Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 19;76(Pt 6):862–869. doi: 10.1107/S2056989020006416

Crystal structures of two dis-symmetric di-Schiff base compounds: 2-({(E)-2-[(E)-2,6-di­chloro­benzyl­idene]hydrazin-1-yl­idene}meth­yl)-6-meth­oxy­phenol and 4-bromo-2-({(E)-2-[(E)-2,6-di­chloro­benzyl­idene]hydrazin-1-yl­idene}meth­yl)phenol

Rohit B Manawar a, Chandankumar T Pashavan a, Manish K Shah a,, Mukesh M Jotani b, Edward R T Tiekink c,*
PMCID: PMC7274017  PMID: 32523754

An E-configuration about the imine bond is found in both the title mol­ecules, which differ in their central C—N—N—C torsion angles. The main feature of the mol­ecular packing in both crystals is the formation of supra­molecular chains: the linear chains in (I) are consolidated by meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chloro­benzene) inter­actions while the zigzag chains in (II) are sustained by Br⋯O secondary bonding inter­actions.

Keywords: crystal structure, Schiff base, Hirshfeld surface analysis, computational chemistry

Abstract

Each of the title dis-symmetric di-Schiff base compounds, C15H12Cl2N2O2 (I) and C14H9BrCl2N2O (II), features a central azo-N—N bond connecting two imine groups, each with an E-configuration. One imine bond in each mol­ecule connects to a 2,6-di­chloro­benzene substituent while the other links a 2-hydroxyl-3-meth­oxy-substituted benzene ring in (I) or a 2-hydroxyl-4-bromo benzene ring in (II). Each mol­ecule features an intra­molecular hydroxyl-O—H⋯N(imine) hydrogen bond. The C—N—N—C torsion angles of −151.0 (3)° for (I) and 177.8 (6)° (II) indicates a significant twist in the former. The common feature of the mol­ecular packing is the formation of supra­molecular chains. In (I), the linear chains are aligned along the a-axis direction and the mol­ecules are linked by meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chlorobenzene) inter­actions. The chain in (II) is also aligned along the a axis but, has a zigzag topology and is sustained by Br⋯O [3.132 (4) Å] secondary bonding inter­actions. In each crystal, the chains pack without directional inter­actions between them. The non-covalent inter­actions are delineated in the study of the calculated Hirshfeld surfaces. Dispersion forces make the most significant contributions to the identified inter­molecular inter­actions in each of (I) and (II).

Chemical context  

Schiff base mol­ecules, known for their ease of formation, can be deprotonated to form a prominent class of multidentate ligands for a full range of metal ions leading to a rich coordination chemistry (Vigato & Tamburini, 2004; Clarke & Storr, 2014). The broad range of biological activities exhibited by Schiff base mol­ecules such as anti-bacterial, anti-viral, anti-fungal, anti-malarial, anti-inflammatory, etc. (Naeimi et al., 2013; Mukherjee et al., 2013) is a key motivation for studies in this area. Indeed, this is the motivation for the preparation of dis-symmetric di-Schiff base mol­ecules (Liu et al., 2018) related to the title compounds and their transition-metal complexes (Manawar et al., 2019a ), complemented by crystallographic studies (Manawar et al., 2019b , 2020). In a continuation of these structural studies, the crystal and mol­ecular structures of meth­oxy- (I) and bromine-substituted (II) analogues of an earlier published dis-symmetric di-Schiff base (Manawar et al., 2019b ) are described herein, together with the detailed analysis of the mol­ecular packing by Hirshfeld surface analysis and computation of energy frameworks.graphic file with name e-76-00862-scheme1.jpg

Structural commentary  

The mol­ecular structures of (I) and (II) are shown in Fig. 1. The common feature of each mol­ecule is the presence of two imine bonds connected by a azo-N—N bond, Table 1. At one end of each mol­ecule is a 2,6-di­chloro­benzene substituent. In (I), the mol­ecule is terminated by a 2-hydroxyl-3-meth­oxy-substituted benzene ring and in (II), the terminal group is a 2-hydroxyl-4-bromo benzene ring. The configuration about each of the imine bonds is E. Each mol­ecule features an intra­molecular hydroxyl-O—H⋯N(imine) hydrogen bond with geometric details listed in Tables 2 and 3, respectively. As might be expected and judged from the data in Table 1, there is a close similarity in comparable geometric parameters characterizing mol­ecules (I) and (II) with salient bond lengths being equal within experimental error. The most significant difference in bond angles is seen in the ca 3° wider C9—C8—N2 angle in (II) cf. (I). There is an apparent difference in conformation in the central region of the mol­ecules as seen in the ca 25° difference in the C7—N1—N2—C8 torsion angles indicating a discernible kink in (I). The central C2N2 chromophore in (I) exhibits distortions from co-planarity as the r.m.s. deviation of the fitted atoms is 0.1459 Å with maximum deviations to either side of the plane being 0.155 (17) Å for the N2 atom and 0.149 (14) Å for C8. By contrast, the r.m.s. deviation for the central atoms in (II) is 0.0112 Å. Further differences are noted in dihedral angles between the central plane and pendant benzene rings, and between the benzene rings, Table 1, with the maximum difference occurring for the (C7,N1,N2,C8)/(C9–C14) dihedral angles of 23.1 (4) and 1.5 (6)° for (I) and (II), respectively.

Figure 1.

Figure 1

The mol­ecular structures of (a) (I) and (b) (II), showing the atom-labelling schemes and displacement ellipsoids at the 35% probability level.

Table 1. Selected geometric parameters (Å, °) in (I) and (II).

Parameter (I) (II)
N1—N2 1.409 (3) 1.417 (7)
C7—N1 1.283 (3) 1.276 (7)
C8—N2 1.256 (4) 1.234 (7)
N2—N1—C7 112.4 (2) 110.9 (5)
N1—N2—C8 114.2 (2) 114.9 (5)
C1—C7—N1 122.6 (3) 123.1 (6)
C9—C8—N2 121.1 (3) 124.5 (6)
C7—N1—N2—C8 −151.0 (3) 177.8 (6)
C1—C7—N1—N2 −178.8 (2) −178.9 (5)
C9—C8—N2—N1 179.9 (2) −179.2 (6)
(C7,N1,N2,C8)/(C1–C6) 20.9 (4) 15.6 (5)
(C7,N1,N2,C8)/(C9–C14) 23.1 (4) 1.5 (6)
(C1–C6)/(C9–C14) 2.41 (17) 15.5 (3)

Table 2. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the (C9–14) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.83 (3) 1.91 (3) 2.657 (3) 149 (3)
C15—H15B⋯O2i 0.96 2.58 3.439 (4) 149
C14—Cl2⋯Cg1ii 1.74 (1) 3.70 (1) 3.765 (3) 79 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.83 (6) 1.96 (6) 2.655 (8) 141 (7)

Supra­molecular features  

The two prominent directional inter­actions in the mol­ecular packing of (I) are of the type C—H⋯O and C—Cl⋯π, Table 2. Thus, meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chloro­benzene) contacts serve to link mol­ecules into supra­molecular chain aligned along the a-axis direction, Fig. 2(a). The linear chains thus formed assemble in the crystal without directional contacts between them, Fig. 2(b).

Figure 2.

Figure 2

Mol­ecular packing in the crystal of (I): (a) supra­molecular chain sustained by meth­oxy-C—H⋯O(meth­oxy) and chloro­benzene-C—Cl⋯π(chloro­benzene) inter­actions shown as orange and purple dashed lines, respectively and (b) a view of the unit-cell contents in projection down the a axis with one chain highlighted in space-filling mode.

Supra­molecular chains along the a axis are also noted in the packing of (II), Fig. 3(a). In this instance, the contacts between mol­ecules are of the type Br⋯O, i.e. the Br1⋯O1 separation is 3.132 (4) Å for symmetry operation Inline graphic + x, 3 − y, z. With the first such inter­action in a crystal being reported in 1954, i.e. in the crystal of Br2·O(CH2CH2)2O (Hassel & Hvoslef, 1954), these well-described secondary bonding inter­actions (Alcock, 1972), are termed halogen-bonding inter­actions in the current parlance (Tiekink, 2017). In (II), the Br⋯O inter­actions assemble mol­ecules into zigzag chains as these are propagated by glide symmetry. Globally, the supra­molecular chains stack along the b axis to form layers and the layers stack along the c axis in an …ABAB… fashion, Fig. 3(b), but there are no directional inter­actions between the chains.

Figure 3.

Figure 3

Mol­ecular packing in the crystal of (II): (a) supra­molecular, zigzag chain sustained by Br⋯O secondary bonding inter­actions shown as black dashed lines and (b) a view of the unit-cell contents in projection down the b axis.

Hirshfeld surface analysis  

The Hirshfeld surfaces for (I) and (II) were calculated employing the Crystal Explorer 17 program (Turner et al., 2017) following recently published protocols (Tan et al., 2019). The results describe the influence of non-bonded inter­actions upon the mol­ecular packing in the crystals of (I) and (II), especially in the absence of directional inter­actions between the chains.

On the Hirshfeld surfaces mapped over d norm, the presence of the bright-red spots near the meth­oxy-O2 and H15B atoms for (I) in Fig. 4(a),(b) and those near the Br1 and hydroxyl-O1 atoms in Fig. 5(a) for (II), are indicative of dominant inter­molecular C—H⋯O and Br⋯O contacts in their respective crystal structures. The faint-red spots viewed near the imine-N2 and H8 atoms for (I), and near the Cl2 and H7 atoms for (II) in Fig. 4(a),(b) and 5(b), respectively, indicate the influence of short inter­atomic contacts (Table 4) on their mol­ecular packing. The Hirshfeld surfaces mapped over the calculated electrostatic potential for (I) and (II) showing contributions from different inter­molecular inter­actions are illustrated through blue and red regions corresponding to positive and negative electrostatic potential in Fig. 6. For (I), the presence of a short C—Cl2⋯π(C9–C14) contact, Table 2, is illustrated through a blue bump and a orange concave region in the Hirshfeld surface mapped with the shape-index property in Fig. 4(c).

Figure 4.

Figure 4

Views of the Hirshfeld surface for (I) mapped: (a) and (b) over d norm in the range −0.097 to + 1.103 arbitrary units and (c) with the shape-index property showing inter­molecular C—Cl⋯π/π⋯Cl—C contacts.

Figure 5.

Figure 5

Views of the Hirshfeld surface for (II) mapped over d norm in the range −0.016 to 1.528 arbitrary units.

Table 4. Summary of short inter­atomic contacts (Å) for (I) and (II)a .

Contact Distance Symmetry operation
(I)    
H12⋯O1 2.59 x, Inline graphic + y, Inline graphic − z
H8⋯N2 2.58 −1 + x, y, z
H13⋯H15A 2.30 Inline graphic + x, 2 − y, Inline graphic + z
(II)    
Br1⋯O1 3.132 (4) Inline graphic + x, 3 − y, z
Cl2⋯H7 2.69 Inline graphic + x, 1 − y, z

Notes: (a) The inter­atomic distances are calculated in Crystal Explorer (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values.

Figure 6.

Figure 6

A view of the Hirshfeld surface mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively): (a) for (I) in the range −0.071 to +0.038 atomic units and (b) for (II) in the range −0.063 to +0.040 atomic units.

The overall two-dimensional fingerprint plots for (I), Fig. 7(a), and (II), Fig.7(f), and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts for (I) are illustrated in Fig. 7(b)–(e), respectively, and the equivalent plots for (II) are found in Fig. 7(g)–(j). The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces of (I) and (II) are qu­anti­tatively summarized in Table 5. For (I), the short inter­atomic H⋯H contact between the meth­oxy-H15A and di­chloro­benzene-H13 atoms, Table 4, is evident as a pair of almost fused peaks at d e + d i ∼2.3 Å in Fig.7(b). In (II), comparable inter­actions are at inter­atomic distances farther than the sum of their van der Waals radii. The decrease in the percentage contribution from H⋯H contacts to the Hirshfeld surface of (II) compared to (I), Table 5, can be related, in the main, to the presence of the bromine substituent in the hydroxyl­benzene ring, in contrast to the meth­oxy group in (I), and its participation in a number of surface contacts, most notably Br⋯H/H⋯Br contacts (13.7%).

Figure 7.

Figure 7

(a) A comparison of the full two-dimensional fingerprint plot for (I) and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts, (f)–(j) equivalent fingerprint plots for (II), (g) N⋯H/H⋯N for (I), (h) C⋯Cl/C⋯Cl for (I), (i) Cl⋯H/H⋯Cl for (II) and (j) Br⋯O/O⋯Br for (II).

Table 5. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I) and (II).

Contact   Percentage contribution
  (I) (II)
H⋯H 31.1 21.1
O⋯H/H⋯O 9.1 4.3
C⋯H/H⋯C 16.4 13.8
Cl⋯H/H⋯Cl 17.3 23.1
N⋯H/H⋯N 8.0 0.4
C⋯Cl/Cl⋯C 6.2 1.0
C⋯C 4.6 7.2
C⋯O/O⋯C 3.7 0.1
C⋯N/N⋯C 0.0 7.1
Cl⋯Cl 3.5 2.7
Cl⋯N/N⋯Cl 0.0 0.6
N⋯O/O⋯N 0.0 0.1
Br⋯H/H⋯Br 13.7
Br⋯O/O⋯Br 2.6
Br⋯C/C⋯Br 1.8
Br⋯Cl/Cl⋯Br 0.2
Br⋯Br 0.2

The presence of C—H⋯O contacts in the crystal of (I) is characterized as the pair of forceps-like tips at d e + d i ∼2.5 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 7(c), with the points related to other short inter­atomic O⋯H contacts merged within. The comparatively small contribution from these contacts in (II), Table 5, show the points to be at distances greater than sum of their van der Waals radii in Fig. 7(h). In the fingerprint plot delineated into C⋯H/H⋯C contacts for both (I) and (II), Fig. 7(d) and (i), the characteristic wings are observed but with different shapes. Their relatively long inter­atomic distances are consistent with the absence of inter­molecular C—H⋯π or short C⋯H contacts in the crystals. The absence of aromatic π–π stacking is also evident from the fingerprint plots delineated into C⋯C contacts, Figs. 7(e) and (j), although significant percentage contributions from these contacts are noted, Table 5. In addition to the above, some specific contacts occur in the crystals of (I) and (II).

The pair of forceps-like tips at d e + d i ∼2.5 Å in the fingerprint plot delineated into N⋯H/H⋯N contacts for (I) in Fig. 7(k) indicate the short inter­atomic N⋯H contact involving the imine-N2 and H12 atoms, Table 4, formed within the supra­molecular chain along a axis Fig. 2(a). Also, in the fingerprint plot delineated into C⋯Cl/Cl⋯C contacts for (I), Fig. 7(l), the C—Cl⋯π contacts are highlighted as the pattern of blue points at separations as close as d e = d i = 1.85 Å. In the case of (II), in the fingerprint plot delineated into Cl⋯H/H⋯Cl contacts, Fig. 7(m), the short inter­atomic contact involving the Cl2 and imine-H7 atoms is apparent as the pair of spikes with their tips at d e + d i ∼2.7 Å. Finally, the presence of inter­atomic Br⋯O inter­actions along the a axis in the crystal is reflected in the pair of thin spikes at d e + d i ∼3.2 Å in Fig. 7(n). The comparatively greater percentage contribution from inter­atomic contacts such as C⋯O/O⋯C and Cl⋯Cl to the surface of (I) and Br⋯H/H⋯Br and C⋯N/N⋯C to that of (II) as well as smaller contributions from other contacts as summarized in Table 5, show negligible effect on the respective mol­ecular packing due to the inter­atomic separations being equal to or exceeding the respective sums of the van der Waals radii.

Energy frameworks  

The pairwise inter­action energies between the mol­ecules in the crystals of (I) and (II) were calculated by summing up four energy components, these being the electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) terms (Turner et al., 2017). The energies were obtained using the wavefunctions calculated at the B3LYP/6–31 G(d,p) and HF/STO-3 G levels theory for (I) and (II), respectively. The individual energy components as well as the total inter­action energy were calculated relative to a reference mol­ecule. The nature and strength of the energies for the key identified inter­molecular inter­actions are summarized in Table 6.

Table 6. Summary of inter­action energies (kJ mol−1) calculated for (I) and (II).

Contact R (Å) E ele E pol E dis E rep E tot
(I)a            
C15—H15B⋯O2i 12.93 −12.5 −2.7 −13.1 9.1 −21.1
C14—Cl2 ⋯π(C9–C14)ii + 4.36 −4.7 −3.5 −66.8 36.9 −43.0
N2 ⋯H8iii            
H13⋯H15Aiv 13.64 −0.6 −0.6 −9.7 5.5 −6.1
(II)b            
Br1⋯O1i 10.21 −4.6 −0.9 −7.2 5.4 −7.5
Cl2⋯H7ii 8.69 −3.9 −0.7 −4.2 0.7 −3.1

Notes: (a) Symmetry operations for (I): (i) −1 + x, y, z; (ii) −Inline graphic + x, Inline graphic − y, − z; (iii) 1 + x, y, z. (b) Symmetry operations for (II): (i) Inline graphic + x, 3 − y, z; (ii) −Inline graphic + x, 1 − y, z.

It is apparent from the inter­action energies calculated for (I) that the dispersion component, E dis, makes the major contribution to the C—Cl⋯π and N⋯H contacts and these are dominant in the mol­ecular packing. By contrast, the C—H⋯O inter­action has nearly equal contributions from the electrostatic component, E ele, and E dis. The small value of the inter­action energy corresponding to the short H⋯H contact arises primarily from E dis. The inter­molecular Br⋯O and Cl⋯H contacts instrumental in the crystal of (II) have small inter­action energy values dominated by E dis.

Fig. 8 represents graphically the magnitudes of inter­molecular energies in the form of energy frameworks, which provide a view of the supra­molecular architecture of crystals through cylinders joining centroids of mol­ecular pairs by using red, green and blue colour codes for the components E ele, E disp and E tot, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energies which are adjusted to same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 × 4 × 4 unit cells. The appearance of the energy frameworks clearly reflect the foregoing discussion, namely the clear dominance of the E dis terms, especially for (II).

Figure 8.

Figure 8

The energy frameworks calculated for (I) showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy. The energy frameworks were adjusted to the same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 × 4 × 4 unit cells. (d)–(f) Equivalent frameworks for (II).

Database survey  

In a recent contribution describing the structure of the analogue of (I) where the meth­oxy substituent is absent (Manawar et al., 2019b ), i.e. (III), it was noted that crystal structure determinations of mol­ecules with the 2-OH-C6-C(H)N—NC(H)-C6 fragment number fewer than ten, and that there is some conformational flexibility in these mol­ecules. This observation is borne out in the present study where there is a disparity of over 25° in the central C7—N1—N2—C8 torsion angle, i.e. −151.0 (3) and 177.8 (6)° for (I) and (II), respectively. These values compare with the equivalent angle of −172.7 (2)° in (III). An overlay diagram for (I)–(III) is shown in Fig. 9: here, the different conformations for (I), cf. (II) and (III), are clearly evident.

Figure 9.

Figure 9

Two overlay diagrams of (I)–(III), represented by red, green and blue images, respectively. The mol­ecules have been overlapped so the O1, N1 and C1 atoms are coincident.

Synthesis and crystallization  

The title compounds were synthesized and characterized as per the procedures reported in the literature (Manawar et al., 2019a ). The crystals of (I) and (II) in the form of yellow blocks suitable for the structural study reported here were grown by slow evaporation of their chloro­form solutions.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. Carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2–1.5U eq(C). The positions of the O-bound H atoms were refined with O—H = 0.82±0.01 Å, and with U iso(H) set to 1.5U eq(O).

Table 7. Experimental details.

  (I) (II)
Crystal data
Chemical formula C15H12Cl2N2O2 C14H9BrCl2N2O
M r 323.17 372.04
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P c a21
Temperature (K) 296 296
a, b, c (Å) 4.3556 (2), 12.8548 (4), 25.9904 (9) 16.4510 (12), 4.4314 (3), 20.0523 (15)
V3) 1455.21 (10) 1461.83 (18)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.45 3.17
Crystal size (mm) 0.30 × 0.25 × 0.25 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.557, 0.746 0.398, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 48935, 3751, 2909 39831, 3569, 2150
R int 0.070 0.108
(sin θ/λ)max−1) 0.678 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.099, 1.02 0.038, 0.082, 1.00
No. of reflections 3751 3569
No. of parameters 194 184
No. of restraints 1 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.25 0.30, −0.59
Absolute structure Flack x determined using 1004 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013). Flack x determined using 829 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.12 (3) 0.003 (7)

Computer programs: APEX2 and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) . DOI: 10.1107/S2056989020006416/hb7915sup1.cif

e-76-00862-sup1.cif (1.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006416/hb7915Isup2.hkl

e-76-00862-Isup2.hkl (299.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020006416/hb7915IIsup3.hkl

e-76-00862-IIsup3.hkl (284.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006416/hb7915Isup4.cml

Supporting information file. DOI: 10.1107/S2056989020006416/hb7915IIsup5.cml

CCDC references: 2003762, 2003761

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India, for access to the chemical synthesis laboratory and to the Sophisticated Analytical Instrumentation Centre (SAIC), Tezpur, Assam, India for providing the X-ray intensity data for (I) and (II).

supplementary crystallographic information

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Crystal data

C15H12Cl2N2O2 Dx = 1.475 Mg m3
Mr = 323.17 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 7669 reflections
a = 4.3556 (2) Å θ = 2.8–20.9°
b = 12.8548 (4) Å µ = 0.45 mm1
c = 25.9904 (9) Å T = 296 K
V = 1455.21 (10) Å3 Block, yellow
Z = 4 0.30 × 0.25 × 0.25 mm
F(000) = 664

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 2909 reflections with I > 2σ(I)
Radiation source: X-ray tube Rint = 0.070
ω and φ scan θmax = 28.8°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −5→5
Tmin = 0.557, Tmax = 0.746 k = −17→17
48935 measured reflections l = −34→35
3751 independent reflections

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2295P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3751 reflections Δρmax = 0.16 e Å3
194 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack x determined using 1004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.12 (3)

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.5635 (2) 0.58257 (6) 0.17813 (3) 0.0639 (2)
Cl2 −0.1091 (2) 0.85695 (7) 0.29187 (3) 0.0635 (2)
O1 0.0486 (6) 1.03357 (16) 0.07165 (7) 0.0526 (5)
H1O 0.076 (10) 0.990 (2) 0.0947 (10) 0.079*
O2 −0.0282 (6) 1.13830 (16) −0.01337 (7) 0.0580 (6)
N1 0.2888 (6) 0.86954 (18) 0.11908 (9) 0.0462 (6)
N2 0.3817 (6) 0.80405 (19) 0.15969 (9) 0.0511 (6)
C1 0.3847 (6) 0.9094 (2) 0.03056 (9) 0.0407 (6)
C2 0.1975 (6) 0.9977 (2) 0.02967 (9) 0.0406 (6)
C3 0.1588 (7) 1.0536 (2) −0.01676 (10) 0.0436 (6)
C4 0.3053 (7) 1.0193 (2) −0.06085 (10) 0.0529 (8)
H4 0.280990 1.055923 −0.091441 0.063*
C5 0.4876 (8) 0.9312 (3) −0.05996 (11) 0.0577 (8)
H5 0.581625 0.908278 −0.090022 0.069*
C6 0.5300 (8) 0.8777 (2) −0.01501 (11) 0.0531 (7)
H6 0.656910 0.819478 −0.014652 0.064*
C7 0.4354 (7) 0.8510 (2) 0.07726 (10) 0.0454 (6)
H7 0.580111 0.797798 0.077020 0.054*
C8 0.1755 (7) 0.7862 (2) 0.19229 (10) 0.0433 (6)
H8 −0.017552 0.815862 0.188063 0.052*
C9 0.2348 (6) 0.7189 (2) 0.23722 (10) 0.0384 (6)
C10 0.4098 (7) 0.6277 (2) 0.23543 (10) 0.0442 (6)
C11 0.4597 (8) 0.5674 (2) 0.27870 (12) 0.0559 (8)
H11 0.578168 0.507359 0.276454 0.067*
C12 0.3337 (8) 0.5965 (3) 0.32511 (12) 0.0597 (8)
H12 0.370349 0.556547 0.354312 0.072*
C13 0.1540 (8) 0.6841 (3) 0.32858 (11) 0.0543 (8)
H13 0.064794 0.702856 0.359734 0.065*
C14 0.1081 (7) 0.7439 (2) 0.28499 (10) 0.0439 (6)
C15 −0.0503 (10) 1.2040 (3) −0.05738 (12) 0.0743 (11)
H15A 0.146096 1.235029 −0.064168 0.111*
H15B −0.198696 1.257741 −0.051006 0.111*
H15C −0.113212 1.163644 −0.086601 0.111*

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0822 (6) 0.0538 (4) 0.0555 (4) 0.0136 (4) 0.0063 (4) −0.0055 (4)
Cl2 0.0727 (5) 0.0550 (4) 0.0628 (5) 0.0050 (4) 0.0086 (4) −0.0072 (4)
O1 0.0699 (14) 0.0525 (12) 0.0353 (10) 0.0110 (11) 0.0077 (10) 0.0009 (8)
O2 0.0781 (15) 0.0535 (12) 0.0425 (11) 0.0107 (12) 0.0016 (10) 0.0082 (9)
N1 0.0520 (14) 0.0456 (13) 0.0412 (13) −0.0021 (11) −0.0001 (11) 0.0106 (10)
N2 0.0489 (13) 0.0557 (14) 0.0486 (13) 0.0001 (12) −0.0027 (12) 0.0156 (11)
C1 0.0438 (14) 0.0426 (14) 0.0356 (13) −0.0066 (12) 0.0008 (11) −0.0029 (11)
C2 0.0476 (15) 0.0438 (14) 0.0303 (12) −0.0066 (12) 0.0019 (11) −0.0054 (11)
C3 0.0493 (15) 0.0448 (15) 0.0366 (13) −0.0063 (13) −0.0020 (12) −0.0002 (11)
C4 0.0604 (19) 0.066 (2) 0.0325 (14) −0.0094 (16) 0.0021 (13) 0.0015 (14)
C5 0.064 (2) 0.0714 (19) 0.0377 (15) −0.0019 (18) 0.0109 (14) −0.0091 (14)
C6 0.0553 (17) 0.0555 (17) 0.0484 (16) −0.0004 (15) 0.0075 (14) −0.0117 (13)
C7 0.0469 (16) 0.0408 (14) 0.0485 (15) −0.0024 (13) −0.0020 (13) 0.0001 (12)
C8 0.0494 (16) 0.0414 (14) 0.0390 (14) −0.0027 (13) −0.0062 (12) 0.0021 (11)
C9 0.0406 (13) 0.0377 (13) 0.0370 (13) −0.0076 (11) −0.0051 (11) 0.0022 (10)
C10 0.0472 (15) 0.0433 (14) 0.0420 (14) −0.0030 (13) −0.0037 (13) 0.0007 (12)
C11 0.0602 (18) 0.0476 (16) 0.0600 (18) 0.0029 (15) −0.0070 (15) 0.0143 (14)
C12 0.066 (2) 0.065 (2) 0.0481 (17) −0.0039 (17) −0.0051 (16) 0.0233 (15)
C13 0.0587 (18) 0.069 (2) 0.0355 (14) −0.0093 (16) −0.0006 (13) 0.0059 (14)
C14 0.0456 (15) 0.0442 (14) 0.0419 (14) −0.0082 (12) −0.0026 (13) −0.0016 (12)
C15 0.098 (3) 0.072 (2) 0.0529 (19) 0.014 (2) −0.001 (2) 0.0195 (17)

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Geometric parameters (Å, º)

Cl1—C10 1.733 (3) C5—H5 0.9300
Cl2—C14 1.743 (3) C6—H6 0.9300
O1—C2 1.350 (3) C7—H7 0.9300
O1—H1O 0.828 (13) C8—C9 1.476 (4)
O2—C3 1.362 (4) C8—H8 0.9300
O2—C15 1.425 (3) C9—C10 1.399 (4)
N1—C7 1.283 (3) C9—C14 1.396 (4)
N1—N2 1.409 (3) C10—C11 1.383 (4)
N2—C8 1.256 (4) C11—C12 1.377 (4)
C1—C2 1.398 (4) C11—H11 0.9300
C1—C6 1.403 (4) C12—C13 1.374 (5)
C1—C7 1.444 (4) C12—H12 0.9300
C2—C3 1.415 (4) C13—C14 1.384 (4)
C3—C4 1.384 (4) C13—H13 0.9300
C4—C5 1.383 (4) C15—H15A 0.9600
C4—H4 0.9300 C15—H15B 0.9600
C5—C6 1.369 (4) C15—H15C 0.9600
C2—O1—H1O 107 (3) N2—C8—H8 119.5
C3—O2—C15 117.5 (3) C9—C8—H8 119.5
C7—N1—N2 112.4 (2) C10—C9—C14 116.0 (2)
C8—N2—N1 114.2 (2) C10—C9—C8 124.1 (2)
C2—C1—C6 119.0 (3) C14—C9—C8 120.0 (3)
C2—C1—C7 121.7 (2) C11—C10—C9 121.9 (3)
C6—C1—C7 119.3 (3) C11—C10—Cl1 116.8 (2)
O1—C2—C1 123.0 (2) C9—C10—Cl1 121.3 (2)
O1—C2—C3 117.3 (3) C10—C11—C12 119.8 (3)
C1—C2—C3 119.8 (2) C10—C11—H11 120.1
O2—C3—C4 125.7 (3) C12—C11—H11 120.1
O2—C3—C2 115.0 (2) C13—C12—C11 120.5 (3)
C4—C3—C2 119.3 (3) C13—C12—H12 119.8
C3—C4—C5 120.8 (3) C11—C12—H12 119.8
C3—C4—H4 119.6 C12—C13—C14 118.9 (3)
C5—C4—H4 119.6 C12—C13—H13 120.5
C6—C5—C4 120.2 (3) C14—C13—H13 120.5
C6—C5—H5 119.9 C13—C14—C9 122.9 (3)
C4—C5—H5 119.9 C13—C14—Cl2 117.3 (2)
C5—C6—C1 120.9 (3) C9—C14—Cl2 119.8 (2)
C5—C6—H6 119.5 O2—C15—H15A 109.5
C1—C6—H6 119.5 O2—C15—H15B 109.5
N1—C7—C1 122.6 (3) H15A—C15—H15B 109.5
N1—C7—H7 118.7 O2—C15—H15C 109.5
C1—C7—H7 118.7 H15A—C15—H15C 109.5
N2—C8—C9 121.1 (3) H15B—C15—H15C 109.5
C7—N1—N2—C8 −151.0 (3) C6—C1—C7—N1 −173.4 (3)
C6—C1—C2—O1 179.9 (3) N1—N2—C8—C9 179.9 (2)
C7—C1—C2—O1 −1.0 (4) N2—C8—C9—C10 −39.5 (4)
C6—C1—C2—C3 −0.3 (4) N2—C8—C9—C14 141.8 (3)
C7—C1—C2—C3 178.8 (3) C14—C9—C10—C11 −1.4 (4)
C15—O2—C3—C4 −7.2 (5) C8—C9—C10—C11 179.7 (3)
C15—O2—C3—C2 173.5 (3) C14—C9—C10—Cl1 176.3 (2)
O1—C2—C3—O2 −0.2 (4) C8—C9—C10—Cl1 −2.5 (4)
C1—C2—C3—O2 180.0 (2) C9—C10—C11—C12 0.4 (5)
O1—C2—C3—C4 −179.6 (3) Cl1—C10—C11—C12 −177.4 (2)
C1—C2—C3—C4 0.6 (4) C10—C11—C12—C13 1.1 (5)
O2—C3—C4—C5 −179.2 (3) C11—C12—C13—C14 −1.5 (5)
C2—C3—C4—C5 0.1 (4) C12—C13—C14—C9 0.5 (4)
C3—C4—C5—C6 −1.2 (5) C12—C13—C14—Cl2 −177.6 (3)
C4—C5—C6—C1 1.5 (5) C10—C9—C14—C13 1.0 (4)
C2—C1—C6—C5 −0.8 (4) C8—C9—C14—C13 179.9 (3)
C7—C1—C6—C5 −179.9 (3) C10—C9—C14—Cl2 179.0 (2)
N2—N1—C7—C1 −178.8 (2) C8—C9—C14—Cl2 −2.1 (4)
C2—C1—C7—N1 7.5 (4)

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the (C9–14) ring.

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1 0.83 (3) 1.91 (3) 2.657 (3) 149 (3)
C15—H15B···O2i 0.96 2.58 3.439 (4) 149
C14—Cl2···Cg1ii 1.74 (1) 3.70 (1) 3.765 (3) 79 (1)

Symmetry codes: (i) x−1/2, −y+5/2, −z; (ii) x−1, y, z.

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Crystal data

C14H9BrCl2N2O Dx = 1.690 Mg m3
Mr = 372.04 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 4698 reflections
a = 16.4510 (12) Å θ = 2.5–18.6°
b = 4.4314 (3) Å µ = 3.17 mm1
c = 20.0523 (15) Å T = 296 K
V = 1461.83 (18) Å3 Block, yellow
Z = 4 0.30 × 0.20 × 0.20 mm
F(000) = 736

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Data collection

Bruker Kappa APEXII CCD diffractometer 2150 reflections with I > 2σ(I)
Radiation source: X-ray tube Rint = 0.108
ω and φ scan θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −21→21
Tmin = 0.398, Tmax = 0.746 k = −5→5
39831 measured reflections l = −26→26
3569 independent reflections

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.024P)2 + 0.3263P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3569 reflections Δρmax = 0.30 e Å3
184 parameters Δρmin = −0.59 e Å3
2 restraints Absolute structure: Flack x determined using 829 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.003 (7)

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.17606 (4) 1.58575 (14) 0.09985 (4) 0.0617 (2)
Cl1 0.95249 (10) 0.2117 (4) 0.37299 (9) 0.0682 (5)
Cl2 0.63270 (11) 0.3504 (5) 0.30362 (11) 0.0830 (6)
O1 0.8392 (2) 1.0502 (9) 0.1011 (4) 0.0618 (10)
H1O 0.830 (5) 0.931 (14) 0.132 (3) 0.093*
N1 0.8804 (3) 0.7671 (11) 0.2128 (2) 0.0459 (12)
N2 0.8764 (3) 0.5871 (12) 0.2711 (3) 0.0583 (14)
C1 0.9706 (3) 1.0963 (12) 0.1535 (3) 0.0395 (13)
C2 0.9148 (3) 1.1674 (11) 0.1024 (4) 0.0461 (13)
C3 0.9379 (4) 1.3636 (14) 0.0523 (3) 0.0568 (18)
H3 0.901334 1.412779 0.018641 0.068*
C4 1.0152 (4) 1.4872 (14) 0.0519 (3) 0.0557 (17)
H4 1.029972 1.620146 0.018149 0.067*
C5 1.0700 (3) 1.4155 (11) 0.1008 (5) 0.0454 (12)
C6 1.0480 (4) 1.2229 (13) 0.1514 (3) 0.0450 (15)
H6 1.085312 1.176591 0.184695 0.054*
C7 0.9496 (4) 0.8944 (13) 0.2077 (3) 0.0458 (14)
H7 0.988542 0.855756 0.240209 0.055*
C8 0.8102 (4) 0.4636 (14) 0.2809 (3) 0.0490 (15)
H8 0.769260 0.494996 0.249745 0.059*
C9 0.7918 (4) 0.2707 (15) 0.3384 (3) 0.0441 (15)
C10 0.8495 (4) 0.1490 (13) 0.3823 (3) 0.0471 (15)
C11 0.8267 (4) −0.0303 (14) 0.4358 (3) 0.0602 (17)
H11 0.866252 −0.109704 0.463911 0.072*
C12 0.7460 (5) −0.0916 (16) 0.4478 (4) 0.073 (2)
H12 0.731322 −0.211614 0.483867 0.087*
C13 0.6868 (4) 0.0252 (16) 0.4062 (4) 0.066 (2)
H13 0.632125 −0.015359 0.413876 0.079*
C14 0.7104 (4) 0.2044 (17) 0.3525 (3) 0.0525 (18)

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0534 (4) 0.0635 (3) 0.0682 (4) −0.0060 (3) 0.0127 (4) −0.0003 (5)
Cl1 0.0462 (9) 0.0986 (13) 0.0599 (10) 0.0036 (9) −0.0082 (8) 0.0084 (10)
Cl2 0.0440 (10) 0.1108 (15) 0.0943 (14) −0.0090 (11) −0.0136 (10) 0.0087 (13)
O1 0.048 (2) 0.068 (3) 0.069 (3) −0.003 (2) −0.015 (3) 0.010 (3)
N1 0.047 (3) 0.044 (3) 0.047 (3) 0.000 (3) −0.004 (2) −0.001 (2)
N2 0.048 (4) 0.067 (4) 0.060 (4) −0.011 (3) −0.011 (3) 0.019 (3)
C1 0.043 (3) 0.036 (3) 0.039 (3) 0.003 (3) 0.001 (3) −0.004 (3)
C2 0.046 (3) 0.044 (3) 0.048 (3) 0.005 (2) −0.005 (4) −0.001 (4)
C3 0.063 (5) 0.054 (4) 0.053 (4) 0.009 (3) −0.013 (3) 0.005 (3)
C4 0.068 (5) 0.049 (4) 0.050 (4) 0.001 (3) 0.004 (4) 0.009 (3)
C5 0.053 (3) 0.038 (3) 0.045 (3) 0.003 (3) 0.006 (4) −0.003 (4)
C6 0.043 (4) 0.046 (3) 0.046 (4) 0.004 (3) −0.001 (3) −0.002 (3)
C7 0.042 (4) 0.049 (3) 0.047 (3) 0.004 (3) −0.005 (3) 0.002 (3)
C8 0.041 (4) 0.059 (4) 0.047 (4) 0.002 (3) −0.007 (3) 0.000 (3)
C9 0.044 (4) 0.046 (4) 0.042 (4) −0.008 (3) −0.001 (3) −0.006 (3)
C10 0.048 (4) 0.050 (4) 0.044 (3) −0.004 (3) 0.001 (3) −0.008 (3)
C11 0.072 (5) 0.063 (4) 0.046 (4) −0.004 (4) −0.005 (4) −0.002 (3)
C12 0.081 (6) 0.078 (5) 0.058 (4) −0.021 (5) 0.014 (5) −0.003 (4)
C13 0.054 (4) 0.080 (5) 0.063 (4) −0.023 (4) 0.012 (4) −0.010 (4)
C14 0.046 (4) 0.065 (4) 0.047 (4) −0.011 (4) 0.005 (3) −0.007 (3)

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Geometric parameters (Å, º)

Br1—C5 1.901 (5) C4—H4 0.9300
Cl1—C10 1.727 (6) C5—C6 1.375 (10)
Cl2—C14 1.736 (8) C6—H6 0.9300
O1—C2 1.349 (7) C7—H7 0.9300
O1—H1O 0.827 (14) C8—C9 1.466 (9)
N1—C7 1.276 (7) C8—H8 0.9300
N1—N2 1.417 (7) C9—C10 1.402 (9)
N2—C8 1.234 (7) C9—C14 1.400 (8)
C1—C6 1.393 (8) C10—C11 1.388 (9)
C1—C2 1.411 (9) C11—C12 1.375 (10)
C1—C7 1.448 (8) C11—H11 0.9300
C2—C3 1.382 (9) C12—C13 1.384 (11)
C3—C4 1.384 (9) C12—H12 0.9300
C3—H3 0.9300 C13—C14 1.392 (10)
C4—C5 1.369 (10) C13—H13 0.9300
C2—O1—H1O 114 (6) C1—C7—H7 118.5
C7—N1—N2 110.9 (5) N2—C8—C9 124.5 (6)
C8—N2—N1 114.9 (5) N2—C8—H8 117.8
C6—C1—C2 118.8 (5) C9—C8—H8 117.8
C6—C1—C7 119.3 (5) C10—C9—C14 116.1 (6)
C2—C1—C7 121.9 (5) C10—C9—C8 125.3 (6)
O1—C2—C3 118.8 (6) C14—C9—C8 118.6 (6)
O1—C2—C1 121.9 (6) C11—C10—C9 121.5 (6)
C3—C2—C1 119.3 (5) C11—C10—Cl1 116.2 (5)
C2—C3—C4 120.4 (6) C9—C10—Cl1 122.3 (5)
C2—C3—H3 119.8 C12—C11—C10 120.6 (7)
C4—C3—H3 119.8 C12—C11—H11 119.7
C5—C4—C3 120.6 (6) C10—C11—H11 119.7
C5—C4—H4 119.7 C11—C12—C13 120.0 (7)
C3—C4—H4 119.7 C11—C12—H12 120.0
C4—C5—C6 119.9 (5) C13—C12—H12 120.0
C4—C5—Br1 120.4 (6) C12—C13—C14 118.9 (7)
C6—C5—Br1 119.7 (6) C12—C13—H13 120.6
C5—C6—C1 120.9 (6) C14—C13—H13 120.6
C5—C6—H6 119.5 C13—C14—C9 122.9 (6)
C1—C6—H6 119.5 C13—C14—Cl2 116.3 (6)
N1—C7—C1 123.1 (6) C9—C14—Cl2 120.8 (5)
N1—C7—H7 118.5
C7—N1—N2—C8 177.8 (6) N1—N2—C8—C9 −179.2 (6)
C6—C1—C2—O1 179.3 (6) N2—C8—C9—C10 −13.9 (10)
C7—C1—C2—O1 −0.2 (9) N2—C8—C9—C14 164.6 (7)
C6—C1—C2—C3 −1.0 (8) C14—C9—C10—C11 1.0 (9)
C7—C1—C2—C3 179.4 (5) C8—C9—C10—C11 179.5 (6)
O1—C2—C3—C4 −179.7 (6) C14—C9—C10—Cl1 −179.2 (5)
C1—C2—C3—C4 0.6 (9) C8—C9—C10—Cl1 −0.6 (9)
C2—C3—C4—C5 0.5 (10) C9—C10—C11—C12 −0.6 (10)
C3—C4—C5—C6 −1.1 (10) Cl1—C10—C11—C12 179.5 (5)
C3—C4—C5—Br1 179.9 (5) C10—C11—C12—C13 0.1 (10)
C4—C5—C6—C1 0.6 (9) C11—C12—C13—C14 −0.1 (11)
Br1—C5—C6—C1 179.6 (4) C12—C13—C14—C9 0.5 (11)
C2—C1—C6—C5 0.4 (8) C12—C13—C14—Cl2 −178.5 (6)
C7—C1—C6—C5 180.0 (5) C10—C9—C14—C13 −0.9 (10)
N2—N1—C7—C1 −178.9 (5) C8—C9—C14—C13 −179.6 (6)
C6—C1—C7—N1 −179.3 (6) C10—C9—C14—Cl2 178.0 (5)
C2—C1—C7—N1 0.3 (9) C8—C9—C14—Cl2 −0.6 (9)

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1 0.83 (6) 1.96 (6) 2.655 (8) 141 (7)

Funding Statement

This work was funded by Sunway University Sdn Bhd grant STR-RCTR-RCCM-001-2019.

References

  1. Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem 15, 1–58.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Clarke, R. M. & Storr, T. (2014). Dalton Trans. 43, 9380–9391. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hassel, O. & Hvoslef, J. (1954). Acta Chem. Scand. 8, 873.
  8. Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D. & Hamon, J.-R. (2018). Coord. Chem. Rev. 357, 144–172.
  9. Manawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019a). Sci. News 126, 222–247.
  10. Manawar, R. B., Gondaliya, M. B., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019b). Acta Cryst. E75, 1423–1428. [DOI] [PMC free article] [PubMed]
  11. Manawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 53–61. [DOI] [PMC free article] [PubMed]
  12. Mukherjee, T., Pessoa, J. C., Kumar, A. & Sarkar, A. R. (2013). Dalton Trans. 42, 2594–2607. [DOI] [PubMed]
  13. Naeimi, H., Nazifi, Z. S., Matin Amininezhad, S. & Amouheidari, M. (2013). J. Antibiot. 66, 687–689. [DOI] [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  17. Tiekink, E. R. T. (2017). Coord. Chem. Rev 345, 219–228.
  18. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.
  19. Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) . DOI: 10.1107/S2056989020006416/hb7915sup1.cif

e-76-00862-sup1.cif (1.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020006416/hb7915Isup2.hkl

e-76-00862-Isup2.hkl (299.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020006416/hb7915IIsup3.hkl

e-76-00862-IIsup3.hkl (284.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006416/hb7915Isup4.cml

Supporting information file. DOI: 10.1107/S2056989020006416/hb7915IIsup5.cml

CCDC references: 2003762, 2003761

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES