Skip to main content
Plants logoLink to Plants
. 2020 May 10;9(5):606. doi: 10.3390/plants9050606

Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam

Dao Thi Minh Chau 1, Nguyen Thanh Chung 2, Le Thi Huong 3, Nguyen Huy Hung 4, Isiaka A Ogunwande 5, Do Ngoc Dai 2,6,*, William N Setzer 7,8,*
PMCID: PMC7284511  PMID: 32397613

Abstract

The Lauraceae is a family rich in aromatic and medicinal plants. Likewise, essential oils derived from members of this family have demonstrated a myriad of biological activities. It is hypothesized that members of the Lauraceae from Vietnam will yield essential oils that may be useful in controlling mosquito populations and treating microbial infections. In this work, the leaf essential oils of eleven species of Lauraceae (Beilschmiedia erythrophloia, B. robusta, B. yunnanensis, Cryptocarya concinna, C. impressa, C. infectoria, Litsea viridis, Machilus balansa, M. grandifolia, Neolitsea ellipsoidea, and Phoebe angustifolia) have been obtained by hydrodistillation and the chemical compositions analyzed by gas chromatography – mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID). The essential oils were screened for larvicidal activity against Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, and for antimicrobial activity against Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Candida albicans. The leaf essential oil of N. ellipsoidea, rich in (E)-β-ocimene (87.6%), showed excellent larvicidal activity against Ae. aegypti with a 24 h LC50 of 6.59 μg/mL. The leaf essential oil of C. infectoria, dominated by germacrene D (55.5%) and bicyclogermacrene (11.4%), exhibited remarkable larvicidal activity against Cx. quinquefasciatus (48 h LC50 = 0.40 μg/mL). N. ellipsoidea leaf essential oil also demonstrated notable antibacterial activity against E. faecalis and B. cereus with minimum inhibitory concentration (MIC) values of 16 μg/mL, while the leaf essential oil of C. impressa showed excellent anticandidal with an MIC of 16 μg/mL. Leaf essential oils from the Lauraceae should be considered for utilization as alternative agents for controlling mosquito populations and as antimicrobial agents.

Keywords: Beilschmiedia, Cryptocarya, Litsea, Machilus, Neolitsea, Phoebe, Aedes, Culex, antibacterial, antifungal

1. Introduction

The Lauraceae is made up of around 55 genera and 3000 species of tropical and warm temperate trees and shrubs, with Southeast Asia and Brazil serving as species-rich hot spots [1]. Several members of the family are commercially important, including the avocado (Persea americana Mill.) for its fruit, bay leaf (Laurus nobilis L.) used in cooking, and the spice cinnamon (Cinnamomum verum J. Presl) [2]. Several Lauraceae species have been used medicinally, including sassafras (Sassafras albidum (Nutt.) Nees) [3] and spicebush (Lindera benzoin (L.) Blume) [4]. Many species of Lauraceae contain essential oils that have found use in the flavor and fragrance industry [5], e.g., Brazilian rosewood (Aniba rosaeodora Ducke) [6], camphor tree, ravintsara, ho leaf (Cinnamomum camphora (L.) J. Presl.) [7], and aromatic litsea (Litsea cubeba (Lour.) Pers.) [8].

Based on the utility and properties of Lauraceae essential oils, it is hypothesized that members of the Lauraceae found in Vietnam have biologically active essential oils that may be useful in controlling mosquito populations or as antimicrobial agents. Eleven species of Lauraceae from north-central Vietnam have been collected, the essential oils obtained by hydrodistillation, chemical compositions analyzed, and the oils screened for mosquito larvicidal activity and for antimicrobial activity.

The genus Beilschmiedia Nees is comprised of around 250 species of trees and shrubs [9] and are widespread in tropical Africa, Madagascar, Asia, Southeast Asia, Melanesia, Australia, New Zealand, North America, Central America, South America, and the Caribbean [10]. The phytochemistry and bioactivity of Beilschmiedia has been reviewed [11].

Beilschmiedia erythrophloia Hayata is a tree found in Taiwan, southern China, Hainan Island, and Ryukyu Islands (Japan) [12,13]. In Vietnam, the tree is found in Nghệ An, Hà Tĩnh, and Đồng Nai provinces [14]. Previous phytochemical studies of B. erythrophloia have revealed endiandric acid derivatives from the roots [15,16], the cytotoxic alkaloid beischamide from the stems [13], and a leaf essential oil rich in (E)-caryophyllene and α-humulene [17].

Beilschmiedia robusta C.K. Allen is a tree, 10–15 m tall that is recorded from Guangzi, southwestern Guizhou, Xizang, and Yunnan provinces in China [12,18]. In Vietnam, the tree is found in Lào Cai, Ninh Bình, and Nghệ An provinces [14]. A perusal of the literature has revealed that there have been no previous phytochemical investigations of B. robusta.

Beilschmiedia yunnanensis H.H. Hu is a tree, up to 18 m tall and is found in Guangdong, southern Guangxi, and southern Yunnan provinces in China [12]. In Vietnam, the tree is found in Lào Cai, Nghệ An, and Hà Tĩnh provinces [14]. A literature search has revealed that there have been no previous phytochemical investigations of B. yunnanensis.

Cryptocarya R. Br. is a pantropical genus of around 300 species [19]. Cryptocarya concinna Hance (syn. Cryptocarya konishii Hayata, Cryptocarya lenticellata Lecomte, Cryptocarya microcarpa F.N. Wei) is a tree up to 18 m tall, and ranges from southern China (Guangdong, Guangxi, southeastern Guizhou, Hainan, Jiangxi, and Taiwan) to northern Vietnam [9,12]. In Vietnam, it has been recorded in Hà Giang, Tuyên Quang, Cao Bằng, Vĩnh Phúc, Hải Phòng, Thanh Hóa, Nghệ An, Hà Tĩnh, Thừa Thiên Huế provinces [14]. Previous investigations of the phytochemistry of C. concinna have shown the roots to contain cytotoxic cryptocaryone [20], the leaves to contain cytotoxic cryptoconcatones K and L [21], and the wood to contain cytotoxic cryptocaryone and kurzichalcolactone A and antifungal cryptocaryanone A and kurzichalcolactone B [22]. There have been no previous reports on essential oils from C. concinna.

Cryptocarya impressa Miq. is native to Vietnam, Laos, the Malay Peninsula, Borneo and Sumatra [23]. In Vietnam, the plant has been recorded in Hòa Bình, Hà Nội, Hải Dương, Ninh Bình, Nghệ An, and Gia Lai provinces [14]. To our knowledge, there have been no reports on the phytochemistry of C. impressa.

Cryptocarya infectoria (Blume) Miq. (syn. Cylicodaphne infectoria Blume) is a tree up to 33 m tall that is native to Indo-China and Malesia [24,25,26]. In Vietnam, this tree is found in Lào Cai, Phú Thọ, Vĩnh Phúc, Thanh Hoá, Nghệ An, Hà Tĩnh, and Thừa Thiên Huế provinces [14]. The cytotoxic dihydrochalcones, cryptocaryone and infectocaryone, and the flavonoids cryptocaryanones A and B have been isolated from the methanol bark extract of C. infectoria [27,28]. The isoquinoline alkaloids atherosperminine, N-methylisococlaurine, and N-methyllaurotetanine have also been isolated from the bark of C. infectoria [29]. There have been apparently no essential oil analyses on this plant, however.

The genus Litsea Lam. consists of around 300 species distributed in tropical and warm subtropical regions of Asia, Australia, and the Americas [19]. Litsea viridis H. Liu is a small tree, 3-6 m tall, found in south-eastern Yunnan province (China) and Cao Bằng, Nghệ An, Đà Nẵng, and Đắk Lắk provinces (Vietnam) [12,14]. There do not seem to be any previous studies on the phytochemistry of this plant.

The genus Machilus Rumph. ex Nees is comprised of around 100 species distributed in southern and south-eastern Asia [12,14]. Machilus balansae (Airy Shaw) F.N. Wei & S.C. Tang (syn. Persea balansae Airy Shaw) is endemic to Vietnam and is generally found at low elevations in north Vietnam [30]. Machilus grandifolia S.K. Lee & F.N. Wei is now regarded as a new synonym of M. balansae [30]. To our knowledge, there have been no phytochemical studies reported on M. balansae or M. grandifolia.

The genus Neolitsea (Benth.) Merr. Contains around 85 species distributed from Indo-Malaysia to East Asia [12,14]. Neolitsea ellipsoidea K.C. Allen is a tree up to 30 m in height [31]. The species has been recorded in Hainan (China) and Vietnam (Hoà Bình, Quảng Ninh, Hà Tĩnh, and Gia Lai provinces). To our knowledge there have been no reports on the phytochemistry of this species.

There are around 100 species in the genus Phoebe Nees [19], which range from the Neotropics (Mexico, south to Brazil, Bolivia, and Argentina) and Southeast Asia (southern China, Vietnam, Thailand, Myanmar, Cambodia, and Singapore), as well as Indonesia, New Guinea, and India [9].

Phoebe angustifolia Meisn. is a small shrub found in southeastern Yunnan (China), Myanmar, India, and Vietnam [12]. In Vietnam, the species has been recorded in Thanh Hóa, Nghệ An, Thừa Thiên Huế, and Quảng Nam provinces [14]. The leaf essential oil of P. angustifolia from Vietnam has been reported, which showed the major components to be spathulenol (17.0%), palmitic acid (13.0%), sabinene (6.4%), bicyclogermacrene (5.9%), and artemisia triene (5.1%) [32].

2. Results and Discussion

The essential oil collection details and yields are summarized in Table 1.

Table 1.

Plant collection and hydrodistillation details of Lauraceae from Vietnam.

Plant Species Vietnamese Name Collection Site Voucher Number Collection Month/Year Yield (%, v/w)
Beilschmiedia erythrophloia Hayata Chắp, Kết gỗ đỏ Pù Hoạt Nature Reserve; 19°41′40″ N, 104°49′31″ E, elev, 678 m 803 7/2019 0.12
Beilschmiedia robusta C.K. Allen Chắp to khỏ, Két to khỏe Pù Hoạt Nature Reserve; 19°41′37″ N, 104°49′30″ E, elev. 677 m 827 9/2019 0.14
Beilschmiedia yunnanensis H.H. Hu Chắp vân nam, Két vân nam, Mong vân nam Vũ Quang National park; 18°17′15″ N, 105°21′39″ E, elev. 153 m 799 7/2019 0.15
Cryptocarya concinna Hance Ẩn hạch quả vàng, Mò quả vàng, Kháo Nam Đông District, Thừa Thiên Huế Province; 16°13′9″ N, 107°43′28″ E, elev. 124 m 791 7/2019 0.33
Pù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m 801 7/2019 0.36
Cryptocarya impressa Miq.
Syn.: Cryptocarya venosa Meisn. ex Hook.f.
Mò quả to, Mò quả xanh, Ẩn hạch quả to Pù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m 826 9/2019 0.22
Cryptocarya infectoria (Blume) Miq.
Syn.: Caryodaphne infectoria Blume
Cà đuối nhuộm, Ẩn hạch nhuộm, Cà đuối tai nghé Pù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m 767 4/2019 0.25
Litsea viridis H. Liou Bời lời xanh Pù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m 806 8/2019 0.21
Machilus balansa (Airy Shaw) F.N. Wei & S.C. Tang
Syn.: Persea balansae Airy Shaw
Kháo balansa, Rè balansa Pù Mát National Park; 18°58′14″ N, 104°48′2″ E, elev. 376 m 828 9/2019 0.42
Machilus grandifolia S.K. Lee & F.N. Wei Kháo lá to Nam Đông District, Thừa Thiên Huế Province; 16°13′9″ N, 107°43′28″ E, elev. ZZ m 779 7/2019 0.18
Neolitsea ellipsoidea K.C. Allen Nô bầu dục, Bài nhài lá bầu dục, Tam tầng Vũ Quang National park; 18°17′15″ N, 105°21′39″ E, elev. 124 m 802 7/2019 0.31
Phoebe angustifolia Meisn.
Syn.: Phoebe angustifolia var. annamensis Liou
Re trắng lá hẹp, Sụ lá hẹp, Dù dà mò cát Pù Hoạt Nature Reserve; 19°49′7″ N, 104°55′38″ E, elev. 465 m 785 7/2019 0.45

2.1. Essential Oil Compositions

The essential oil compositions of B. erythrophloia, B. robusta, and B. yunnanensis are compiled in Table 2. All three of the Beilschmiedia leaf essential oils were dominated by sesquiterpene hydrocarbons. A preponderance of sesquiterpene hydrocarbons has been previously seen in Beilschmiedia leaf essential oils from Malaysia [33] and from Costa Rica [34].

Table 2.

Chemical compositions of the leaf essential oils of Beilschmiedia species collected in Vietnam.

RIcalc RIdb Compounds Percent Composition
B.e. B.r. B.y.
930 924 α-Thujene - 0.1 0.6
939 932 α-Pinene 3.2 2.9 6.0
955 946 Camphene 0.2 0.2 0.2
979 969 Sabinene 0.1 0.6 1.9
984 974 β-Pinene 0.6 2.7 4.7
992 988 Myrcene 0.5 0.4 0.8
1010 1002 α-Phellandrene 0.1 - 0.1
1022 1014 α-Terpinene - 0.5 1.5
1030 1020 p-Cymene - 0.3 0.8
1034 1024 Limonene 0.2 0.8 1.2
1035 1025 β-Phellandrene - 0.1 0.6
1039 1032 (Z)-β-Ocimene 26.1 - 0.1
1049 1044 (E)-β-Ocimene 3.6 0.5 -
1063 1054 γ-Terpinene - 0.9 2.6
1094 1086 Terpinolene - 0.4 0.8
1117 1113 (E)-4,8-Dimethylnona-1,3,7-triene - - 0.2
1131 1128 allo-Ocimene 0.6 - -
1188 1174 Terpinen-4-ol - 0.5 1.8
1200 1186 α-Terpineol - - 0.2
1294 1287 Bornyl acetate 0.3 - -
1348 1335 δ-Elemene 1.5 0.3 0.3
1360 1345 α-Cubebene - 0.3 -
1365 1359 Neryl acetate - - 0.2
1384 1373 α-Ylangene - 0.1 -
1386 1387 β-Cubebene - - 0.1
1389 1374 α-Copaene 0.3 0.7 0.2
1397 1390 7-epi-Sesquithujene 0.5 0.7 1.0
1399 1387 β-Bourbonene - 0.9 -
1404 1389 β-Elemene 1.0 1.0 0.6
1425 1411 cis-α-Bergamotene - 0.4 0.4
1428 1409 α-Gurjunene - - 0.3
1437 1417 (E)-Caryophyllene 18.3 22.5 16.2
1446 1432 trans-α-bergamotene 0.5 1.2 1.1
1452 1437 α-Guaiene - 0.4 0.4
1457 1439 Aromadendrene 0.7 1.5 1.8
1460 1440 (Z)-β-Farnesene 0.3 0.2 0.5
1466 1448 cis-Muurola-3,5-diene - 0.2 -
1471 1452 α-Humulene 2.6 13.4 9.9
1479 1464 9-epi-(E)-Caryophyllene 0.4 0.5 21.2
1488 1481 γ-Curcumene - - 0.2
1490 1478 γ-Muurolene 0.1 1.9 0.3
1494 1483 α-Amorphene - 0.6 -
1498 1484 Germacrene D 2.7 20.3 1.1
1504 1489 β-Selinene - - 0.2
1505 1492 δ-Selinene - 0.4 0.2
1507 1490 9-Aromadendrene - - 0.9
1512 1505 (E,E)-α-Farnesene - 1.4 -
1512 1496 Viridiflorene - 2.4 2.0
1514 1500 Bicyclogermacrene 30.5 8.6 8.4
1520 1514 β-Curcumene - - 0.2
1521 1511 δ-Amorphene 0.1 - -
1522 1509 α-Bulnesene - - 0.3
1530 1513 γ-Cadinene 0.1 0.8 0.2
1537 1522 δ-Cadinene 0.5 2.9 0.5
1540 1528 Zonarene - 0.2 -
1547 1533 trans-Cadina-1,4-diene - 0.2 -
1552 1537 α-Cadinene - 0.2 -
1562 1548 Elemol 0.2 - -
1571 1561 (E)-Nerolidol - 0.2 1.4
1577 1559 Germacrene B 0.2 - -
1588 1567 Palustrol - - 0.4
1599 1577 Spathulenol 0.9 0.6 1.0
1604 1592 Viridiflorol - 0.4 1.2
1605 1582 Caryophyllene oxide 0.6 0.4 -
1612 1595 Cubeban-11-ol - 0.6 -
1615 1600 Guaiol 0.3 - 1.0
1621 1600 Rosifoliol - 0.2 0.3
1625 1602 Ledol - - 1.1
1632 1608 Humulene epoxide II - 0.2 0.2
1642 1637 5-Guaiene-11-ol - - 0.2
1658 1640 epi-α-Muurolol - 0.2 -
1659 1638 epi-α-Cadinol - 0.2 -
1670 1652 α-Eudesmol 0.1 - -
1673 1652 α-Cadinol 0.1 0.5 -
1674 1662 7-epi-α-Eudesmol 0.3 - -
1683 1670 epi-β-Bisabolol - - 0.1
1759 1732 Zerumbone 0.1 - -
Monoterpene hydrocarbons 35.2 10.4 21.9
Oxygenated monoterpenoids 0.3 0.5 2.2
Sesquiterpene hydrocarbons 60.3 84.2 68.5
Oxygenated sesquiterpenoids 2.6 3.5 6.9
Others 0.0 0.0 0.2
Total identified 98.4 98.6 99.7

RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column, RIdb = Retention index from the databases [35,36,37], B.e. = Beilschmiedia erythrophloia, B.r. = Beilschmiedia robusta, B.y. = Beilschmiedia yunnanensis.

The major components in B. erythrophloia essential oil were bicyclogermacrene (30.5%), (Z)-β-ocimene (26.1%), and (E)-caryophyllene (18.3%). While qualitatively similar, there are notable differences between the essential oil from Vietnam in this work and that reported by Su and Ho from Taiwan [17]; the sample from Taiwan was rich in α-humulene (21.9%) compared to that from Vietnam (only 2.6%), but poor in bicyclogermacrene (1.2%) compared to that from Vietnam.

Both B. robusta and B. yunnanensis leaf oils were rich in (E)-caryophyllene (22.5% and 16.2%, respectively), α-humulene (13.4% and 9.9%), and bicyclogermacrene (8.6% and 8.4%). The leaf oil of B. robusta had a high concentration of germacrene D (20.3%), while B. yunnanensis oil was rich in 9-epi-(E)-caryophyllene (21.2%).

The leaf essential compositions of C. concinna (from two locations), C. impressa, and C. infectoria are listed in Table 3. Sesquiterpene hydrocarbons were abundant in both C. impressa and C. infectoria leaf essential oils, while oxygenated sesquiterpenoids were abundant in C. concinna essential oil from Nam Dong and monoterpene hydrocarbons dominated the leaf oil of C. concinna from Pu Hoat.

Table 3.

Chemical compositions of the leaf essential oils of Cryptocarya species collected in Vietnam.

RIcalc RIdb Compound Percent Composition
C.c. N.D. C.c. P.H. C.im. C.in.
930 927 α-thujene tr 0.1 - -
931 932 α-Pinene 8.2 26.7 4.1 0.8
945 948 α-Fenchene tr - - -
955 953 Camphene 0.2 0.4 0.3 0.6
967 961 Benzaldehyde - - - 0.1
970 971 Sabinene tr - - -
975 978 β-Pinene 9.0 31.3 2.7 0.2
986 989 Myrcene 3.9 11.1 3.9 -
1010 1002 α-Phellandrene - - 2.5 -
1012 1009 δ-3-Carene 0.1 - 0.2 -
1027 1025 p-Cymene 0.1 - 0.6 -
1027 1030 Limonene 2.0 2.8 0.9 0.2
1028 1031 β-Phellandrene tr 0.3 - -
1033 1034 (Z)-β-Ocimene tr 0.6 0.3 -
1043 1046 (E)-β-Ocimene 0.2 8.8 4.0 -
1063 1054 γ-Terpinene - 0.1 - -
1094 1086 Terpinolene - 0.1 0.4 -
1096 1098 Perillene 0.1 - - -
1098 1101 α-Pinene oxide 0.2 - - -
1101 1095 Linalool - 1.1 - 3.4
1117 1116 (E)-4,8-Dimethylnona-1,3,7-triene - - 0.7 -
1137 1139 Nopinone 0.1 - - -
1139 1141 trans-Pinocarveol 0.3 - - -
1144 1145 trans-Verbenol 0.1 - - -
1161 1164 Pinocarvone 0.1 - - -
1194 1195 Myrtenol 0.3 - - -
1206 1201 Decanal - - 1.6 -
1299 1300 Tridecane - - 0.2 -
1308 1305 Undecanal - - 0.2 -
1332 1335 δ-Elemene 0.9 0.2 0.7 5.1
1344 1348 α-Cubebene 0.2 - 0.1 0.3
1366 1371 α-Ylangene 0.4 - - -
1367 1356 Eugenol - - - 0.1
1373 1375 α-Copaene 0.5 - 0.5 0.8
1381 1382 β-Bourbonene 0.2 - - 0.3
1384 1373 α-Ylangene - - - 0.4
1385 1387 β-Cubebene 0.1 - - -
1387 1390 β-Elemene 0.9 0.1 1.2 2.1
1412 1408 Dodecanal - - 10.8 -
1417 1417 (E)-Caryophyllene 12.2 5.3 10.8 1.7
1419 1421 (E)-α-Ionone tr - - -
1424 1430 γ-Maaliene 0.2 - - -
1427 1430 β-Copaene 0.3 - - -
1428 1426 α-Gurjunene - - 0.4 -
1430 1432 trans-α-Bergamotene 1.6 - 0.9 -
1436 1438 Aromadendrene 1.5 0.8 1.8 -
1445 1437 β-Gurjunene - - - 0.8
1449 1455 Valerena-4,7(11)-diene 0.1 - - -
1453 1454 α-Humulene 1.5 0.6 6.3 1.9
1453 1442 α-Maaliene - - 0.2 -
1456 1447 Guaia-6,9-diene - - - 0.6
1457 1458 allo-Aromadendrene 0.1 - - -
1459 1454 Selina-5,11-diene - - 0.2 -
1463 1463 cis-Muurola-4(14),5-diene - - 0.1 -
1466 1454 cis-Muurola-3,5-diene - - - 0.2
1472 1475 γ-Muurolene 1.6 0.4 0.7 1.3
1476 1482 α-Amorphene 0.2 - 0.7 0.7
1478 1480 Germacrene D 0.2 1.3 2.5 55.5
1479 1470 9-epi-(E)-caryophyllene - 0.2 0.6 0.3
1480 1477 trans-Cadina-1(6),4-diene - - - 0.3
1481 1478 γ-Gurjunene 0.1 - - -
1486 1489 β-Selinene 0.5 - 0.5 -
1488 1491 Viridiflorene 0.1 - - -
1489 1490 γ-Amorphene 0.3 - - -
1493 1497 α-Selinene 0.6 - - -
1495 1497 α-Muurolene 0.4 - - -
1504 1508 β-Bisabolene 0.2 - - -
1505 1497 δ-Selinene - - - 0.7
1509 1496 γ-Amorphene - - - 0.3
1512 1515 Cubebol 0.2 - - -
1512 1517 (E,E)-α-Farnesene - - 7.9 -
1514 1511 Bicyclogermacrene - - 18.7 11.4
1515 1518 δ-Cadinene 0.7 0.7 1.1 -
1518 1519 trans-Calamenene 0.3 - - -
1520 1512 γ-Cadinene 1.3 0.4 0.3 -
1521 1515 δ-Amorphene - - 0.2 0.7
1534 1538 α-Cadinene 0.2 - - 0.2
1538 1541 α-Calacorene 0.4 - - -
1538 1531 cis-Calamene - - - 0.2
1546 1549 α-Elemol 0.1 - - 0.2
1547 1540 trans-Cadina-1,4-diene - - - 0.1
1548 1551 Isocaryphyllene oxide 0.9 - - -
1556 1560 Germacrene B 0.1 - 0.7 0.6
1558 1560 (E)-Nerolidol 0.2 - 0.7 0.1
1559 1560 β-Calacorene 0.3 - - -
1560 1551 Selina-3,7(11)-diene - - 0.5 -
1565 1566 1,5-Epoxysalvial-4(14)-ene 0.6 - - -
1575 1578 Spathulenol 12.3 1.1 1.4 0.1
1580 1587 Caryophyllene oxide 21.2 0.4 0.4 0.2
1583 1590 Globulol 0.7 - - -
1583 1579 Dendrolasin - - 0.2 -
1594 1593 Scapanol - - - 0.2
1597 1594 Viridiflorol 0.4 - 0.4 -
1604 1612 5-epi-7-epi-β-Eudesmol 0.2 - - -
1607 1613 Humulene epoxide II 1.5 - 0.3 -
1612 1601 Cubeban-11-ol - - 0.4 -
1614 1611 Tetradecanal - - 1.0 -
1621 1615 Rosifoliol - - 0.4 -
1623 1624 Muurola-4,10(14)-dien-1β-ol 0.2 - - -
1625 1629 iso-Spathulenol 1.8 - - -
1630 1630 Caryophylla-4(12),8(13)-dien-5α-ol 0.9 - - -
1634 1636 Caryophylla-4(12),8(13)-dien-5β-ol 0.6 - - -
1639 1640 τ-Cadinol 0.2 0.4 - 0.3
1641 1644 τ-Muurolol 0.2 - - 0.2
1642 1637 5-Guaien-11-ol - - 0.2 -
1644 1645 δ-Cadinol 0.4 - - -
1646 1635 Muurola-4,10(14)-dien-1β-ol - - - 0.1
1652 1656 β-Eudesmol 0.7 - - -
1653 1655 α-Cadinol 0.9 - 0.1 0.4
1654 1661 cis-Calamenen-10-ol 0.4 - - -
1656 1660 Selin-11-en-4α-ol 0.3 - - -
1662 1662 9-Methoxycalamenene 0.4 - - -
1668 1666 14-Hydroxy-9-epi-(E)-Caryophyllene 0.8 - - -
1955 1958 Palmitic acid 0.2 - - -
2116 2114 Phytol - - 0.4 -
Monoterpene hydrocarbons 23.7 82.3 19.9 1.8
Oxygenated monoterpenoids 1.1 1.1 0.0 3.4
Sesquiterpene hydrocarbons 28.1 10.0 57.6 86.5
Oxygenated sesquiterpenoids 46.1 1.9 4.5 1.8
Diterpenoids 0.0 0.0 0.4 0.0
Others 0.3 0.0 14.5 0.2
Total Identified 99.2 95.3 96.9 93.7

RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column, RIdb = Retention index from the databases [35,36,37], C.c. N.D. = Cryptocarya concinna from Nam Dong, C.c. P.H. = Cryptocarya concinna from Pu Hoat, C.im. = Cryptocarya impressa, C.in. = Cryptocarya infectoria, tr = trace.

The leaf essential oils of C. concinna from two different collection sites were qualitatively similar, but quantitatively different. That is, the abundant components in the Nam Dong sample were also observed in the Pu Hoat sample, and vice versa. Thus, for example, α-pinene, β-pinene, and myrcene were abundant in the Pu Hoat sample (26.7%, 31.3%, and 11.1%, respectively) but were found in lower concentrations in the sample from Nam Dong (8.2%, 9.0%, and 3.9%). Conversely, the sesquiterpenoids, (E)-caryophyllene, spathulenol, and caryophyllene oxide were abundant in the sample from Nam Dong (12.2%, 12.3%, and 21.2%, respectively), but less concentrated in the Pu Hoat sample (5.3%, 1.1%, and 0.4%).

The major components of the leaf essential oil of C. impressa were bicyclogermacrene (18.7%), (E)-caryophyllene (10.8%), dodecanal (10.8%), (E,E)-α-farnesene (7.9%), and α-humulene (6.3%). Germacrene D (55.5%) dominated the essential oil composition of C. infectoria, which was also composed of bicyclogermacrene (11.4%) and δ-elemene (5.1%) as major components.

The chemical compositions of the leaf essential oils of L. viridis, M. balansae, M. grandifolia, N. ellisoidea, and P. angustifolia are compiled in Table 4.

Table 4.

Chemical compositions of the leaf essential oils of Litsea viridis, Machilus balansae, Machilus grandifolia, Neolitsea ellipsoidea, and Phoebe angustifolia collected in Vietnam.

RIcalc RIdb Compound Percent Composition
L.v. M.b. M.g. N.e. P.a.
921 923 Tricyclene - - - - 0.1
923 927 α-Thujene - - - - 0.1
934 933 α-Pinene 11.1 4.4 0.3 0.2 26.9
949 948 α-Fenchene 0.1 - - - 0.1
950 953 Camphene 0.7 0.3 0.3 - 6.1
971 972 Sabinene - - - - 0.1
979 978 β-Pinene 8.3 1.2 0.4 0.2 20.8
979 978 1-Octen-3-ol - - 0.1 - -
984 984 6-Methylhept-5-en-2-one - - - - 0.1
990 991 Myrcene 0.4 0.4 - 0.5 1.5
1008 1006 α-Phellandrene 0.1 - - - 0.1
1022 1014 α-Terpinene 0.2 - - - -
1026 1025 p-Cymene 0.2 - 1.0 - 5.0
1030 1030 Limonene 1.8 0.4 1.3 0.4 3.1
1030 1031 β-Phellandrene - - 0.1 - 0.2
1031 1032 1,8-Cineole - - 0.1 - 0.4
1034 1034 (Z)-β-Ocimene 0.1 0.1 - 3.7 0.3
1046 1046 (E)-β-Ocimene 0.3 4.5 - 87.6 0.1
1063 1054 γ-Terpinene 0.5 - - - -
1069 1069 cis-Linalool oxide (furanoid) - - 0.4 - -
1086 1086 trans-Linalool oxide (furanoid) - - 0.4 - -
1089 1086 Terpinolene 0.4 - - - tr
1090 1093 p-Cymenene - - - - 0.1
1099 1101 α-Pinene oxide - - - - 0.1
1100 1101 Linalool - - 3.3 1.3 0.1
1105 1100 Nonanal 0.2 0.2 - - -
1117 1113 (E)-4,8-Dimethylnona-1,3,7-triene 0.4 0.4 - - -
1119 1119 endo-Fenchol - - 0.1 - 0.1
1124 1124 cis-p-Menth-2-en-1-ol - - 0.1 - -
1141 1141 trans-Pinocarveol - - 0.1 - 0.3
1142 1142 trans-p-Menth-2-en-1-ol - - 0.1 - -
1143 1140 (E)-Myroxide - - - 0.2 -
1145 1145 trans-Verbenol - - - - 0.1
1155 1156 Camphene hydrate - - 0.1 - 0.1
1163 1164 Pinocarvone - - - - 0.1
1172 1173 Borneol - - 0.1 - 0.5
1183 1184 Terpinen-4-ol 0.2 - 0.1 - 0.1
1186 1184 (3Z)-Hexenyl butanoate - - - 0.3 -
1188 1187 Cryptone - - 0.5 - -
1196 1195 α-Terpineol - - 0.3 - 0.6
1206 1208 Decanal 14.4 - - - 0.1
1220 1223 trans-Carveol - - 0.1 - -
1245 1246 Carvone - - 0.1 - -
1275 1275 trans-Ascaridol glycol - - 0.1 - -
1283 1285 Bornyl acetate - - - - 1.4
1299 1300 Tridecane - 0.3 - - -
1330 1328 iso-Dihydro carvyl acetate - - - - 0.2
1348 1335 δ-Elemene - 1.7 - - -
1358 1361 Neryl acetate - - - - 0.1
1360 1345 α-Cubebene - 0.1 - - -
1367 1367 Cyclosativene - - 0.2 - -
1377 1378 Geranyl acetate - - 0.1 - -
1377 1372 iso-Ledene 0.3 - - - 0.1
1378 1375 α-Copaene 0.6 0.5 1.7 - 0.3
1390 1379 Methyl (E)-cinnamate 1.5 - - - -
1395 1390 β-Elemene 1.9 1.0 - 0.3 0.1
1404 1406 α-Gurjunene - - 0.1 - 0.2
1412 1412 Dodecanal 2.0 - - - -
1418 1416 cis-α-Bergamotene 0.6 - - - 0.2
1424 1417 (E)-Caryophyllene 0.3 8.5 0.1 0.4 5.3
1425 1430 γ-Maaliene - - - - 0.1
1428 1422 α-Gurjunene - 0.5 - - -
1434 1432 β-Copaene - 0.2 - - -
1436 1434 β-Gurjunene (= Calarene) - 0.6 - - 0.1
1438 1432 trans-α-Bergamotene 0.6 0.6 - - 0.8
1442 1438 α-Maaliene - 0.3 - - 0.1
1443 1438 Aromadendrene 3.0 4.5 1.0 0.3 1.8
1444 1445 Selina-5,11-diene - - 0.1 - 0.2
1445 1445 epi-β-Santalene - - - - 0.1
1445 1437 γ-Elemene 1.0 - - - -
1453 1453 cis-Muurola-3,5-diene 0.2 0.2 - - -
1454 1454 α-Humulene 0.9 1.4 - - 0.6
1455 1452 (E)-β-Farnesene 0.3 - - - 0.3
1457 1459 β-Santalene - - - - 0.3
1458 1458 allo-Aromadendrene - - 0.2 - 0.1
1466 1467 trans-Muurola-3,5-diene - 0.5 - - -
1471 1476 γ-Gurjunene - - - - 0.1
1471 1476 Selina-4,11-diene - - 0.4 - -
1479 1478 γ-Muurolene 0.5 0.8 0.6 0.1 0.1
1479 1474 9-epi-(E)-caryophyllene 0.8 0.8 - - -
1482 1483 trans-β-Bergamotene - - - - 0.2
1485 1482 ar-Curcumene 0.4 - - - tr
1486 1482 α-Amorphene - 0.6 0.1 - -
1488 1484 γ-Curcumene 0.4 - - - -
1489 1491 Viridiflorene 0.2 - - - 1.2
1493 1487 β-Selinene 1.2 0.4 2.7 0.6 0.1
1497 1497 α-Muurolene - - 0.5 - 0.1
1498 1501 (Z)-α-Bisabolene - - - - 0.1
1498 1496 Germacrene D 1.0 3.1 - 0.1 -
1503 1497 Bicyclogermacrene 25.5 41.5 - - 1.3
1503 1497 α-Selinene - - 1.3 0.5 -
1505 1500 δ-Selinene 0.9 0.5 - - -
1506 1508 β-Bisabolene - - - - 0.3
1508 1511 (Z)-γ-Bisabolene - - - - 0.1
1512 1511 (E,E)-α-Farnesene - 1.8 - - -
1517 1512 γ-Cadinene 0.3 0.3 0.5 - 0.2
1520 1519 trans-Calamenene - - 0.8 - 0.1
1520 1517 β-Curcumene 0.5 - - - -
1521 1516 δ-Amorphene 0.2 0.3 - - -
1523 1518 δ-Cadinene 0.9 0.7 0.2 0.2 0.2
1542 1531 (E)-γ-Bisabolene 1.0 - - - -
1547 1551 Elemicin - - 1.2 - -
1550 1547 (E)-α-Bisabolene 0.4 - - - -
1555 1555 (Z)-Dihydronerolidol - - 2.4 - -
1560 1545 Selina-3,7(11)-diene 0.4 - - - -
1564 1561 (E)-Nerolidol 1.1 8.7 22.7 - 3.9
1568 1568 Maaliol - - - - 0.1
1569 1568 Palustrol - - - - 0.1
1569 1570 (E)-Dihydronerolidol - - 2.8 - -
1575 1575 Caryolan-8-ol - - 0.8 - -
1577 1568 Germacrene B 1.3 0.8 - - -
1578 1578 Spathulenol 0.9 0.6 - 0.6 5.4
1585 1590 Globulol - - 10.2 - 1.7
1589 1587 Caryophyllene oxide - - 3.7 0.1 1.5
1596 1594 Viridiflorol 0.4 1.6 0.7 - 0.7
1601 1599 Cubeban-11-ol - 1.0 0.6 - 0.2
1604 1605 Ledol - - 0.7 - 0.1
1609 1613 Humulene epoxide II - - 1.5 - 0.1
1611 1609 Rosifoliol 0.4 0.4 0.2 - 0.2
1615 1617 Guaiol 0.8 - - - -
1627 1631 1-epi-Cubenol - - 0.8 - -
1632 1629 iso-Spathulenol - - - - 0.4
1642 1637 5-Guaien-11-ol - 0.5 - - -
1646 1645 α-Muurolol (= δ-Cadinol) - - 1.5 - 0.1
1647 1643 τ-Cadinol - 0.2 0.7 - 0.3
1649 1645 τ-Muurolol - 0.1 1.3 - 0.1
1655 1655 α-Cadinol 0.5 0.4 2.9 - 0.2
1658 1660 Selin-11-en-4α-ol - 0.3 6.7 - -
1665 1670 trans-Calamenen-10-ol - - 1.3 - -
1671 1665 β-Eudesmol 0.6 - - - -
1674 1676 Mustakone - - 0.6 - -
1674 1670 α-Eudesmol 0.3 - - - -
1683 1672 epi-β-Bisabolol 0.2 - - - -
1702 1701 10-nor-Calamenen-10-one - - 0.4 - -
Monoterpene hydrocarbons 24.2 11.3 3.3 92.6 64.5
Oxygenated monoterpenoids 0.2 0.0 6.2 1.5 4.3
Sesquiterpene hydrocarbons 45.6 72.2 10.6 2.5 14.8
Oxygenated sesquiterpenoids 5.2 13.8 62.5 0.7 15.3
Others 18.5 0.9 1.3 0.3 0.1
Total Identified 93.7 98.2 84.0 97.6 99.1

RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column, RIdb = Retention index from the databases [35,36,37], L.v. = Litsea viridis, M.b. = Machilus balansae, M.g. = Machilus grandifolia, N.e. = Neolitsea ellisoidea, P.a. = Phoebe angustifolia.

The major components in L. viridis leaf essential oil were bicyclogermacrene (25.5%), decanal (14.4%), α-pinene (11.1%), and β-pinene (8.3%). This is the first report on the essential oil from this plant.

Although M. balansae and M. grandifolia are considered conspecific, the essential oil compositions showed pronounced differences. The leaf oil of M. balansae was dominated by bicyclogermacrene (41.5%), which was not detected in the essential oil of M. grandifolia. Likewise, the sesquiterpene alcohols (E)-nerolidol and globulol were abundant constituents in M. grandifolia (22.7% and 10.2%, respectively), but (E)-nerolidol was much lower in M. balansae (8.7%) and globulol was not detected. The taxonomy of these two plants deserves closer scrutiny.

The leaf essential oil of N. ellipsoidea was dominated by (E)-β-ocimene (87.6%). (E)-β-Ocimene was also found to be the dominant compound (85.6%) in the leaf essential oil of N. polycarpa from Vietnam [32], and one of the major components in the leaf essential oils of N. sericea from Korea (13.3%) [38], N. variabillima from Taiwan (13.4%) [39], and N. aciculata from Korea (9.7%) [40]. In contrast, (E)-β-ocimene was only a minor component in the leaf oils of N. australiensis, N. brassii, or N. dealbata from Australia [41], and N. pallens from India [42], and was not observed in N. foliosa leaf essential oil from India [43].

The leaf essential oil of P. angustifolia from Pù Hoạt Nature Reserve (northern Vietnam) in this study was rich in α-pinene (26.9%), β-pinene (20.8%), spathulenol (5.4%), (E)-caryophyllene (5.3%), and p-cymene (5.0%), which differs markedly from a previous study on the leaf essential oil from Sao La Nature Reserve (central Vietnam). The previous work reported spathulenol (17.0%), palmitic acid (13.0%), sabinene (6.4%), bicyclogermacrene (5.9%), and artemisia triene (5.1%) to be the major components [32]. There is apparently much variation in the volatile components of this plant.

2.2. Larvicidal Activity

The 24-h and 48-h larvicidal activities of Lauraceae leaf essential oils from Vietnam are summarized in Table 5 and Table 6. Note that several essential oils were not tested due to lack of sufficient essential oil.

Table 5.

Twenty-four-hour larvicidal activities of Lauraceae leaf essential oils from Vietnam.

Lauraceae species LC50 LC90 χ2 p
Aedes aegypti
Beilschmiedia erythrophloia n.t. n.t. --- ---
Beilschmiedia robusta 24.29 (22.36−26.76) 35.22 (31.70−41.19) 0.1421 0.706
Beilschmiedia yunnanensis n.t. n.t. --- ---
Cryptocarya concinna (Nam Dong) 32.54 (30.21−35.36) 42.94 (39.51−47.91) 0.5537 0.758
Cryptocarya concinna (Pu Hoat) 23.01 (20.29−25.83) 40.92 (36.50−47.77) 9.298 0.010
Cryptocarya impressa n.t. n.t. --- ---
Cryptocarya infectoria 21.43 (18.85−24.29) 41.88 (37.16−48.79) 13.58 0.004
Litsea viridis n.t. n.t. --- ---
Machilus balansae n.t. n.t. --- ---
Machilus grandifolia 20.23 (18.61−21.93) 29.29 (26.85−33.10) 0.001037 0.999
Neolitsea ellipsoidea 6.587 (1.478−9.219) 14.00 (10.88−17.71) 0.000224 1.000
Phoebe angustifolia 24.29 (22.36−26.76) 35.22 (31.70−41.19) 0.1421 0.931
Aedes albopictus
Beilschmiedia erythrophloia n.t. n.t. --- ---
Beilschmiedia robusta n.t. n.t. --- ---
Beilschmiedia yunnanensis n.t. n.t. --- ---
Cryptocarya concinna (Nam Dong) 34.21 (31.81−37.04) 43.97 (40.67−48.59) 4.651 0.098
Cryptocarya concinna (Pu Hoat) n.t. n.t. --- ---
Cryptocarya impressa n.t. n.t. --- ---
Cryptocarya infectoria 61.34 (56.76−67.52) 81.29 (73.86−93.08) 3.000 0.223
Litsea viridis n.t. n.t. --- ---
Machilus balansae n.t. n.t. --- ---
Machilus grandifolia 16.48 (14.82−18.02) 25.00 (22.90−28.16) 1.86 × 10−5 1.000
Neolitsea ellipsoidea n.t. n.t. --- ---
Phoebe angustifolia 40.18 (36.12−44.88) 69.56 (62.08−80.81) 31.94 0.000
Culex quinquefasciatus
Beilschmiedia erythrophloia n.t. n.t. --- ---
Beilschmiedia robusta n.t. n.t. --- ---
Beilschmiedia yunnanensis n.t. n.t. --- ---
Cryptocarya concinna (Nam Dong) 56.28 (52.14−62.30) 75.33 (67.95−88.18) 0.5537 0.758
Cryptocarya concinna (Pu Hoat) n.t. n.t. --- ---
Cryptocarya impressa n.t. n.t. --- ---
Cryptocarya infectoria 10.82 (6.86−14.27) 53.37 (41.49−79.45) 18.66 0.000
Litsea viridis n.t. n.t. --- ---
Machilus balansae n.t. n.t. --- ---
Machilus grandifolia 13.59 (11.51−15.24) 22.48 (20.34−25.94) 6.1 × 10−6 1.000
Neolitsea ellipsoidea 7.465 (3.904−9.956) 19.84 (16.52−25.64) 0.1427 0.931
Phoebe angustifolia 20.70 (19.36−21.96) 26.60 (25.10−28.63) 0.000 1.000

n.t. = not tested due to insufficient essential oil.

Table 6.

Forty-eight-hour larvicidal activities of Lauraceae leaf essential oils from Vietnam.

Lauraceae species LC50 LC90 χ2 p
Aedes aegypti
Beilschmiedia erythrophloia n.t. n.t. --- ---
Beilschmiedia robusta 22.00 (19.81−24.45) 35.64 (31.82−41.93) 0.6316 0.427
Beilschmiedia yunnanensis n.t. n.t. --- ---
Cryptocarya concinna (Nam Dong) 32.03 (29.72−34.84) 42.58 (39.12−47.64) 0.1879 0.910
Cryptocarya concinna (Pu Hoat) 16.22 (12.81−18.90) 33.46 (29.37−40.63) 1.028 0.598
Cryptocarya impressa n.t. n.t. --- ---
Cryptocarya infectoria 18.94 (16.39−21.65) 39.12 (34.54−45.97) 13.16 0.004
Litsea viridis n.t. n.t. --- ---
Machilus balansae n.t. n.t. --- ---
Machilus grandifolia 16.17 (14.61−17.64) 24.03 (22.07−26.93) 1.4 × 10−6 1.000
Neolitsea ellipsoidea 4.038 (0.004−7.585) 11.12 (2.12−14.74) 0.004798 0.998
Phoebe angustifolia 22.46 (20.59−24.69) 33.44 (30.10−39.07) 0.06258 0.969
Aedes albopictus
Beilschmiedia erythrophloia n.t. n.t. --- ---
Beilschmiedia robusta n.t. n.t. --- ---
Beilschmiedia yunnanensis n.t. n.t. --- ---
Cryptocarya concinna (Nam Dong) 30.19 (27.92−33.28) 40.26 (36.49−46.42) 1.922 0.383
Cryptocarya concinna (Pu Hoat) n.t. n.t. --- ---
Cryptocarya impressa n.t. n.t. --- ---
Cryptocarya infectoria 58.80 (54.40−64.96) 78.50 (71.00−90.93) 1.282 0.527
Litsea viridis n.t. n.t. --- ---
Machilus balansae n.t. n.t. --- ---
Machilus grandifolia 15.45 (13.62−17.07) 24.47 (22.28−27.88) 3.69 × 10−5 1.000
Neolitsea ellipsoidea n.t. n.t. --- ---
Phoebe angustifolia 35.28 (31.29−39.67) 64.97 (57.71−76.08) 23.97 0.000
Culex quinquefasciatus
Beilschmiedia erythrophloia n.t. n.t. --- ---
Beilschmiedia robusta n.t. n.t. --- ---
Beilschmiedia yunnanensis n.t. n.t. --- ---
Cryptocarya concinna (Nam Dong) 41.89 (37.88−46.65) 69.84 (62.41−80.77) 5.550 0.062
Cryptocarya concinna (Pu Hoat) n.t. n.t. --- ---
Cryptocarya impressa n.t. n.t. --- ---
Cryptocarya infectoria 0.402 (0.000−2.947) 11.39 (0.04−21.64) 6.397 0.041
Litsea viridis n.t. n.t. --- ---
Machilus balansae n.t. n.t. --- ---
Machilus grandifolia 11.56 (9.13−13.14) 19.24 (17.25−23.07) 0.000 1.000
Neolitsea ellipsoidea 4.650 (0.061−7.988) 11.89 (4.63−15.36) 0.002409 0.999
Phoebe angustifolia 12.21 (8.66−14.46) 24.28 (21.55−29.24) 0.002467 0.999

n.t. = not tested due to insufficient essential oil.

Of the Lauraceae essential oils screened for larvicidal activity, N. ellipsoidea showed the greatest activity against Ae. aegypti with 24-h and 48-h LC50 values of 6.59 and 4.04 μg/mL, respectively. Similar larvicidal activities were observed against Cx. quinquefasciatus (24-h and 48-h LC50 = 7.47 and 4.65 μg/mL) for this essential oil. Interestingly, although the larvicidal activities of C. infectoria leaf essential oil were not as impressive against Ae. aegypti or Ae. albopictus, the essential oil did show much better activity against Cx. quinquefasciatus (24-h LC50 = 10.8 μg/mL), particularly after 48 h of exposure (48-h LC50 = 0.402 μg/mL). Unfortunately, the limited quantities available for several of the essential oils precluded larvicidal screening. However, the larvicidal activity of the untested essential oils will be investigated in future studies.

The major component of N. ellipsoidea leaf essential oil, (E)-β-ocimene (87.6%), is not likely responsible for the observed larvicidal activity. The (E)-β-ocimene-rich (94.8%) essential oil of Porophyllum ruderale showed an LC50 of 173.7 μg/mL against Ae. aegypti [44]. Likewise, the essential oil of Syzygium jambolana, with (Z)-β-ocimene (27.2%) and (E)-β-ocimene (12.2%), was inactive against Ae. aegypti (LC50 = 433 μg/mL) [45]. The excellent larvicidal activity of N. ellipsoidea essential oil can likely be attributed to synergistic effects involving minor components.

The leaf essential oil of C. infectoria was rich in the germacrene sesquiterpenes germacrene D (55.5%) and bicyclogermacrene (11.4%), and these compounds may be responsible for the larvicidal activity. Germacrene D has demonstrated notable larvicidal activity against Ae. aegypti and Cx. quinquefasciatus (LC50 = 18.8 and 21.3 μg/mL, respectively) [46], and bicyclogermacrene was larvicidal against Ae. albopictus and Cx. tritaeniorhynchus (LC50 = 11.1 and 12.5 μg/mL, respectively) [47].

The marginal larvicidal activity of C. concinna from Nam Dong is consistent with the marginal activities observed for the major components. (E)-Caryophyllene, caryophyllene oxide, and α-pinene have shown modest mosquito larvicidal activities [48]. β-Pinene, however, has been shown to be more active than α-pinene: (–)-β-pinene (LC50 = 65 μg/mL against Cx. quinquefasciatus) [49], (LC50 = 15.4 μg/mL against Ae. aegypti) [50]; (+)-β-pinene (LC50 = 22.4 μg/mL against Ae. aegypti) [49]. Spathulenol-rich essential oils have also shown only marginal larvicidal activities. The stem essential oil of Tephrosia toxicaria (42.3% spathulenol) had an LC50 of 63.1 μg/mL against Ae. aegypti [51], while Guarea sylvatica essential oil from branches (14.3% spathulenol) showed LC50 against Ae. aegypti of 274 μg/mL [52].

2.3. Antimicrobial Activity

Several of the leaf essential oils of the Lauraceae were screened for antimicrobial activity (Table 7). All of the essential oils tested showed good antibacterial activities against the Gram-positive organisms. Both L. viridis and N. ellipsoidea leaf essential oils demonstrated particularly notable activities against E. faecalis and B. cereus with minimum inhibitory concentration (MIC) values of 16 μg/mL. The leaf essential oil of C. impressa also showed excellent anticandidal activity against C. albicans with an MIC of 16 μg/mL.

Table 7.

Antimicrobial activities of leaf essential oils of Lauraceae from Vietnam.

Sample Gram (+) Gram (−) Yeast
Enterococcus faecalis
ATCC 299212
Staphylococcus aureus
ATCC 25923
Bacillus
cereus
ATCC 14579
Escherichia coli
ATCC 25922
Pseudomonas
aeruginosa ATCC 27853
Salmonella enterica
ATCC 13076
Candida albicans ATCC 10231
MIC (µg/mL)
Beilschmiedia erythrophloia 32 64 64 n.a. n.a. n.a. 128
Beilschmiedia robusta 64 64 n.a. 64 n.a. n.a. n.a.
Beilschmiedia yunnanensis 64 64 64 n.a. n.a. n.a. 256
Cryptocarya concinna
(Pu Hoat)
32 128 64 n.a. 128 256 64
Cryptocarya impressa 64 64 128 64 n.a. n.a. 16
Cryptocarya infectoria 128 64 128 n.a. 64 128 64
Litsea viridis 16 64 16 n.a. n.a. n.a. 128
Machilus balansae 64 128 128 n.a. n.a. n.a. n.a.
Neolitsea ellipsoidea 16 32 16 128 n.a. n.a. 128
Streptomycin 256 256 128 32 256 128 n.t.
Nistatin n.t. n.t. n.t. n.t. n.t. n.t. 8
Cyclohexamide n.t. n.t. n.t. n.t. n.t. n.t. 32
IC50 (µg/mL)
Beilschmiedia erythrophloia 10.34 20.34 34.78 n.a. n.a. n.a. 56.78
Beilschmiedia robusta 20.76 18.67 n.a. 17.88 n.a. n.a. n.a.
Beilschmiedia yunnanensis 17.99 20.34 24.67 n.a. n.a. n.a. 100.34
Cryptocarya concinna
(Pu Hoat)
8.99 40.67 18.99 n.a. 48.98 145.34 25.67
Cryptocarya impressa 20.34 28.77 47.67 18.78 n.a. n.a. 5.89
Cryptocarya infectoria 65.33 32.67 63.56 n.a. 33.22 65.66 32.22
Litsea viridis 2.45 18.99 7.67 n.a. n.a. n.a. 56.78
Machilus balansae 18.78 50.35 45.77 n.a. n.a. n.a. n.a.
Neolitsea ellipsoidea 3.99 7.98 5.67 57.78 n.a. n.a. 56.67

n.a. = not active; n.t. = not tested.

The major component of L. viridis leaf oil, bicyclogermacrene, has shown antibacterial activity against B. cereus [53]. Likewise, β-pinene was shown to be active against E. faecalis [54] as well as several other Gram-positive organisms [55]. Similarly, α-pinene has activity against several Gram-positive bacteria [55,56]. Decanal has also exhibited antibacterial activity [57,58]. Thus, the major components of L. viridis leaf essential oil, bicyclogermacrene, decanal, α-pinene, and β-pinene, can account for the observed antibacterial activity.

(E)-β-Ocimene dominated the leaf essential oil of N. ellipsoidea, but this compound has demonstrated relatively marginal antibacterial activity [55]. Synergistic interactions of (E)-β-ocimene with minor essential oil components may play a role in the antibacterial activity of N. ellipsoidea leaf oil.

The components responsible for the anticandidal activity of C. impressa leaf essential oil are not obvious. Neither (E)-caryophyllene nor α-humulene have shown strong anti-Candida albicans activity [54,56]. The anticandidal activity of bicyclogermacrene itself has apparently not been determined. However, essential oils rich in both bicyclogermacrene and (E)-caryophyllene do not exhibit notable activity against Candida spp. [59,60]. Dodecanal, however, has shown activity against C. albicans with an MIC of 125 μg/mL [61].

3. Materials and Methods

3.1. Plant Collection

Leaves were collected from wild-growing trees in north-central Vietnam. Plants were identified by Do Ngoc Dai and voucher specimens (Table 1) have been deposited in the plant specimen room, Faculty Agriculture, Forestry and Fishery, Nghe An, College of Economics. In each case, the fresh leaves were chopped and 2.0 kg was subjected to hydrodistillation using a Clevenger-type apparatus.

3.2. Analysis of the Oils

Gas chromatographic (GC) analysis was performed on an Agilent Technologies HP 7890A Plus Gas chromatograph equipped with a FID and fitted with HP-5ms column (30 m × 0.25 mm, film thickness 0.25 μm, Agilent Technologies, Santa Clara, CA, USA). The analytical conditions were: carrier gas H2 (1 mL/min), injector temperature (PTV: programmable temperature vaporization) 250 °C, detector temperature 260 °C, column temperature programmed from 60 °C (2 min hold) to 220 °C (10 min hold) at 4 °C/min. Samples were injected using a split mode with a split ratio of 10:1. The volume injected was 1.0 μL. Inlet pressure was 6.1 kPa.

An Agilent Technologies (Santa Clara, CA, USA) HP 7890A Plus Chromatograph fitted with a fused silica capillary HP-5ms column (30 m × 0.25 mm, film thickness 0.25 μm) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC/MS analysis, under the same conditions as those used for GC analysis. The conditions were the same as described above with He (1 mL/min) as carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; acquisitions scan mass range of 35–350 amu at a sampling rate of 1.0 scan/s. Compound identification was carried out by comparison of the MS fragmentation patterns and calculated retention indices with those available in the databases [35,36,37] and, when available, with standard substances.

3.3. Mosquito Larvicidal Assays

Larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus were carried out as previously described [62]; LC50 values, LC90 values, and 95% confidence limits were determined by log-probit analysis using Minitab® 19 (Minitab, LLC, State College, PA, USA).

3.4. Antimicrobial Assays

The bacterial growth inhibition of the essential oils was evaluated using three strains of Gram-positive test bacteria, Enterococcus faecalis (ATCC299212), Staphylococcus aureus (ATCC25923), Bacillus cereus (ATCC14579), three strains of Gram-negative test bacteria, Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC27853), Salmonella enterica (ATCC13076) and one strain of yeast, Candida albicans (ATCC 10231). Minimum inhibitory concentration (MIC) and median inhibitory concentration (IC50) values were measured by the microdilution broth susceptibility assay as previously described [62].

4. Conclusions

Of the eleven species of Lauraceae examined in this work, the leaf essential oil of Neolitsea ellipsoidea, dominated by (E)-β-ocimene, showed excellent larvicidal activity against Aedes aegypti and antibacterial activity against Enterococcus faecalis and Bacillus cereus; Cryptocarya infectoria leaf essential oil, rich in germacrene D and bicyclogermacrene, showed excellent larvicidal activity on Culex quinquefasciatus and anticandidal activity against Candida albicans. The leaf essential oil of Litsea viridis, which was rich in bicyclogermacrene, also showed good antibacterial properties. The biological properties of these Lauraceae essential oils suggest that they may serve as potential “green” alternatives, as also described for Lamiaceae family plants [63], for use as insect control or antimicrobial agents.

Acknowledgments

W.N.S. participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Author Contributions

Conceptualization, D.N.D. and W.N.S.; methodology, D.N.D., L.T.H., D.T.M.C., N.H.H., I.A.O., W.N.S.; validation, D.N.D. and W.N.S.; formal analysis, L.T.H., W.N.S.; investigation, N.T.C., L.T.H., N.T.Y., D.T.M.C., I.A.O.; resources, D.N.D.; data curation, W.N.S.; writing—original draft preparation, W.N.S., D.N.D.; writing—review and editing, D.N.D., L.T.H., W.N.S.; supervision, D.N.D.; project administration, D.N.D.; funding acquisition, D.N.D. All authors have read and agreed to the published version of the manuscript.

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 106.03-2018.02.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Van der Werff H. A synopsis of the genus Beilschmiedia (Lauraceae) in Madagascar. Adansonia. 2003;25:77–92. [Google Scholar]
  • 2.Schroeder C.A. Some useful plants of the botanical family Lauraceae. Calif. Avocado Soc. Yearb. 1976;59:30–34. [Google Scholar]
  • 3.Krochmal A. Medicinal plants and Appalachia. Econ. Bot. 1968;22:332–337. doi: 10.1007/BF02908128. [DOI] [Google Scholar]
  • 4.Tucker A.O., Maciarello M.J., Burbage P.W., Sturtz G. Spicebush [Lindera benzoin (L.) Blume var. benzoin, Lauraceae]: A tea, spice, and medicine. Econ. Bot. 1994;48:333–336. doi: 10.1007/BF02862336. [DOI] [Google Scholar]
  • 5.Rhind J.P. Essential Oils: A Comprehensive Handbook for Aromatic Therapy. Singing Dragon; London, UK: 2020. [Google Scholar]
  • 6.May P.H., Barata L.E.S. Rosewood exploitation in the Brazilian Amazon: Options for sustainable production. Econ. Bot. 2004;58:257–265. doi: 10.1663/0013-0001(2004)058[0257:REITBA]2.0.CO;2. [DOI] [Google Scholar]
  • 7.Chen W., Vermaak I., Viljoen A. Camphor—A fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon: A review. Molecules. 2013;18:5434–5454. doi: 10.3390/molecules18055434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kong D.-G., Zhao Y., Li G.-H., Chen B.-J., Wang X.-N., Zhou H.-L., Lou H.-X., Ren D.-M., Shen T. The genus Litsea in traditional Chinese medicine: An ethnomedical, phytochemical and pharmacological review. J. Ethnopharmacol. 2015;164:256–264. doi: 10.1016/j.jep.2015.02.020. [DOI] [PubMed] [Google Scholar]
  • 9.Missouri Botanical Garden Tropicos. [(accessed on 14 March 2020)]; Available online: www.tropicos.org.
  • 10.Beilschmiedia Nees. [(accessed on 16 March 2020)]; Available online: https://www.discoverlife.org/mp/20q?search=Beilschmiedia.
  • 11.Salleh W.M.N.H.W., Ahmad F., Yen K.H., Zulkifli R.M. A review on chemical constituents and biological activities of the genus Beilschmiedia (Lauraceae) Trop. J. Pharm. Res. 2015;14:2139–2150. doi: 10.4314/tjpr.v14i11.28. [DOI] [Google Scholar]
  • 12.Wu C.Y., Raven P.H., Hong D.Y. Flora of China. [(accessed on 14 March 2020)]; Available online: http://www.efloras.org/volume_page.aspx?volume_id=2007&flora_id=2.
  • 13.Chen J.-J., Kuo W.-L., Sung P.-J., Chen I.-S., Cheng M.-J., Lim Y.-P., Liao H.-R., Chang T.-H., Wei D.-C., Chen J.-Y. Beilschamide: A new amide, and cytotoxic constituents of Beilschmiedia erythrophloia. Chem. Nat. Compd. 2015;51:302–305. doi: 10.1007/s10600-015-1265-0. [DOI] [Google Scholar]
  • 14.Dao N.K. Flora of Vietnam, Lauraceae Juss. Volume 17 Publishing House for Science & Technology; Hanoi, Vietnam: 2017. [Google Scholar]
  • 15.Yang P.-S., Cheng M.-J., Chen J.-J., Chen I.-S. Two new endiandric acid analogs, a new benzopyran, and a new benzenoid from the root of Beilschmiedia erythrophloia. Helv. Chim. Acta. 2008;91:2130–2138. doi: 10.1002/hlca.200890229. [DOI] [Google Scholar]
  • 16.Yang P.-S., Cheng M.-J., Peng C.-F., Chen J.-J., Chen I.-S. Endiandric acid analogues from the roots of Beilschmiedia erythrophloia. J. Nat. Prod. 2009;72:53–58. doi: 10.1021/np800504w. [DOI] [PubMed] [Google Scholar]
  • 17.Su Y.-C., Ho C.-L. Composition and in-vitro cytotoxic activities of the leaf essential oil of Beilschmiedia erythrophloia from Taiwan. Nat. Prod. Commun. 2013;8:143–144. [PubMed] [Google Scholar]
  • 18.Allen C.K. Studies in the Lauraceae, V: Some eastern Asiatic species of Beilschmiedia and related genera. J. Arnold Arbor. 1942;23:444–463. doi: 10.5962/bhl.part.18684. [DOI] [Google Scholar]
  • 19.Mabberley D.J. Mabberley’s Plant-Book. 3rd ed. Cambridge University Press; Cambridge, UK: 2008. [Google Scholar]
  • 20.Chang H.-S., Tang J.-Y., Yen C.-Y., Huang H.-W., Wu C.-Y., Chung Y.-A., Wang H.-R., Chen I.-S., Huang M.-Y., Chang H.-W. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complement. Altern. Med. 2016;16:94. doi: 10.1186/s12906-016-1073-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Yang B.-Y., Shi Y.-M., Luo J.-G., Kong L.-Y. Two new arylalkenyl α,β-unsaturated δ-lactones with cytotoxic activity from the leaves and twigs of Cryptocarya concinna. Nat. Prod. Res. 2017;31:1409–1413. doi: 10.1080/14786419.2016.1255886. [DOI] [PubMed] [Google Scholar]
  • 22.Huang W., Zhang W.-J., Cheng Y.-Q., Jiang R., Wei W., Chen C.-J., Wang G., Jiao R.-H., Tan R.-X., Ge H.-M. Cytotoxic and antimicrobial flavonoids from Cryptocarya concinna. Planta Med. 2014;80:925–930. doi: 10.1055/s-0034-1368613. [DOI] [PubMed] [Google Scholar]
  • 23.Kew Science Cryptocarya impressa Miq. [(accessed on 16 March 2020)]; Available online: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:463940-1#source-KBD.
  • 24.De Kok R.P.J. A revision of Cryptocarya (Lauraceae) from Thailand and Indochina. Gard. Bull. Singapore. 2015;67:309–350. doi: 10.3850/S2382581215000277. [DOI] [Google Scholar]
  • 25.De Kok R.P.J. A revision of Cryptocarya R. Br. (Lauraceae) of Peninsular Malaysia. Kew Bull. 2016;71:7. doi: 10.1007/s12225-016-9613-1. [DOI] [Google Scholar]
  • 26.De Kok R.P.J. Two new records of Litsea (Lauraceae) from Singapore and the lectotypification of twenty-two names from several Lauraceae genera. Gard. Bull. Singapore. 2017;69:167–177. doi: 10.26492/gbs69(2).2017-02. [DOI] [Google Scholar]
  • 27.Chen Y.-C., Chen I.-S., Guh J.-H. Cryptocaryone, isolated from Cryptocarya infectoria, induces apoptosis through extrinsic pathways: The involvement of death receptor clustering and FADD/caspase-8 activation cascades. Clin. Cancer Res. 2007;13:C42. [Google Scholar]
  • 28.Dumontet V., Gaspard C., Van Hung N., Fahy J., Tchertanov L., Sévenet T., Guéritte F. New cytotoxic flavonoids from Cryptocarya infectoria. Tetrahedron. 2001;57:6189–6196. doi: 10.1016/S0040-4020(01)00596-8. [DOI] [Google Scholar]
  • 29.Othman W.N.N.W., Liew S.Y., Khaw K.Y., Murugaiyah V., Litaudon M., Awang K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae) Bioorganic Med. Chem. 2016;24:4464–4469. doi: 10.1016/j.bmc.2016.07.043. [DOI] [PubMed] [Google Scholar]
  • 30.Tang S.-C., Xu W.-B., Wei F.-N. Machilus parapauhoi sp. nov. and a new synonym of Machilus (Lauraceae) from east Asia. Nord. J. Bot. 2010;28:503–505. doi: 10.1111/j.1756-1051.2010.00748.x. [DOI] [Google Scholar]
  • 31.Allen C.K. Studies in the Lauraceae. I. Chinese and Indo-Chinese species of Litsea, Neolitsea, and Actinodaphne. Ann. Missouri Bot. Gard. 1938;25:361–434. doi: 10.2307/2394482. [DOI] [Google Scholar]
  • 32.Thang T.D., Dai D.N., Thai T.H., Ogunwande I.A. Essential oils of Phoebe angustifolia Meisn., Machilus velutina Champ. ex Benth. and Neolitsea polycarpa Liou (Lauraceae) from Vietnam. Rec. Nat. Prod. 2013;7:192–200. [Google Scholar]
  • 33.Salleh W.M.N.H.W., Ahmad F., Khong H.Y., Zulkifli R.M. Comparative study of the essential oils of three Beilschmiedia species and their biological activities. Int. J. Food Sci. Technol. 2016;51:240–249. doi: 10.1111/ijfs.12962. [DOI] [Google Scholar]
  • 34.Setzer W.N., Haber W.A. Leaf essential oil composition of five species of Beilschmiedia from Monteverde, Costa Rica. Nat. Prod. Commun. 2007;2:79–83. doi: 10.1177/1934578X0700200116. [DOI] [Google Scholar]
  • 35.Mondello L. FFNSC 3. Shimadzu Scientific Instruments; Columbia, MD, USA: 2016. [Google Scholar]
  • 36.NIST17. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2017. [Google Scholar]
  • 37.Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing; Carol Stream, IL, USA: 2007. [Google Scholar]
  • 38.Yoon W.-J., Moon J.-Y., Kang J.-Y., Kim G.-O., Lee N.H., Hyun C.-G. Neolitsea sericea essential oil attenuates LPS-induced inflammation in RAW 264.7 macrophages by suppressing NF-κB and MAPK activation. Nat. Prod. Commun. 2010;5:1311–1316. doi: 10.1177/1934578X1000500835. [DOI] [PubMed] [Google Scholar]
  • 39.Su Y.-C., Hsu K.-P., Wang E.I.-C., Ho C.-L. Composition and in vitro anticancer activities of the leaf essential oil of Neolitsea variabillima from Taiwan. Nat. Prod. Commun. 2013;8:531–532. doi: 10.1177/1934578X1300800432. [DOI] [PubMed] [Google Scholar]
  • 40.Jeong M.-J., Yang J., Choi W.-S., Kim J.-W., Kim S.J., Park M.-J. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata (Blume) Koidz leaves. J. Korean Wood Sci. Technol. 2017;45:96–106. doi: 10.5658/WOOD.2017.45.1.96. [DOI] [Google Scholar]
  • 41.Brophy J.J., Goldsack R.J., Fookes C.J.R., Forster P.I. The leaf oils of the Australian species of Neolitsea (Lauraceae) J. Essent. Oil Res. 2002;14:191–195. doi: 10.1080/10412905.2002.9699821. [DOI] [Google Scholar]
  • 42.Padalia R.C., Chanotiya C.S., Thakuri B.C., Mathela C.S. Germacranolide rich essential oil from Neolitsea pallens. Nat. Prod. Commun. 2007;2:591–593. doi: 10.1177/1934578X0700200516. [DOI] [Google Scholar]
  • 43.John A.J., Karunakaran V.P., George V., Pradeep N.S., Sethuraman M.G. Chemical composition and antibacterial activity of leaf oil of Neolitsea foliosa (Nees) Gamble var. caesia (Meisner) Gamble. J. Essent. Oil Res. 2007;19:498–500. doi: 10.1080/10412905.2007.9699962. [DOI] [Google Scholar]
  • 44.Fontes U.R., Jr., Ramos C.S., Serafini M.R., Cavalcanti S.C.H., Alves P.B., Lima G.M., Andrade P.H.S., Bonjardim L.R., Quintans L.J., Jr., Araújo A.S. Evaluation of the lethality of Porophyllum ruderale essential oil against Biomphalaria glabrata, Aedes aegypti and Artemia salina. African J. Biotechnol. 2012;11:3169–3172. [Google Scholar]
  • 45.Cavalcanti E.S.B., de Morais S.M., Lima M.A.A., Santana E.W.P. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem. Inst. Oswaldo Cruz. 2004;99:541–544. doi: 10.1590/S0074-02762004000500015. [DOI] [PubMed] [Google Scholar]
  • 46.Govindarajan M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2010;3:874–877. doi: 10.1016/S1995-7645(10)60210-6. [DOI] [Google Scholar]
  • 47.Govindarajan M., Benelli G. Ecotoxicology and environmental safety eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2016;133:395–402. doi: 10.1016/j.ecoenv.2016.07.035. [DOI] [PubMed] [Google Scholar]
  • 48.Hung N.H., Satyal P., Hieu H.V., Chuong N.T.H., Dai D.N., Huong L.T., Tai T.A., Setzer W.N. Mosquito larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects. 2019;10:47. doi: 10.3390/insects10020047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. [DOI] [PubMed] [Google Scholar]
  • 50.Perumalsamy H., Kim N.-J., Ahn Y.-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae) J. Med. Entomol. 2009;46:1420–1423. doi: 10.1603/033.046.0624. [DOI] [PubMed] [Google Scholar]
  • 51.Ribeiro W.H.F., Vasconcelos J.N., Arriaga A.M.C., de Oliveira M.C.F., Andrade-Neto M., Lemos T.L.G., Santiago G.M.P., Nascimento R.F., Mafezoli J. Tephrosia toxicaria Pers essential oil: Chemical composition and larvicidal activity. Nat. Prod. Commun. 2006;1:391–393. doi: 10.1177/1934578X0600100509. [DOI] [Google Scholar]
  • 52.Magalhães L.A.M.I., Lima Mda P., Marques M.O., Facanali R., Pinto A.C., Tadei W.P. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules. 2010;15:5734–5741. doi: 10.3390/molecules15085734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Santos T.G., Dognini J., Begnini I.M., Rebelo R.A., Verdi M., Dalmarco E.M. Chemical characterization of essential oils from Drimys angustifolia Miers (Winteraceae) and antibacterial activity of their major compounds. J. Braz. Chem. Soc. 2013;24:164–170. doi: 10.1590/S0103-50532013000100020. [DOI] [Google Scholar]
  • 54.Jirovetz L., Bail S., Buchbauer G., Denkova Z., Slavchev A., Stoyanova A., Schmidt E., Geissler M. Antimicrobial testings, gas chromatographic analysis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Sci. Pharm. 2006;74:189–201. doi: 10.3797/scipharm.2006.74.189. [DOI] [Google Scholar]
  • 55.Rather M.A., Dar B.A., Dar M.Y., Wani B.A., Shah W.A., Bhat B.A., Ganai B.A., Bhat K.A., Anand R., Qurishi M.A. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine. 2012;19:1185–1190. doi: 10.1016/j.phymed.2012.07.018. [DOI] [PubMed] [Google Scholar]
  • 56.Schmidt J.M., Noletto J.A., Vogler B., Setzer W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants. 2006;12:43–65. doi: 10.1300/J044v12n03_04. [DOI] [Google Scholar]
  • 57.Kubo I., Fujita K., Kubo A., Nihei K., Ogura T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J. Agric. Food Chem. 2004;52:3329–3332. doi: 10.1021/jf0354186. [DOI] [PubMed] [Google Scholar]
  • 58.Liu K., Chen Q., Liu Y., Zhou X., Wang X. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. J. Food Sci. 2012;77:C1156–C1161. doi: 10.1111/j.1750-3841.2012.02924.x. [DOI] [PubMed] [Google Scholar]
  • 59.Morandim-Giannetti A.A., Pin A.R., Pietro N.A.S., de Oliveira H.C., Mendes-Giannini M.J.S., Alecio A.C., Kato M.J., de Oliveira J.E., Furlan M. Composition and antifungal activity against Candida albicans, Candida parapsilosis, Candida krusei and Cryptococcus neoformans of essential oils from leaves of Piper and Peperomia species. J. Med. Plants Res. 2010;4:1810–1814. [Google Scholar]
  • 60.Venturi C.R., Danielli L.J., Klein F., Apel M.A., Montanha J.A., Bordignon S.A.L., Roehe P.M., Fuentefria A.M., Henriques A.T. Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharm. Biol. 2015;53:682–688. doi: 10.3109/13880209.2014.936944. [DOI] [PubMed] [Google Scholar]
  • 61.Ho C.-L., Hsu K.-P., Tseng Y.-H., Wang E.I.-C., Liao P.-C., Chouc J.-C., Linc C.-N., Sua Y.-C. Composition and antimicrobial activities of the leaf essential oil of Machilus kusanoi from Taiwan. Nat. Prod. Commun. 2011;6:267–270. doi: 10.1177/1934578X1100600228. [DOI] [PubMed] [Google Scholar]
  • 62.Dai D.N., Chung N.T., Huong L.T., Hung N.H., Chau D.T.M., Yen N.T., Setzer W.N. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils from five species of Cinnamomum growing wild in north central Vietnam. Molecules. 2020;25:1303. doi: 10.3390/molecules25061303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Ebadollahi A., Ziaee M., Palla F. Essential oils extracted from different species of the Lamiaceae plants family as prospective bioagents against several detrimental pests. Molecules. 2020;25:1556. doi: 10.3390/molecules25071556. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plants are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES