1—Mn1 42.46 (4) C47—C46—C45 121.0 (4)
O4—Na1—Mn1 47.89 (4) C47—C46—Cl3 119.7 (3)
O22—Na1—Mn3 175.12 (7) C45—C46—Cl3 119.3 (3)
O20—Na1—Mn3 42.72 (6) C46—C47—C48 118.8 (3)
O19—Na1—Mn3 97.36 (6) C46—C47—H47 120.6
O21—Na1—Mn3 96.76 (6) C48—C47—H47 120.6
O7—Na1—Mn3 91.86 (5) C49—C48—C47 120.9 (3)
O1—Na1—Mn3 52.69 (4) C49—C48—H48 119.6
O10—Na1—Mn3 106.64 (5) C47—C48—H48 119.6
O4—Na1—Mn3 31.51 (4) C48—C49—C44 119.5 (3)
Mn1—Na1—Mn3 69.75 (2) C48—C49—H49 120.3
O22—Na1—Mn5 42.92 (6) C44—C49—H49 120.3
O20—Na1—Mn5 174.94 (7) O23—C50—N5 124.6 (3)
O19—Na1—Mn5 94.60 (6) O23—C50—H50 117.7
O21—Na1—Mn5 96.74 (6) N5—C50—H50 117.7
O7—Na1—Mn5 52.62 (4) N5—C51—H51A 109.5
O1—Na1—Mn5 91.16 (5) N5—C51—H51B 109.5
O10—Na1—Mn5 31.21 (4) H51A—C51—H51B 109.5
O4—Na1—Mn5 106.18 (5) N5—C51—H51C 109.5
Mn1—Na1—Mn5 62.48 (2) H51A—C51—H51C 109.5
Mn3—Na1—Mn5 132.22 (3) H51B—C51—H51C 109.5
O22—Na1—Mn4 98.29 (6) N5—C52—H52A 109.5
O20—Na1—Mn4 98.23 (6) N5—C52—H52B 109.5
O19—Na1—Mn4 168.10 (7) H52A—C52—H52B 109.5
O21—Na1—Mn4 43.63 (5) N5—C52—H52C 109.5
O7—Na1—Mn4 30.25 (4) H52A—C52—H52C 109.5
O1—Na1—Mn4 101.99 (5) H52B—C52—H52C 109.5
O10—Na1—Mn4 89.57 (5) O24—C53—N6 125.5 (3)
O4—Na1—Mn4 51.29 (4) O24—C53—H53 117.2
Mn1—Na1—Mn4 62.87 (2) N6—C53—H53 117.2
Mn3—Na1—Mn4 79.22 (3) N6—C54—H54A 109.5
Mn5—Na1—Mn4 79.77 (2) N6—C54—H54B 109.5
N1—O1—Mn2 112.41 (13) H54A—C54—H54B 109.5
N1—O1—Mn1 127.14 (13) N6—C54—H54C 109.5
Mn2—O1—Mn1 113.88 (7) H54A—C54—H54C 109.5
N1—O1—Na1 105.87 (13) H54B—C54—H54C 109.5
Mn2—O1—Na1 107.46 (8) N6—C55—H55A 109.5
Mn1—O1—Na1 83.15 (6) N6—C55—H55B 109.5
C1—O2—Mn2 112.00 (15) H55A—C55—H55B 109.5
C7—O3—Mn3 128.82 (18) N6—C55—H55C 109.5
N2—O4—Mn3 112.50 (13) H55A—C55—H55C 109.5
N2—O4—Mn1 119.12 (13) H55B—C55—H55C 109.5
Mn3—O4—Mn1 126.57 (8) O25—C56—N7 125.9 (4)
N2—O4—Na1 104.23 (14) O25—C56—H56 117.0
Mn3—O4—Na1 100.87 (8) N7—C56—H56 117.0
Mn1—O4—Na1 79.65 (6) N7—C57—H57A 109.5
C8—O5—Mn3 111.48 (16) N7—C57—H57B 109.5
C14—O6—Mn4 130.01 (16) H57A—C57—H57B 109.5
N3—O7—Mn4 112.74 (13) N7—C57—H57C 109.5
N3—O7—Mn1 117.20 (13) H57A—C57—H57C 109.5
Mn4—O7—Mn1 121.20 (8) H57B—C57—H57C 109.5
N3—O7—Na1 106.89 (13) N7—C58—H58A 109.5
Mn4—O7—Na1 107.00 (8) N7—C58—H58B 109.5
Mn1—O7—Na1 86.48 (6) H58A—C58—H58B 109.5
C15—O8—Mn4 111.56 (15) N7—C58—H58C 109.5
C21—O9—Mn5 127.58 (17) H58A—C58—H58C 109.5
N4—O10—Mn5 113.34 (13) H58B—C58—H58C 109.5
N4—O10—Mn1 119.59 (14) O26—C59—N8 125.8 (3)
Mn5—O10—Mn1 119.22 (8) O26—C59—H59 117.1
N4—O10—Na1 110.70 (13) N8—C59—H59 117.1
Mn5—O10—Na1 102.78 (8) N8—C60—H60A 109.5
Mn1—O10—Na1 85.04 (6) N8—C60—H60B 109.5
C22—O11—Mn5 111.76 (16) H60A—C60—H60B 109.5
C28—O12—Mn2 130.52 (16) N8—C60—H60C 109.5
C29—O13—Mn1 138.1 (2) H60A—C60—H60C 109.5
C29—O14—Mn2 130.32 (18) H60B—C60—H60C 109.5
C36—O15—Mn1 133.04 (17) N8—C61—H61A 109.5
C36—O16—Mn4 125.69 (18) N8—C61—H61B 109.5
C43—O17—Mn1 140.5 (2) H61A—C61—H61B 109.5
C43—O18—Mn5 122.73 (17) N8—C61—H61C 109.5
Mn2—O19—Na1 93.38 (8) H61A—C61—H61C 109.5
Mn2—O19—H19A 112 (3) H61B—C61—H61C 109.5
Na1—O19—H19A 116 (3) O27—C62—N9 123.4 (5)
Mn2—O19—H19B 122 (3) O27—C62—H62 118.3
Na1—O19—H19B 109 (3) N9—C62—H62 118.3
H19A—O19—H19B 105 (5) C62—N9—C63 121.7 (4)
Mn3—O20—Na1 94.17 (8) C62—N9—C64 117.3 (6)
Mn3—O20—H20A 110 (3) C63—N9—C64 120.9 (6)
Na1—O20—H20A 113 (3) N9—C63—H63A 109.5
Mn3—O20—H20B 109 (3) N9—C63—H63B 109.5
Na1—O20—H20B 120 (3) H63A—C63—H63B 109.5
H20A—O20—H20B 109 (5) N9—C63—H63C 109.5
Mn4—O21—Na1 91.54 (7) H63A—C63—H63C 109.5
Mn4—O21—H21A 113 (3) H63B—C63—H63C 109.5
Na1—O21—H21A 115 (3) N9—C64—H64A 109.5
Mn4—O21—H21B 118 (3) N9—C64—H64B 109.5
Na1—O21—H21B 127 (3) H64A—C64—H64B 109.5
H21A—O21—H21B 93 (4) N9—C64—H64C 109.5
Na1—O22—Mn5 95.09 (8) H64A—C64—H64C 109.5
Na1—O22—H22A 118 (3) H64B—C64—H64C 109.5
Mn5—O22—H22A 108 (3) O27B—C62B—N9B 131.0 (18)
Na1—O22—H22B 113 (3) O27B—C62B—H62B 114.5
Mn5—O22—H22B 117 (3) N9B—C62B—H62B 114.5
H22A—O22—H22B 107 (4) C62B—N9B—C64B 127.5 (18)
C50—O23—Mn3 125.9 (2) C62B—N9B—C63B 115.5 (12)
H28A—O28—H28B 111 (8) C64B—N9B—C63B 117.0 (16)
C1—N1—O1 113.09 (19) N9B—C63B—H63D 109.5
C1—N1—Mn3 129.69 (16) N9B—C63B—H63E 109.5
O1—N1—Mn3 115.75 (14) H63D—C63B—H63E 109.5
C8—N2—O4 113.12 (19) N9B—C63B—H63F 109.5
C8—N2—Mn4 129.71 (17) H63D—C63B—H63F 109.5
O4—N2—Mn4 115.41 (14) H63E—C63B—H63F 109.5
C15—N3—O7 113.19 (18) N9B—C64B—H64D 109.5
C15—N3—Mn5 130.03 (16) N9B—C64B—H64E 109.5
O7—N3—Mn5 115.91 (14) H64D—C64B—H64E 109.5
C22—N4—O10 112.91 (19) N9B—C64B—H64F 109.5
C22—N4—Mn2 130.57 (17) H64D—C64B—H64F 109.5
O10—N4—Mn2 113.66 (14) H64E—C64B—H64F 109.5
C50—N5—C51 120.1 (3)
O5—Mn3—O3—C7 −178.3 (3) C12—C13—C14—O6 −179.0 (3)
N1—Mn3—O3—C7 9.9 (3) C12—C13—C14—C9 1.0 (5)
O23—Mn3—O3—C7 −86.2 (3) Mn4—O8—C15—N3 −3.9 (3)
O20—Mn3—O3—C7 94.3 (3) Mn4—O8—C15—C16 177.92 (17)
Na1—Mn3—O3—C7 68.9 (3) O7—N3—C15—O8 1.4 (3)
O5—Mn3—O4—N2 −3.66 (17) Mn5—N3—C15—O8 170.19 (17)
N1—Mn3—O4—N2 168.64 (17) O7—N3—C15—C16 179.62 (19)
O23—Mn3—O4—N2 −95.38 (18) Mn5—N3—C15—C16 −11.6 (3)
O20—Mn3—O4—N2 84.15 (17) O8—C15—C16—C17 12.6 (3)
Na1—Mn3—O4—N2 110.51 (18) N3—C15—C16—C17 −165.6 (2)
O5—Mn3—O4—Mn1 160.73 (13) O8—C15—C16—C21 −168.0 (2)
N1—Mn3—O4—Mn1 −26.98 (12) N3—C15—C16—C21 13.8 (4)
O23—Mn3—O4—Mn1 69.01 (13) C21—C16—C17—C18 −0.5 (4)
O20—Mn3—O4—Mn1 −111.47 (12) C15—C16—C17—C18 178.8 (3)
Na1—Mn3—O4—Mn1 −85.10 (11) C16—C17—C18—C19 2.6 (5)
O5—Mn3—O4—Na1 −114.17 (9) C17—C18—C19—C20 −2.5 (6)
N1—Mn3—O4—Na1 58.13 (8) C18—C19—C20—C21 0.3 (5)
O23—Mn3—O4—Na1 154.11 (9) Mn5—O9—C21—C20 162.5 (2)
O20—Mn3—O4—Na1 −26.36 (7) Mn5—O9—C21—C16 −20.8 (4)
O8—Mn4—O6—C14 165.9 (2) C19—C20—C21—O9 178.7 (3)
N2—Mn4—O6—C14 −4.7 (3) C19—C20—C21—C16 1.8 (4)
O16—Mn4—O6—C14 −100.5 (3) C17—C16—C21—O9 −178.4 (3)
O21—Mn4—O6—C14 77.4 (3) C15—C16—C21—O9 2.3 (4)
Na1—Mn4—O6—C14 52.3 (3) C17—C16—C21—C20 −1.7 (4)
O11—Mn5—O9—C21 −168.8 (2) C15—C16—C21—C20 179.0 (2)
N3—Mn5—O9—C21 18.2 (2) Mn5—O11—C22—N4 0.5 (3)
O18—Mn5—O9—C21 −77.8 (2) Mn5—O11—C22—C23 −177.99 (18)
O22—Mn5—O9—C21 100.5 (2) O10—N4—C22—O11 0.7 (3)
Na1—Mn5—O9—C21 77.5 (2) Mn2—N4—C22—O11 159.98 (19)
O11—Mn5—O10—N4 1.38 (15) O10—N4—C22—C23 179.1 (2)
N3—Mn5—O10—N4 175.94 (16) Mn2—N4—C22—C23 −21.6 (3)
O18—Mn5—O10—N4 −88.27 (16) O11—C22—C23—C24 14.8 (4)
O22—Mn5—O10—N4 93.39 (15) N4—C22—C23—C24 −163.7 (2)
Na1—Mn5—O10—N4 119.51 (17) O11—C22—C23—C28 −166.7 (2)
O11—Mn5—O10—Mn1 150.42 (11) N4—C22—C23—C28 14.8 (4)
N3—Mn5—O10—Mn1 −35.02 (10) C28—C23—C24—C25 1.4 (4)
O18—Mn5—O10—Mn1 60.77 (11) C22—C23—C24—C25 179.9 (3)
O22—Mn5—O10—Mn1 −117.57 (10) C23—C24—C25—C26 0.0 (4)
Na1—Mn5—O10—Mn1 −91.45 (10) C24—C25—C26—C27 −0.6 (5)
O11—Mn5—O10—Na1 −118.13 (9) C25—C26—C27—C28 −0.2 (5)
N3—Mn5—O10—Na1 56.43 (8) Mn2—O12—C28—C27 170.5 (2)
O18—Mn5—O10—Na1 152.22 (8) Mn2—O12—C28—C23 −11.2 (4)
O22—Mn5—O10—Na1 −26.12 (7) C26—C27—C28—O12 −180.0 (3)
O2—Mn2—O12—C28 175.4 (2) C26—C27—C28—C23 1.6 (4)
N4—Mn2—O12—C28 5.4 (2) C24—C23—C28—O12 179.5 (2)
O14—Mn2—O12—C28 −89.4 (2) C22—C23—C28—O12 1.1 (4)
O19—Mn2—O12—C28 88.0 (2) C24—C23—C28—C27 −2.1 (4)
Na1—Mn2—O12—C28 63.5 (3) C22—C23—C28—C27 179.4 (2)
Mn2—O1—N1—C1 −1.0 (2) Mn2—O14—C29—O13 −8.8 (4)
Mn1—O1—N1—C1 −150.50 (16) Mn2—O14—C29—C30 170.39 (17)
Na1—O1—N1—C1 116.06 (17) Mn1—O13—C29—O14 −11.7 (5)
Mn2—O1—N1—Mn3 −168.51 (10) Mn1—O13—C29—C30 169.1 (2)
Mn1—O1—N1—Mn3 42.0 (2) O14—C29—C30—C35 −3.0 (4)
Na1—O1—N1—Mn3 −51.46 (16) O13—C29—C30—C35 176.3 (3)
Mn3—O4—N2—C8 1.8 (3) O14—C29—C30—C31 179.3 (3)
Mn1—O4—N2—C8 −163.82 (18) O13—C29—C30—C31 −1.4 (4)
Na1—O4—N2—C8 110.2 (2) C35—C30—C31—C32 −0.7 (4)
Mn3—O4—N2—Mn4 −164.55 (11) C29—C30—C31—C32 177.1 (3)
Mn1—O4—N2—Mn4 29.8 (2) C30—C31—C32—C33 1.1 (5)
Na1—O4—N2—Mn4 −56.15 (16) C30—C31—C32—Cl1 −177.4 (2)
Mn4—O7—N3—C15 1.8 (2) C31—C32—C33—C34 −1.0 (5)
Mn1—O7—N3—C15 −146.06 (16) Cl1—C32—C33—C34 177.5 (3)
Na1—O7—N3—C15 119.13 (17) C32—C33—C34—C35 0.4 (5)
Mn4—O7—N3—Mn5 −168.60 (9) C31—C30—C35—C34 0.1 (4)
Mn1—O7—N3—Mn5 43.51 (18) C29—C30—C35—C34 −177.6 (3)
Na1—O7—N3—Mn5 −51.30 (16) C33—C34—C35—C30 0.0 (4)
Mn5—O10—N4—C22 −1.5 (2) Mn4—O16—C36—O15 −4.6 (4)
Mn1—O10—N4—C22 −150.44 (16) Mn4—O16—C36—C37 175.17 (17)
Na1—O10—N4—C22 113.35 (18) Mn1—O15—C36—O16 50.2 (4)
Mn5—O10—N4—Mn2 −164.47 (9) Mn1—O15—C36—C37 −129.6 (2)
Mn1—O10—N4—Mn2 46.61 (19) O16—C36—C37—C38 −161.2 (3)
Na1—O10—N4—Mn2 −49.60 (16) O15—C36—C37—C38 18.6 (4)
Mn2—O2—C1—N1 −3.8 (3) O16—C36—C37—C42 19.1 (4)
Mn2—O2—C1—C2 178.39 (17) O15—C36—C37—C42 −161.2 (2)
O1—N1—C1—O2 3.2 (3) C42—C37—C38—C39 0.4 (4)
Mn3—N1—C1—O2 168.57 (18) C36—C37—C38—C39 −179.4 (3)
O1—N1—C1—C2 −179.0 (2) C37—C38—C39—C40 0.9 (5)
Mn3—N1—C1—C2 −13.6 (3) C37—C38—C39—Cl2 −176.9 (2)
O2—C1—C2—C7 −174.0 (2) C38—C39—C40—C41 −1.5 (5)
N1—C1—C2—C7 8.2 (4) Cl2—C39—C40—C41 176.2 (2)
O2—C1—C2—C3 7.2 (3) C39—C40—C41—C42 0.9 (4)
N1—C1—C2—C3 −170.6 (2) C40—C41—C42—C37 0.3 (4)
C7—C2—C3—C4 −1.8 (4) C38—C37—C42—C41 −0.9 (4)
C1—C2—C3—C4 176.9 (3) C36—C37—C42—C41 178.8 (2)
C2—C3—C4—C5 −0.3 (5) Mn1—O17—C43—O18 42.8 (5)
C3—C4—C5—C6 1.7 (5) Mn1—O17—C43—C44 −137.4 (3)
C4—C5—C6—C7 −0.9 (5) Mn5—O18—C43—O17 −16.1 (4)
Mn3—O3—C7—C2 −16.7 (5) Mn5—O18—C43—C44 164.12 (18)
Mn3—O3—C7—C6 166.4 (2) O17—C43—C44—C45 18.1 (4)
C3—C2—C7—O3 −174.3 (3) O18—C43—C44—C45 −162.1 (3)
C1—C2—C7—O3 7.0 (4) O17—C43—C44—C49 −163.8 (3)
C3—C2—C7—C6 2.6 (4) O18—C43—C44—C49 16.0 (4)
C1—C2—C7—C6 −176.1 (3) C49—C44—C45—C46 0.2 (4)
C5—C6—C7—O3 175.9 (3) C43—C44—C45—C46 178.3 (3)
C5—C6—C7—C2 −1.2 (5) C44—C45—C46—C47 1.7 (5)
Mn3—O5—C8—N2 −5.5 (3) C44—C45—C46—Cl3 −178.6 (2)
Mn3—O5—C8—C9 175.6 (2) C45—C46—C47—C48 −1.8 (5)
O4—N2—C8—O5 2.5 (4) Cl3—C46—C47—C48 178.5 (3)
Mn4—N2—C8—O5 166.5 (2) C46—C47—C48—C49 0.0 (5)
O4—N2—C8—C9 −178.6 (2) C47—C48—C49—C44 1.9 (5)
Mn4—N2—C8—C9 −14.7 (4) C45—C44—C49—C48 −2.0 (4)
O5—C8—C9—C10 6.6 (4) C43—C44—C49—C48 180.0 (3)
N2—C8—C9—C10 −172.2 (3) Mn3—O23—C50—N5 −176.9 (2)
O5—C8—C9—C14 −174.9 (3) C51—N5—C50—O23 0.6 (5)
N2—C8—C9—C14 6.3 (4) C52—N5—C50—O23 175.9 (4)
C14—C9—C10—C11 −0.6 (6) C54—N6—C53—O24 −1.9 (5)
C8—C9—C10—C11 178.0 (4) C55—N6—C53—O24 −177.9 (3)
C9—C10—C11—C12 0.7 (7) C57—N7—C56—O25 −5.2 (9)
C10—C11—C12—C13 0.1 (8) C58—N7—C56—O25 −177.5 (6)
C11—C12—C13—C14 −1.0 (7) C60—N8—C59—O26 0.1 (6)
Mn4—O6—C14—C9 −0.4 (4) C61—N8—C59—O26 177.3 (4)
Mn4—O6—C14—C13 179.6 (2) O27—C62—N9—C63 0.6 (8)
C10—C9—C14—O6 179.8 (3) O27—C62—N9—C64 −176.8 (9)
C8—C9—C14—O6 1.3 (5) O27B—C62B—N9B—C64B −174 (3)
C10—C9—C14—C13 −0.3 (4) O27B—C62B—N9B—C63B 5 (3)
C8—C9—C14—C13 −178.7 (3)

Tetra-µ-aqua-tris(µ-3-chlorobenzoato)(dimethylformamide)tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)pentamanganese(III)sodium(I) dimethylformamide tetraolvate 0.72-hydrate (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O19—H19A···O24 0.80 (2) 2.00 (3) 2.749 (3) 155 (5)
O19—H19B···O27 0.83 (2) 2.03 (3) 2.826 (7) 161 (5)
O20—H20A···O24 0.83 (2) 2.00 (3) 2.788 (3) 160 (5)
O20—H20B···O25 0.86 (2) 1.96 (3) 2.751 (4) 153 (4)
O21—H21A···O26 0.83 (2) 1.96 (3) 2.737 (3) 155 (5)
O21—H21B···O25 0.86 (2) 2.10 (4) 2.787 (3) 136 (4)
O22—H22A···O26 0.84 (2) 1.93 (3) 2.729 (3) 158 (5)
O22—H22B···O27 0.84 (2) 1.90 (3) 2.705 (6) 160 (5)
O28—H28A···Cl3i 0.92 (2) 2.96 (2) 3.876 (5) 171 (6)
O28—H28B···O9 0.90 (2) 2.14 (2) 3.019 (5) 165 (8)

Symmetry code: (i) x−1, y, z.

Funding Statement

This work was funded by National Science Foundation grant CHE 1625543 to M. Zeller.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Alaimo, A. A., Koumousi, E. S., Cunha-Silva, L., McCormick, L. J., Teat, S. J., Psycharis, V., Raptopoulou, C. P., Mukherjee, S., Li, C., Das Gupta, S., Escuer, A., Christou, G. & Stamatatos, T. C. (2017). Inorg. Chem. 56, 10760–10774. [DOI] [PubMed]
  3. Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742. [DOI] [PubMed]
  4. Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597–10607. [DOI] [PubMed]
  5. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763. [DOI] [PubMed]
  7. Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.
  8. Daly, C. I., Zeller, M. & Zaleski, C. M. (2014). Acta Cryst. E70, 494–498. [DOI] [PMC free article] [PubMed]
  9. Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864–875. [DOI] [PubMed]
  10. Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041–5051. [DOI] [PubMed]
  11. Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184–6193.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  14. Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73–80.
  15. Koumousi, E. S., Mukherjee, S., Beavers, C. M., Teat, S. J., Christou, G. & Stamatatos, T. C. (2011). Chem. Commun. 47, 11128–11130. [DOI] [PubMed]
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.
  18. Lah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878–880.
  19. Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.
  20. Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain.
  21. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  22. Marzaroli, V., Spigolon, G., Lococciolo, G., Quaretti, M., Salviati, C., Kampf, J. W., Licini, G., Marchiò, L., Pecoraro, V. L. & Tegoni, M. (2019). Cryst. Growth Des. 19, 1954–1964.
  23. Mengle, K. A., Longenecker, E. J., Zeller, M. & Zaleski, C. M. (2015). J. Chem. Crystallogr. 45, 36–43.
  24. Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. [DOI] [PubMed]
  25. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  26. Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582. [DOI] [PubMed]
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  29. Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300–1306. [DOI] [PMC free article] [PubMed]
  30. Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29–36.
  31. Wang, J., Lu, G., Liu, Y., Wu, S.-G., Huang, G.-Z., Liu, J.-L. & Tong, M.-L. (2019). Cryst. Growth Des. 19, 1896–1902.
  32. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  33. Zaleski, C. M., Lutter, J. C. & Zeller, M. (2015). J. Chem. Crystallogr. 45, 142–150.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989020006362/mw2160sup1.cif

e-76-00848-sup1.cif (4.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989020006362/mw21601sup2.hkl

e-76-00848-1sup2.hkl (545.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989020006362/mw21602sup3.hkl

e-76-00848-2sup3.hkl (2.1MB, hkl)

CCDC references: 2003408, 2003407

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES