Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2020 Jun;38(3):319–323. [Article in Chinese] doi: 10.7518/hxkq.2020.03.016

中药酚性化合物对口腔微生物调节作用的研究进展

Research progress on the regulation of phenolic compounds of traditional Chinese herbs on oral microbes

Yawen Zong 1, Lei Cheng 1, Qiang Guo 1, Xuedong Zhou 1, Biao Ren 1,
Editor: 李 彩1
PMCID: PMC7296369  PMID: 32573142

Abstract

Phenolic compounds are widely found in natural Chinese medicinal plants and have excellent pharmacological properties, such as antioxidation and anti-inflammation. They are the main pharmacological components of many medicinal Chinese herbs. Oral microbiota, especially its composition and metabolism, is highly related to the balance of oral microecology and plays a key role in the occurrence and development of oral diseases. Recent studies have shown that phenolic compounds of traditional Chinese herbs can prevent and treat oral diseases, such as caries, periodontal disease, and oral mucosal infection, by regulating the composition, metabolites, and virulence of oral microorganisms. This review will summarize and discuss the regulation of phenolic compounds on oral microbes.

Keywords: traditional Chinese herbs, phenolic compounds, oral microbes, pathogenic virulence


中药与口腔微生态的关系已成为近年来的研究热点,其中,在口腔疾病的防治中,中药作为一种副作用低且来源广的天然制剂,在龋病、牙周病、口腔黏膜病乃至口腔肿瘤等疾病的防治都表现出了良好的药效[1][4]。中药影响口腔微生物的研究已有几十年的基础,目前的研究多集中在中药体外抗菌实验和临床实验。深入探究中药对口腔微生物的调节机制有利于规范用药和开发更为安全、靶向性更高的临床药物制剂,具有重要的临床和社会意义。

酚性化合物广泛存在于天然中药植物中,是含有多个酚羟基的次生代谢物。天然酚性结构容易与其他结构结合,形成如儿茶素、单宁酸等的多酚或酚酸类化合物。酚性化合物具有抗氧化、抗炎和抗菌等药理特性,是许多中药发挥药理作用的主要成分[5]

近年来研究[6]发现,提取自绿茶、厚朴和五倍子等中药的酚性化合物在龋病、牙周病、口腔黏膜感染等口腔疾病的防治领域发挥着重要作用。口腔微生物的组成、代谢等关系着口腔微生态的平衡,是口腔疾病发生、发展的关键因素。儿茶素、厚朴酚、姜黄素、单宁酸等酚性化合物可以调节口腔微生物的组成、代谢及致病毒力等,从而影响口腔微生态的平衡,参与相关疾病的治疗。本文就中药酚性化合物对口腔微生物的调节作用作一综述。

1. 中药酚性化合物与龋病

口腔微生物相互依存、相互竞争,构成维护口腔健康的动态平衡的屏障——口腔微生物膜,但当口腔微生物组失调时,生物膜蛋白表达失常,致龋微生物产酸增加,牙齿表面微生态pH降低,进而造成釉质脱矿,形成龋病[7]。茶多酚和儿茶素是绿茶中的主要药理成分,也是常用作口腔护理、治疗的中药酚性化合物,可以通过调节口腔微生物的组成影响龋病的进展,Manikya等[8]收集了30名健康志愿者在绿茶漱口前后的唾液样本,结果发现绿茶漱口后唾液的pH立即明显升高,且可持续一段时间,将唾液样本37 °C孵育48 h后,主要致龋菌平板计数明显下降。通过组学技术进一步探究其机制,发现gtf基因是编码致龋菌黏膜和菌斑生物膜形成的关键基因。Xu等[9]和Li等[10]发现,儿茶素和姜黄素通过抑制该种基因来影响口腔微生态的平衡,此外,与致龋微生物合成细胞外多糖、碳水化合物代谢和双组分转导系统有关的基因也受到了抑制。变异链球菌(Streptococcus mutansS. mutans)为主要的致龋菌,Pac蛋白是S. mutans从黏膜转移至正常组织和细胞的关键毒力因子。Hu等[11]对Pac蛋白进行序列分析后发现,该蛋白发挥作用需要一些分选蛋白酶的活化,而姜黄素可以抑制其中一种分选酶A的活性从而影响生物膜形成。生物膜的产物也是致龋的重要因素,Besingi等[12]探究了中药多酚化合物单宁酸和没食子儿茶素对生物膜产生的淀粉样蛋白的抗性作用,结果发现2种化合物均可以通过抑制淀粉样蛋白黏附素P1(AgⅠ/Ⅱ,PAc)和变异链球菌壁相关蛋白A(Wap A)依赖机制起到抗淀粉样蛋白的作用,从而影响生物膜的毒力。

目前,除了传统的涂氟预防和充填修复的抗龋治疗技术,利用光和光敏剂产生光动力效应的抗微生物光动力疗法(antimicrobial photodynamic therapy,aPDT)也被引入到龋病的治疗中。一些研究[13][15]发现,以姜黄素作为光敏剂的龋病aPDT可以有效降低完整口腔微生物膜的活力,是预防和治疗龋齿的新方法。

2. 中药酚性化合物与牙周病

与龋病相似,在牙周微生态中同样存在致病力不同的菌群,例如牙龈卟啉单胞菌(Porphyromonas gingivalisP. gingivalis)等组成的“红色复合体”与牙周病密切相关。当微生物参与氨基酸代谢的sRNA等异常表达时,牙周微生态出现代谢和离子转运异常等表达改变,造成牙周组织破坏,进而发展为牙周病[13][14]。在一些临床试验和体外试验中,“红色复合体”微生物数量及附着性在姜黄素、儿茶素等酚性化合物处理后显著降低,导致牙周微生态发生改变,影响了牙周病的进程[16][18]。Asahi等[19]探究其机制发现,儿茶素可以显著降低牙周生物膜的ATP水平,即通过抑制生物膜代谢降低牙周致病菌毒力。中药酚性化合物还可以通过调节口腔微生物进而改善牙周病的临床表现,如牙龈出血、牙周袋形成和牙槽骨吸收等。环氧合酶(cyclooxygenase,COX)是牙周组织中巨噬细胞发挥破坏作用的关键蛋白酶,Murakami等[20]P. gingivalis诱导巨噬细胞,加入厚朴酚可以抑制COX的转录因子活化来降低COX的表达,从而减缓牙周组织的损伤。Fournier-Larente等[21]同样发现,儿茶素可通过调节口腔微生态来降低牙周组织的损伤程度,不同种系P. gingivalis编码组织损伤的基因表达受到了抑制,同时,牙周致病菌与宿主定植和获取血红素的相关基因表达也受到了抑制,即从基因组学方面讲,儿茶素影响了口腔微生物的相关基因表达从而影响了牙周病的进程。Lagha等[22]从蛋白组学入手,发现P. gingivalis作用于牙龈角质上皮会降低小带闭锁蛋白-1(zonula occludens-1,ZO-1)和闭塞蛋白2个紧密连接蛋白的表达,而儿茶素可增加这2种蛋白因P. gingivalis而降低的表达。同时他们还发现P. gingivalis会使牙龈角质细胞由多层排列变为单层排列,牙周微生态的跨上皮电阻(transepithelial electrical resistance,TER)进而降低,有利于P. gingivalis通过单层角质细胞移位。儿茶素可通过抑制P. gingivalis的蛋白酶活性,进而消除P. gingivalis介导的这种有害作用。

3. 中药酚性化合物与口腔源性口臭

口腔源性口臭与牙周疾病关系密切,引起口臭的挥发性硫化合物(volatile sulphur compound,VSC)主要由牙周和舌背微生物的产物甲硫醇(CH3SH)组成[23]。Greenberg等[24]收集了9名志愿者咀嚼含有厚朴酚的口香糖,回收的唾液样本显示,厚朴酚口香糖可以有效减少P. gingivalis等口臭相关微生物的含量。P. gingivalis通过MET酶产生大量CH3SH,该过程由mgl基因编码[25],根据Xu等[26]于2010年的研究报道,儿茶素可以抑制P. gingivalis的mgl表达来减少口腔中VSC的产量。VSC对牙周组织也存在毒性作用[27],中药酚性化合物调节口腔微生态防治口腔源性口臭的同时,间接维护着牙周的健康平衡。

4. 中药酚性化合物与牙髓炎

牙髓炎的发生一般来源于龋病,根管系统内口腔微生物定植引起的感染是主要病因。口腔微生物表面表达的脂多糖(lipo-polysaccharide,LPS)和肽聚糖(peptidoglycan,PG)是关键的炎性介质,引起感染后,牙髓细胞的相关炎性反应物白细胞介素(interleukin,IL)-6和IL-8表达增加。研究[28][29]发现,儿茶素可抑制编码炎性反应物表达基因ICAM-1等,从而减轻牙髓炎症。

5. 中药酚性化合物与口腔念珠菌病

口腔念珠菌病不同于上述几种口腔常见疾病,其病因主要是真菌感染造成的口腔生态失衡[30]。Tamura等[31]的体外实验表明,单宁酸可以有效降低念珠菌的活性。Behbehani等[32]验证了厚朴酚具有同样的药理作用,并进一步探究了相关机制发现,厚朴酚可以与真菌细胞膜上的麦角甾醇作用,导致细胞变形和肿胀、破裂。

区别传统药物治疗的aPDT在口腔念珠菌病中的应用也愈发引人关注,在口腔念珠菌病模型小鼠中,以姜黄素为光敏剂的aPDT显示出优良的抗念珠菌疗效,是新兴的安全治疗方法[33][34]

6. 中药酚性化合物与病毒性口炎

病毒也是口腔微生态的重要组成部分,由病毒引起的口炎也是临床常见的口腔疾病。Colpitts等[35]研究发现,儿茶素可以抑制水疱性口炎病毒对靶细胞的附着。其原理是儿茶素与靶细胞上的硫酸乙酰肝素竞争性地结合,破坏了病毒表面蛋白的功能,但对病毒本身的完整性和膜流动性并无影响。

7. 中药酚性化合物与口腔微生物抗性

在龋病等疾病的治疗过程中,人工器械很难完全清除口腔微生物在病症部位的附着,需要药物的辅助治疗。但抗生素的应用对口腔微生态的平衡也有极大影响,微生物的抗性是临床治疗中需面对的一个挑战。Miladi等探究了丁香子酚等几种酚性化合物与四环素联用的抗菌活性,发现联用后抗菌效能提高了2~8倍,菌斑生物膜的清除率大大增加,酚性化合物可以作为临床用药的天然抗性修饰。甲硝唑是用于预防和治疗厌氧菌系统和局部感染的常用药物,也是常用的牙周临床药物。茶叶中提取的酚性化合物可以协同甲硝唑发挥牙周治疗作用[22],[36]。此外,茶黄素可诱导口腔上皮细胞分泌抗菌肽,降低炎性因子的表达,从而调节口腔微生态的平衡,起到协同治疗的作用[36]

8. 讨论

综上所述,中药酚性化合物通过多种机制调节口腔微生物,如影响微生物组丰度、组成结构、相关基因表达和产物作用等,进而调节口腔微生态平衡,影响疾病的进展和治疗。口腔微生物组是“人类微生物组计划”的主要研究方向之一,组学技术和宏组学理论在口腔微生物组的应用正推进人类对微生态的了解和利用。同时,中药的价格低廉、副作用小等优势在全球许多国家已初露头角,也得到了众多研究人员的重视。中药抗菌研究已有几十年的基础,但结合组学技术发掘中药有效药理成分的探究才刚刚起步。口腔常用天然中药中除了提取的酚性化合物,还有酮类化合物等药理成分,这些成分如何在组学层面上影响口腔微生物还有待研究。上述有关疾病的研究中,中药调节口腔微生物从而影响疾病进展和治疗,从宏观角度分析其机制的研究较少,仍缺乏影响下游基因和产物的深入探究。此外,口腔内还存在一些与微生物相关的疾病,如口腔癌、口腔黏膜病、种植体周围炎等,但少见中药通过调节口腔微生态平衡与这些疾病相关联的研究。许多研究[37][39]认为口腔微生物不仅与口腔内的疾病有关,还与一些全身系统性疾病和远处癌症等相关,但目前的研究未能将中药引入到二者的相互作用关系中。肠道微生物常与口腔微生物相互影响和关联,目前已有一些研究深入探讨了中药药理成分对肠道微生物组的调节机制,下一步的研究可借鉴宏观肠道微生物组的研究方法,更加清晰、透彻地理解中药和口腔微生物组的相互作用机制。另一方面,中药药理成分在口腔微生物领域应用价值的研究有利于解决目前全球范围的抗生素抗性问题,也可结合已有药物开发新的药物联用模式,改善目前临床用药的副作用和不良反应等。因此,今后的研究重点将为以下几点:1)利用组学技术探究更多中药药理成分对口腔微生物组的调节作用;2)深入探究中药影响口腔微生物组的作用机制;3)纳入更多的口腔疾病和全身疾病,建立、完善中药与口腔微生物组的关系;4)借鉴肠道微生物组的研究方法,挖掘口腔微生物组的研究方向,以建立二者的联系;5)以“老药新用”的思路,开发中药与传统临床药物的联合用药模式,以面对全球范围微生物抗生素抗性的重大挑战。

Funding Statement

[基金项目] 国家自然科学基金(81600858)

Supported by: The National Natural Science Foundation of China (81600858).

Footnotes

利益冲突声明:作者声明本文无利益冲突。

References

  • 1.高 秋爽, 包 广洁. 防龋中药的研究概况[J] 中国中药杂志. 2011;36(5):650–653. [PubMed] [Google Scholar]; Gao QS, Bao GJ. Research progress of anticarious Chinese herbal[J] China J Chin Mater Med. 2011;36(5):650–653. [PubMed] [Google Scholar]
  • 2.刘 正. 中药与防龋[J] 中华口腔医学杂志. 2006;41(5):282–284. [PubMed] [Google Scholar]; Liu Z. Traditional Chinese medicines in caries prevention[J] Chin J Stomatol. 2006;41(5):282–284. [PubMed] [Google Scholar]
  • 3.邵 瀛樊, 王 晓春. 中药治疗牙周病的研究进展[J] 口腔医学. 2018;38(8):752–755. [Google Scholar]; Shao YF, Wang XC. Research progress of traditional Chinese medicine treatment of periodontal disease[J] Stomatology. 2018;38(8):752–755. [Google Scholar]
  • 4.陈 俏妍, 夏 纪严, 韩 凌, et al. 滋阴清热法防治阴虚内热证急性放射性口腔炎临床研究[J] 中国中西医结合杂志. 2010;30(7):694–698. [PubMed] [Google Scholar]; Chen QY, Xia JY, Han L, et al. Clinical study on treatment of acute radiation oral mucositis of yin deficiency-induced inner heat syndrome by nourishing yin and clearing heat method[J] Chin J Integr Tradit West Med. 2010;30(7):694–698. [PubMed] [Google Scholar]
  • 5.Ameer B, Weintraub RA, Johnson JV, et al. Flavanone absorption after naringin, hesperidin, and Citrus administration[J] Clin Pharmacol Ther. 1996;60(1):34–40. doi: 10.1016/S0009-9236(96)90164-2. [DOI] [PubMed] [Google Scholar]
  • 6.Petti S, Scully C. Polyphenols, oral health and disease: a review[J] J Dent. 2009;37(6):413–423. doi: 10.1016/j.jdent.2009.02.003. [DOI] [PubMed] [Google Scholar]
  • 7.Strużycka I. The oral microbiome in dental caries[J] Pol J Microbiol. 2014;63(2):127–135. [PubMed] [Google Scholar]
  • 8.Manikya S, Vanishree M, Surekha R, et al. Effect of green tea on salivary pH and Streptococcus mutans count in healthy individuals[J] Int J Oral Maxillofac Pathol. 2014;5(1):13–16. [Google Scholar]
  • 9.Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes[J] Arch Oral Biol. 2012;57(6):678–683. doi: 10.1016/j.archoralbio.2011.10.021. [DOI] [PubMed] [Google Scholar]
  • 10.Li BC, Li XL, Lin HC, et al. Curcumin as a promising antibacterial agent: effects on metabolism and biofilm formation in S. mutans[J] Biomed Res Int. 2018;2018:1–11. doi: 10.1155/2018/4508709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Hu P, Huang P, Chen MW. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity[J] Arch Oral Biol. 2013;58(10):1343–1348. doi: 10.1016/j.archoralbio.2013.05.004. [DOI] [PubMed] [Google Scholar]
  • 12.Besingi RN, Wenderska IB, Senadheera DB, et al. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c[J] Microbiology. 2017;163(4):488–501. doi: 10.1099/mic.0.000443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cusicanqui Méndez DA, Gutierres E, José Dionisio E, et al. Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms[J] Photodiagnosis Photodyn Ther. 2018;24:102–108. doi: 10.1016/j.pdpdt.2018.09.007. [DOI] [PubMed] [Google Scholar]
  • 14.Lee HJ, Kang SM, Jeong SH, et al. Antibacterial photodynamic therapy with curcumin and Curcuma xanthorrhiza extract against Streptococcus mutans[J] Photodiagnosis Photodyn Ther. 2017;20:116–119. doi: 10.1016/j.pdpdt.2017.09.003. [DOI] [PubMed] [Google Scholar]
  • 15.Manoil D, Filieri A, Gameiro C, et al. Flow cytometric assessment of Streptococcus mutans viability after exposure to blue light-activated curcumin[J] Photodiagnosis Photodyn Ther. 2014;11(3):372–379. doi: 10.1016/j.pdpdt.2014.06.003. [DOI] [PubMed] [Google Scholar]
  • 16.Bhatia M, Urolagin SS, Pentyala KB, et al. Novel therapeutic approach for the treatment of periodontitis by curcumin[J] J Clin Diagn Res. 2014;8(12):ZC65–ZC69. doi: 10.7860/JCDR/2014/8231.5343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hattarki SA, Pushpa SP, Bhat K. Evaluation of the efficacy of green tea catechins as an adjunct to scaling and root planing in the management of chronic periodontitis using PCR analysis: a clinical and microbiological study[J] J Indian Soc Periodontol. 2013;17(2):204–209. doi: 10.4103/0972-124X.113071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Shahzad M, Millhouse E, Culshaw S, et al. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation[J] Food Funct. 2015;6(3):719–729. doi: 10.1039/c4fo01087f. [DOI] [PubMed] [Google Scholar]
  • 19.Asahi Y, Noiri Y, Miura J, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms[J] J Appl Microbiol. 2014;116(5):1164–1171. doi: 10.1111/jam.12458. [DOI] [PubMed] [Google Scholar]
  • 20.Murakami Y, Kawata A, Seki Y, et al. Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis[J] In Vivo. 2012;26(6):941–950. [PubMed] [Google Scholar]
  • 21.Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis[J] Arch Oral Biol. 2016;65:35–43. doi: 10.1016/j.archoralbio.2016.01.014. [DOI] [PubMed] [Google Scholar]
  • 22.Lagha AB, Groeger S, Meyle J, et al. Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis[J] Pathog Dis. 2018;76(4) doi: 10.1093/femspd/fty030. [DOI] [PubMed] [Google Scholar]
  • 23.Amou T, Hinode D, Yoshioka M, et al. Relationship between halitosis and periodontal disease-associated oral bacteria in tongue coatings[J] Int J Dent Hyg. 2014;12(2):145–151. doi: 10.1111/idh.12046. [DOI] [PubMed] [Google Scholar]
  • 24.Greenberg M, Urnezis P, Tian MM. Compressed mints and chewing gum containing Magnolia bark extract are effective against bacteria responsible for oral malodor[J] J Agric Food Chem. 2007;55(23):9465–9469. doi: 10.1021/jf072122h. [DOI] [PubMed] [Google Scholar]
  • 25.Yoshimura M, Nakano Y, Yamashita Y, et al. Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis[J] Infect Immun. 2000;68(12):6912–6916. doi: 10.1128/iai.68.12.6912-6916.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Xu X, Zhou XD, Wu CD. Tea catechin EGCg suppresses the mgl gene associated with halitosis[J] J Dent Res. 2010;89(11):1304–1308. doi: 10.1177/0022034510378682. [DOI] [PubMed] [Google Scholar]
  • 27.Ng W, Tonzetich J. Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa[J] J Dent Res. 1984;63(7):994–997. doi: 10.1177/00220345840630071701. [DOI] [PubMed] [Google Scholar]
  • 28.Hirao K, Yumoto H, Nakanishi T, et al. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells[J] Life Sci. 2010;86(17/18):654–660. doi: 10.1016/j.lfs.2010.02.017. [DOI] [PubMed] [Google Scholar]
  • 29.Nakanishi T, Mukai K, Yumoto H, et al. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors[J] Eur J Oral Sci. 2010;118(2):145–150. doi: 10.1111/j.1600-0722.2010.00714.x. [DOI] [PubMed] [Google Scholar]
  • 30.Coronado-Castellote L, Jiménez-Soriano Y. Clinical and microbiological diagnosis of oral candidiasis[J] J Clin Exp Dent. 2013;5(5):e279–e286. doi: 10.4317/jced.51242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Tamura M, Saito H, Kikuchi K, et al. Antimicrobial activity of Gel-entrapped catechins toward oral microorganisms[J] Biol Pharm Bull. 2011;34(5):638–643. doi: 10.1248/bpb.34.638. [DOI] [PubMed] [Google Scholar]
  • 32.Behbehani J, Shreaz S, Irshad M, et al. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates[J] Microb Pathog. 2017;113:209–217. doi: 10.1016/j.micpath.2017.10.040. [DOI] [PubMed] [Google Scholar]
  • 33.Dovigo LN, Carmello JC, de Souza Costa CA, et al. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis[J] Med Mycol. 2013;51(3):243–251. doi: 10.3109/13693786.2012.714081. [DOI] [PubMed] [Google Scholar]
  • 34.Sakima VT, Barbugli PA, Cerri PS, et al. Antimicrobial photodynamic therapy mediated by curcumin-loaded polymeric nanoparticles in a murine model of oral candidiasis[J] Molecules. 2018;23(8):E2075. doi: 10.3390/molecules23082075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Colpitts CC, Schang LM. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans[J] J Virol. 2014;88(14):7806–7817. doi: 10.1128/JVI.00896-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lombardo Bedran TB, Morin MP, Palomari Spolidorio D, et al. Black tea extract and its theaflavin derivatives inhibit the growth of periodontopathogens and modulate interleukin-8 and β-defensin secretion in oral epithelial cells[J] PLoS One. 2015;10(11):e0143158. doi: 10.1371/journal.pone.0143158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Gao SG, Li SG, Ma ZK, et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer[J] Infect Agents Cancer. 2016;11:3. doi: 10.1186/s13027-016-0049-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Miyatani F, Kuriyama N, Watanabe I, et al. Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans[J] Oral Dis. 2015;21(7):886–893. doi: 10.1111/odi.12360. [DOI] [PubMed] [Google Scholar]
  • 39.Yan XM, Yang MX, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer[J] Am J Cancer Res. 2015;5(10):3111–3122. [PMC free article] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES