Skip to main content
Nature Communications logoLink to Nature Communications
. 2020 Jun 10;11:3007. doi: 10.1038/s41467-020-16809-1

Publisher Correction: Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection

Yunxia Zhang 1,2,3,#, Yucheng Liu 1,4,#, Zhuo Xu 1, Haochen Ye 1, Zhou Yang 1, Jiaxue You 1, Ming Liu 5, Yihui He 4, Mercouri G Kanatzidis 4, Shengzhong (Frank) Liu 1,2,3,
PMCID: PMC7286904  PMID: 32522997

Correction to: Nature Communications 10.1038/s41467-020-16034-w, published online 8 May 2020.

The original version of this Article contained the following errors (“Original” column) and the correct terms are shown in the “Corrected” column.

Error position Original Corrected
1 Fig. 1 title Fig. 1: Crystallization of Cs3Bi2I9 perovskite single crystal (PSC). Fig. 1: Crystallization of Cs3Bi2I9 perovskite single crystal (PSC).
2 Fig. 2 title Fig. 2: Structural of Cs3Bi2I9 PSC. Fig. 2: Structural of Cs3Bi2I9 PSC.
3 Fig. 3 title Fig. 3: Optical properties and trap state density of Cs3Bi2I9 PSC Fig. 3: Optical properties and trap state density of Cs3Bi2I9 PSC
4 Fig. 4 title Fig. 4: Performance of Cs3Bi2I9 PSC photodetector. Fig. 4: Performance of Cs3Bi2I9 PSC photodetector.
5 Fig. 5 title Fig. 5: Performance of Cs3Bi2I9 PSC X-ray detector and imaging. Fig. 5: Performance of Cs3Bi2I9 PSC X-ray detector and imaging.
6 Fig. 6 title Fig. 6: Thermal stability measurement of the Cs3Bi2I9 PSC detector at 100 °C Fig. 6: Thermal stability measurement of the Cs3Bi2I9 PSC detector at 100 °C
7 Fig. 3i Currenht (nA) Current (nA)
8 Fig. 4b 300.1 mW cm-2 300.1 mW cm−2
9 Fig. 4f Detectivity (cm Hz–1/2w–1) Detectivity (cm Hz1/2 W−1)
10 Fig. 5f Sensitivity μC Gy-2 cm-2 Sensitivity μC Gy−1 cm−2
11 Fig. 5g 1.63 n Gy s−1 1.63 µ Gy s−1
12 ‘Calculation of signal-to-noise ratio’ in Methods

average photocurrent

(퐼̅푝ℎ표푡표) by the average dark current (퐼̅푑푎푟푘).

average photocurrent (Iphoto) by the average dark current (Idark)
13 References 9 CsPbBr3 CsPbBr3
14 References 10 SnO2 SnO2
15 References 11 CH3NH3PbBr3-xClx CH3NH3PbBr3-xClx
16 References 20 A3M2I9 A3M2I9
17 References 21 Cs2AgBiBr6 Cs2AgBiBr6
18 References 22 (NH4)3Bi2I9 (NH4)3Bi2I9
19 References 25 C60 C60
20 References 26 Cs3Bi2I9 Cs3Bi2I9
21 References 28 CH3NH3PbX3 CH3NH3PbX3
22 References 32 Cu(In,Ga)Se2 Cu(In,Ga)Se2
23 References 34 MAPbI3 MAPbI3
24 References 35 Cs3Bi2I9 Cs3Bi2I9
25 References 40 Cs2AgBiBr6 Cs2AgBiBr6
26 References 43 MAPbI3 MAPbI3
27 References 52 Cd0.9Zn0.1Te Cd0.9Zn0.1Te

This has now been corrected in both the PDF and HTML versions of the Article.


Articles from Nature Communications are provided here courtesy of Nature Publishing Group

RESOURCES