Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2020 Jun;38(3):330–337. [Article in Chinese] doi: 10.7518/hxkq.2020.03.018

非编码RNA在人牙周膜来源细胞成骨分化中的作用

Functions of non-coding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells

温 佳慧 1, 吴 燕岷 1,, 陈 莉丽 1
Editor: 李 彩1
PMCID: PMC7296371  PMID: 32573144

Abstract

人牙周膜来源细胞是牙周再生的重要种子细胞,其成骨潜能密切影响牙槽骨修复和牙周再生。非编码RNA(ncRNA)积极参与调控人牙周膜来源细胞的成骨基因,其主要包括微小RNA(miRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA)等。本文就ncRNA在人牙周膜来源细胞成骨分化的调控靶点、作用通路及发挥功能的研究进展进行综述。

Keywords: 微小RNA, 长链非编码RNA, 环状RNA, 牙周膜细胞, 牙周膜干细胞, 成骨分化


牙周病是一种以牙周支持组织丧失为特征的慢性炎症性疾病,成年患者常因罹患重度牙周病而导致牙齿脱落[1]。牙周治疗的终极目标是牙周组织再生,应用有利的种子细胞再生受损组织有望成为解决这一课题的有效路径。人牙周膜来源细胞是牙周再生的重要种子细胞,其成骨潜能密切影响牙槽骨修复和牙周再生。人牙周膜来源细胞中的牙周膜细胞(periodontal ligament cells,PDLC)和牙周膜干细胞(periodontal ligament stem cells,PDLSC)已被报道作为种子细胞在牙周再生中发挥重要作用。PDLC是来源于牙周组织的异质性混合细胞群,其子代能增殖产生成纤维细胞、成骨细胞和成牙骨质细胞,与牙周缺损后的重建、再生息息相关。PDLSC是来源于牙周膜的成体干细胞,具有优良的自我更新和多向分化能力,能形成组织形态和空间排列类似于天然牙骨质—牙周膜—牙槽骨复合体的结构,表现出巨大的牙周再生潜力[2][4]

非编码RNA(non-coding RNA,ncRNA)是一类无蛋白质编码功能的RNA,在基因组及染色体水平调控基因表达和细胞分化。按其长短主要分为两类,短链ncRNA[如微小RNA(microRNA,miRNA)等]和长链ncRNA(long non-coding RNA,lncRNA)。环状RNA(circular RNA,circRNA)是不同于线性RNA的一类特殊ncRNA[5]。近来研究发现,牙周病与ncRNA之间联系密切,ncRNA积极参与调控人牙周膜来源细胞的成骨基因。学者[6][7]先后在牙周炎牙龈组织和健康牙龈组织之间筛选出159个miRNA和8 925个lncRNA具有差异性表达,表明ncRNA可能作为牙周炎治疗的潜在靶点,为人牙周膜来源细胞介导的牙周再生提供指导。牙槽骨再生是牙周再生中的关键和重要环节,阐明PDLC/PDLSC成骨分化中ncRNA网络的作用,有助于更好地调控成骨基因的表达,促进牙周再生治疗策略的发展。

1. ncRNA与人牙周膜来源细胞成骨分化的潜在关系

人类全基因组测序结果表明,无蛋白质编码功能的ncRNA超过整个转录本的98%,这预示着ncRNA可能作为人类生物学的重要角色调控基因表达,决定细胞分化的命运。研究[5],[8]发现,ncRNA调控多种人类间充质干细胞分化,从而参与成骨过程。

在牙周再生领域,ncRNA与人牙周膜来源细胞成骨分化的潜在关系日益受到关注。随着高通量检测技术和生物信息学分析方法的快速发展,目前已经鉴定出多种可能在人牙周膜来源细胞成骨分化过程中发挥作用的ncRNA。

Chang等[9]已鉴定出拉伸力诱导PDLC成骨分化下32个miRNA和818个mRNA具有差异性表达。在有关PDLSC的研究中,Hao等[10]发现人PDLSC矿化诱导后116个miRNA差异性改变,预测其中31个miRNA具有成骨相关靶基因;Qu等[11]发现人PDLSC矿化诱导后2 171个lncRNA和3 557个信使RNA(messenger RNA,mRNA)差异表达,其中393个lncRNA与成骨相关mRNA密切相关,预测可能参与促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、血管内皮生长因子(vascular endothelial growth factor,VEGF)和转化生长因子(transforming growth factor,TGF)-β等信号通路。Huang等[12]采用2 g·cm−2压应力刺激PDLSC 12 h后,90个lncRNA差异表达,72个被上调,18个被下调;Zheng等[13]揭示出在人PDLSC成骨分化不同阶段,同时有8个circRNA下调、44个circRNA上调、4个miRNA上调、15个miRNA下调,从而构建包含50个circRNA、55个miRNA和613个mRNA的调控网络。Wang等[14]成功构建出加载拉伸力的人PDLSC成骨分化中差异性表达的circRNA-miRNA网络。

以上研究说明,许多ncRNA能响应于机械应力和矿化诱导发生显著变化,且与成骨相关基因mRNA的变化高度相关,推测这些ncRNA可能在人牙周膜来源细胞的成骨分化过程中发挥重要调控作用。目前的研究主要聚焦于miRNA、lncRNA和circRNA。

2. miRNA在人牙周膜来源细胞成骨分化中的作用

miRNA是一类长度约20个核苷酸的单链小分子非编码转录物,成熟miRNA通过与靶基因mRNA的3′-非翻译区(untranslated region,UTR)特异性配对,诱导mRNA降解或抑制其翻译起始,负调节基因表达,在转录后水平影响细胞分化、增殖和凋亡[5]。在暴露于不同成骨条件下的人牙周膜来源细胞分化过程中,miRNA通过靶向成骨标志物或成骨相关通路发挥着不可或缺的调控作用。

2.1. miR-146a

miR-146a是早期确定参与炎症调节的miRNA之一,能够负向调控炎症发病机制相关的Toll样受体(Toll-like receptor,TLR)信号通路,肿瘤坏死因子受体相关因子6(tumor necrosis factor-receptor association factor 6,TRAF6)是这一通路的关键适配分子,已被证实是miR-146a的靶点。炎症刺激因子如脂多糖(lipopolysaccharide,LPS)、肿瘤坏死因子(tumor necrosis factor,TNF)-α等通过激活TRAF6,进而激活下游的核因子(nuclear factor,NF)-κB、p38 MAPK和细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)。此外,NF-κB对骨分化的调节也相当重要[15]

在人PDLC中,miR-146a下调NF-κB通路[16]和TRAF6/p38 MAPK信号通路[17],负调节促炎因子的分泌。暴露于LPS刺激的人PDLC经miR-146a模拟物处理后,成骨标志物表达上调,炎性NF-κB p65活性被抑制,从而逆转LPS对PDLC成骨分化的抑制[18]

2.2. miR-17~92家族

miR-17是miR-17~92家族的核心成员,具有调节细胞增殖分化和控制细胞周期进程的关键作用[19]。在TNF-α水平升高的炎症微环境中,Smad泛素化调节因子1(Smad ubiquitin regulatory factor 1,Smurf1)表达上调,Smurf1是重要的成骨分化负调节因子,其上调将降解骨形态发生蛋白(bone morphogenetic protein,BMP)通路蛋白Runt相关转录因子2(Runt-related transcription factor two,Runx2)、Smad1和Smad5[20]

研究[19]发现,TNF-α、miR-17和Smurf共同调控PDLSC的成骨分化,在健康组织来源的PDLSC中,下调的miR-17促进成骨,而在炎症微环境中,下调的miR-17使得Smurf表达升高,抑制成骨,说明miR-17对处于不同微环境的PDLSC成骨分化发挥双相作用。

Wnt经典通路与不同的培养微环境之间的关系类似于双相网络。人Wnt-3a蛋白下调完全培养基中的miR-17,上调成骨分化培养基中的miR-17,不同表达水平的miR-17通过靶向Wnt通路的关键转录因子3(transcriptional factor 3,TCF3),逆转Wnt通路对PDLSC成骨的正或负调节。也就是说,miR-17可以作为敏感的“切换开关”,快速响应于Wnt在不同微环境中的信号[21]

miR-20a作为miR-17~92家族的一个成员,可通过BMP信号通路促进人骨髓间充质干细胞成骨[22]。学者[23][24]通过瞬时转染发现,miR-20a同样促进人炎症PDLSC的成骨分化,并证实其上游的组蛋白去乙酰化酶(histone deacetylase,HDAC)9在转录水平抑制miR-17~92家族的表达。

另有研究[25][26]以糖基化终末产物(advanced glycationend product,AGEs)为刺激物,结果人PDLSC的成骨被抑制,miR-17下调,Wnt经典通路被激活,提示miR-17是治疗糖尿病牙周炎的潜在靶点。

2.3. miR-21

miR-21是胚胎干细胞分化相关miRNA,在不同生理和病理条件下通过自我维持发挥功能[27]

Sprouty家族成员是干细胞分化所必需的一类蛋白,其中Sprouty1(Spry1)是miR-21的靶基因,参与并负调节ERK-MAPK和成纤维细胞生长因子(fibroblast growth factor,FGF)信号通路,已被证实促进间充质干细胞成骨[28][29]。研究[27]表明,在正常PDLSC成骨分化期间miR-21表达上调,而炎症微环境下miR-21表达下调,经炎性因子TNF-α处理后Spry1表达被抑制,表明TNF-α通过靶向miR-21/Spry轴抑制PDLSC的成骨分化。

Smad5作为上游调节因子促进Runx2等成骨标志物表达,介导BMP信号通路[20]。研究[30]表明,经成骨诱导的PDLSC中miR-21过表达,通过直接靶向Smad5介导成骨分化。

牙周膜相关蛋白(periodontal ligament associated protein,PLAP)-1是影响牙周成骨稳态的负调节因子,在PDLC分化过程中特异性表达。Li等[31]研究发现,PDLC成骨分化期间PLAP-1的表达水平与miR-21和miR-101呈负相关,证实2种miRNA靶向PLAP-1以调节PDLC成骨。

此外,miR-21可以作为关键miRNA响应拉伸力并增加表达,靶向激活素受体ⅡB型(activin receptor type ⅡB,ACVR2B),ACVR2B在激活素的激活中至关重要,是TGF-β通路的重要调节因子,其下调有利于介导PDLSC的成骨分化效应[32]

2.4. miR-214

miR-214直接靶向活性转录因子4(activating transcription factor 4,ATF4)抑制成骨细胞活性[33]。ATF4是成骨分化的关键调节因子,可以通过上调Wnt经典信号通路中β-连环蛋白(β-catenin)的水平诱导成骨细胞分化[34]

在人PDLSC中miR-214也表现出类似的抑成骨效应,显著下调的miR-214结合抑制ATF4[35],或靶向β-catenin基因CTNNB1的3′-UTR抑制Wnt/β-catenin信号通路[36],进而负调节PDLSC的成骨分化。

2.5. miR-125b

miR-125b是早期发现的参与骨骼发育和重塑的miRNA,在抑制间充质干细胞成骨分化中起关键作用[37]

抑制NF-κB信号可有效增强成骨分化[15],且NF-κB抑制剂相互作用RAS样2(NF-κB inhibitor interacting RAS-like 2,NKIRAS2)是miR-125b的靶基因[38]。miR-125b负调节NKIRAS2表达,激活NF-κB信号,抑制PDLC成骨分化,提示治疗性抑制miR-125b能够促进骨生成,甚至有可能部分逆转牙周炎进展[39]

调节连接蛋白43(connexin 43,Cx43)能够调控细胞间通讯,进而调控细胞的增殖分化。Cx43在小鼠牙形成过程中表达升高,参与调控牙矿化[40]。近来,学者[41]在人PDLSC中转染miR-125b,证实miR-125b通过靶向Cx43抑制PDLSC成骨。

2.6. 其他响应矿化诱导的miRNA

在人PDLSC成骨诱导后,miR-543和miR-22表达显著增加,上调的miR-543负向靶向ERBB2的转导子2(transducer of ERBB2 2,TOB2),miR-22靶向组蛋白去乙酰化酶(histone deacetylase,HDAC)6,促进PDLSC成骨分化[42][43]。将人PDLSC接种于三维支架后进行矿化诱导,miR-2861上调Runx2蛋白表达,显示出较无支架组更优越的成骨性[44]。在人PDLSC、牙髓干细胞和牙龈干细胞成骨诱导过程中,miR-218表达均显著下调;暴露于尼古丁的人PDLSC成骨诱导后,miR-1305表达上调;Runx2是miR-218/miR-1305的靶基因,高表达miR-218/miR-1305负向调控Runx2的表达,抑制人PDLSC的成骨分化潜能,miR-1305可能为吸烟人群牙周病的潜在诊断及治疗靶点提供新见解[45][46]

除矿化诱导外,外源性机械应力刺激同样能够影响人牙周膜来源细胞的成骨分化,在牙槽骨改建的动态平衡中发挥重要作用。应力包括流体剪切力、拉伸应力和压缩应力。

2.7. miR-29家族及其他响应机械力的miRNA

miR-29家族成员包括miR-29a、miR-29b和miR-29c,既能调控Wnt通路促成骨,又能抑制骨连接素的合成及Notch通路抑成骨[47]

miRNA通过调节细胞外基质(extracellular matrix,ECM)基因群,在组织的发育和重塑中发挥重要作用。在正畸负荷期间,主要牙周ECM基因(如编码Ⅰ型、Ⅲ型、Ⅴ型胶原蛋白α1链的Col1A1、Col3A1和Col5A1)在张力侧表达增加,压力侧表达降低,这对于骨重塑导致的牙齿移动是必不可少的[48][49]。miR-29家族成员在循环拉伸力和压缩力作用下发生上调和下调,通过直接靶向ECM基因Col1A1、Col3A1和Col5A1,作为咀嚼或正畸牙齿移动期间ECM稳态的调节剂,影响PDLC成骨[50]

研究已证实miR-132在细胞分化中的核心作用,Qi等[51]使用流体剪切力诱导PDLC成骨分化,miR-132与未处理组相比显著性上调,表明了其在成骨分化中的特定作用。此外,miR-132可以激活经典的磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3-K)/蛋白激酶B(protein kinase B,PKB)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号轴,调控流体剪切力诱导的人PDLC成骨分化。控制PDLC中miR-132和mTOR信号通路之间的平衡可能潜在影响牙周再生效果。

Chang等[9]分析拉伸力诱导人PDLC成骨分化的差异性miRNA-mRNA表达谱,推测miR-195-5p、miR-424-5p、miR-1297、miR-3607-5p、miR-145-5p、miR-4328和miR-224-5p可能作为核心miRNA,在PDLC成骨分化过程中发挥关键性调控作用。其中,miR-195-5p被证实响应于拉伸应力显著下调,且与成骨分化呈负相关,机械敏感性miR-195-5p直接靶向Wnt-3a、FGF2和BMP受体-1A(bone morphogenetic protein receptor-1A,BMPR1A),抑制PDLC成骨分化[52]

在牙周膜来源细胞成骨分化过程中,许多miRNA能够响应矿化或机械力的诱导发生显著改变,靶向相关成骨基因或相关通路,发挥不容忽视的调控作用,有望为牙周再生和正畸治疗提供新思路。

3. lncRNA在人牙周膜来源细胞成骨分化中的作用

lncRNA与miRNA同属ncRNA,是一类转录本长度超过200个核苷酸的非编码RNA,参与各种生理和病理过程中的基因调控、细胞发育、组织形成和代谢。miRNA往往直接结合靶基因mRNA,在转录后水平抑制靶基因表达,与之不同,lncRNA对靶基因mRNA的调控机制更为复杂,可在转录后水平和转录水平通过多种机制调节靶基因表达,实现对人牙周膜来源细胞的成骨分化的重要调控作用[5]

3.1. 转录后水平调控

近年来,竞争性内源RNA(competing endogenous RNAs,ceRNA)作为miRNA-靶基因环路的新参与者逐渐崭露头角。ceRNA通过miRNA应答元件竞争性结合miRNA,影响miRNA导致的基因沉默,许多lncRNA已被证实作为ceRNA在转录后水平调节成骨过程[8]

抗分化非编码RNA(anti-differentiation noncoding RNA,ANCR)是新发现的lncRNA之一,在干细胞分化过程中被下调[53]。下调的ANCR可激活Wnt通路,促进PDLSC成骨分化[54]。ANCR已被证实作为miR-758海绵发挥作用,miR-758靶向Notch2抑制Notch2-Wnt/β-catenin通路,过表达的ANCR通过lncRNA-ANCR/miR-758/Notch2轴抑制PDLSC成骨[55]

PCAT1是一种与骨肉瘤增殖、侵袭和转移相关的lncRNA[56]。lncRNA-PCAT1可以作为ceRNA结合miR-106-5p,逆转其靶向BMP-2和Smad4的抑制作用,促进PDLSC成骨分化[57]

研究[58]报道,在牙周炎患者PDLSC中新发现的lncRNA ENST00000446358(lncRNA-POIR)与miR-182相互抑制,调节miR-182的靶基因叉头转录因子(forkhead box protein O1,FoxO1),抑制Wnt通路,从而增强成骨效应。此外,炎症期间NF-κB通路的异常激活使miR-182表达上调,导致lncRNA-POIR-miR-182网络失调,影响人PDLSC的成骨分化。

邹宛桦等[59]通过慢病毒上调及下调炎性PDLSC中lncRNA linc-01135的表达,linc-01135可以作为miR-17-5p、miR-106b-5p的ceRNA,在12%拉伸力下促进成骨。

Zhang等[60]整合出PDLSC成骨分化的lncRNA表达谱,细胞子集由未分化PDLSC(undifferentiated PDLSC,uPDLSC)、不含炎症因子TNF-α刺激的分化PDLSC(differentiated PDLSC without TNF-αstimulation,dPDLSC)和TNF-α刺激分化的PDLSC(differentiated PDLSC under TNF-α stimulation,TNF-α-dPDLSC)构成,鉴定出63种lncRNA在PDLSC群体中高度表达;发现uPDLSC和dPDLSC间407个lncRNA差异性表达,uPDLSC和TNF-α-PDLSC间318个lncRNA差异性表达;揭示出lncRNA作为ceRNA结合miRNA间接调节mRNA的复杂机制,发现了464个竞争性lncRNA-mRNA,其呈现多对多的关系,倾向于远程调节。

3.2. 转录水平调控

lncRNA能够直接影响靶基因的转录,或通过调节相应蛋白活性调控基因转录[8]

研究[61]发现,在人PDLSC成骨分化时程中,上调的lncRNA MEG8和MIR22HG与4种成骨mRNA时间表达模式高度一致,分别为编码Ⅵ型胶原α1链的COL6A1、人多功能蛋白聚糖(versican,VCAN)、核糖体结合蛋白1(ribosome-binding protein 1,RRBP1)和cAMP应答元件结合蛋白3样1(cAMP responsive element binding protein 3 like 1,CREB3L1),高表达MEG8和MIR22HG显著上调成骨标志物的表达,表明其具有促成骨分化的潜能。

母系表达基因3(maternally expressed gene 3,MEG3)是一种肿瘤抑制基因,可促进间充质干细胞的成骨分化[62],在人PDLC成骨分化后下调,过表达lncRNA MEG3与BMP2 mRNA竞争异质性胞核核糖核蛋白Ⅰ(heterogeneous nuclear ribonucleoproteinⅠ,hnRNPⅠ),抑制PDLC成骨分化[63]

He等[64]研究发现,成骨诱导显著上调的lncRNA牛磺酸上调基因1(taurine upregulated gene 1,TUG1)靶向lin-28同源物A Lin28A,二者相互正调节促进PDLSC成骨。

徐悦蓉等[65]运用慢病毒上调及下调炎性PDLSC的lncRNA-7460,发现lncRNA-7460在体外促成骨,但作用机制尚未完全阐明。

4. circRNA在人牙周膜来源细胞成骨分化中的作用

circRNA是一类特殊的ncRNA,由一个以上具有共价闭环的外显子序列构成,是RNA分子生物学领域新兴的研究热点。不同于传统线性RNA,这种环状结构不受RNA外切酶影响,更具稳定性[5]。circRNA可作为ceRNA参与调控人牙周膜来源细胞的成骨过程。

Gu等[66]鉴定出PDLSC成骨分化中147个lncRNA、1 382个circRNA与148个miRNA组合,并与744个mRNA竞争miRNA结合位点。其中,lncRNA TCONS_00212979、TCONS_00212984及circRNA BANP、circRNA ITCH分别与miR-34a、miR-146a相互作用,预测miR-34a靶向双特异性蛋白磷酸酶1(dual specificity protein phosphatase 1,DUSP1)、凋亡相关因子(factor associated suicide,FAS)和Ras相关C3肉毒杆菌毒素底物1(Ras-related C3 botulinum toxin substrate 1,RAC1),miR-146a靶向血小板源性生长因子受体α多肽(platelet-derived growth factor receptor alpha,PDGFRA)、TGF-β受体2(transforming growth factor beta receptorⅡ,TGFBR2)和Myc,通过MAPK通路调节PDLSC成骨分化。

反义小脑变性相关蛋白1转录物(cerebellar degeneration-related protein 1 transcript,CDR1as)具有约70个保守的miR-7结合位点,作为miR-7海绵执行生物功能[67]。近来,CDR1as被证实作用于miR-7的上游,抑制miR-7靶向生长分化因子(growth differentiation factor,GDF)5的作用,上调的GDF5增强Smad1/5/8、p38 MAPK的磷酸化,进而促进PDLSC成骨分化[68]

在矿化或施加机械力的成骨诱导条件下,lncRNA/circRNA-miRNA在牙周来源细胞的成骨分化中构成复杂但有迹可循的重要调控网络,为牙周再生提供新策略。

5. 前景及展望

综上所述,在矿化和机械诱导下,miRNA、lncRNA、circRNA均可作为牙周膜来源细胞成骨分化中重要的调节因子发挥作用。miRNA往往直接作用于成骨靶基因mRNA;lncRNA既可与成骨靶基因mRNA结合,也可以作为ceRNA竞争性结合miRNA,实现转录或转录后水平的调控;circRNA主要作为ceRNA竞争性抑制miRNA。三者相互交联,构成巨大而复杂的lncRNA/circRNA-miRNA调控网络,对牙周膜来源细胞的成骨分化兼具促进与抑制效应。

鉴定牙周膜来源细胞在成骨分化过程差异性表达的ncRNA并揭示其调控机制,是牙周再生分子医学领域的关键科学问题之一。但目前,对相关ncRNA尤其是对circRNA的研究尚属萌芽阶段,亟待进一步的探索以完善牙周再生RNA信息库。PDLC/PDLSC成骨相关ncRNA可以作为牙周病诊断和预后评估的生物标志物,调控其表达水平有望前瞻性地实现人牙周膜来源细胞的定向成骨分化,为研发治疗牙周病及骨相关疾病的药物提供候选靶点,具有广阔的应用前景。然而,以ncRNA为靶点的药物临床转化面临着几大问题,包括ncRNA的有效载体、化学修饰、给药途径、药物靶向性、药物毒性等,仍然需要研究人员的不懈努力和实践求是。相信在不远的未来,随着抗炎性骨破坏药物研发从临床前到临床转化的成熟,基于牙周膜来源细胞成骨分化相关的ncRNA,即以lncRNA/circRNA-miRNA网络中某个或多个效应分子为靶点的药物必将为人类的牙周再生及骨骼健康带来突破性进展。

Funding Statement

[基金项目] 浙江省基础公益研究计划(LGF18H140003)

Supported by: Zhejiang Basic Public Welfare Research Program (LGF18H140003).

Footnotes

利益冲突声明:作者声明本文无利益冲突。

References

  • 1.Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases[J] Lancet. 2005;366(9499):1809–1820. doi: 10.1016/S0140-6736(05)67728-8. [DOI] [PubMed] [Google Scholar]
  • 2.Nakahara T, Nakamura T, Kobayashi E, et al. In situ tissue engineering of periodontal tissues by seeding with periodontal ligament-derived cells[J] Tissue Eng. 2004;10(3/4):537–544. doi: 10.1089/107632704323061898. [DOI] [PubMed] [Google Scholar]
  • 3.Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering[J] Periodontol 2000. 2015;67(1):251–267. doi: 10.1111/prd.12070. [DOI] [PubMed] [Google Scholar]
  • 4.Bright R, Hynes K, Gronthos S, et al. Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review[J] J Periodontal Res. 2015;50(2):160–172. doi: 10.1111/jre.12205. [DOI] [PubMed] [Google Scholar]
  • 5.Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J] Physiol Rev. 2016;96(4):1297–1325. doi: 10.1152/physrev.00041.2015. [DOI] [PubMed] [Google Scholar]
  • 6.Stoecklin-Wasmer C, Guarnieri P, Celenti R, et al. MicroRNAs and their target genes in gingival tissues[J] J Dent Res. 2012;91(10):934–940. doi: 10.1177/0022034512456551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Zou Y, Li C, Shu F, et al. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis[J] J Cell Biochem. 2015;116(4):640–647. doi: 10.1002/jcb.25015. [DOI] [PubMed] [Google Scholar]
  • 8.Jin D, Wu X, Yu H, et al. Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis[J] Am J Transl Res. 2018;10(5):1498–1510. [PMC free article] [PubMed] [Google Scholar]
  • 9.Chang M, Lin H, Luo M, et al. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells[J] In Vitro Cell Dev Biol Anim. 2015;51(8):797–807. doi: 10.1007/s11626-015-9892-0. [DOI] [PubMed] [Google Scholar]
  • 10.Hao Y, Ge Y, Li J, et al. Identification of microRNAs by microarray analysis and prediction of target genes involved in the osteogenic differentiation of human periodontal ligament stem cells[J] J Periodontol. 2017;88(10):1105–1113. doi: 10.1902/jop.2017.170079. [DOI] [PubMed] [Google Scholar]
  • 11.Qu Q, Fang F, Wu B, et al. Potential role of long non-Coding RNA in osteogenic differentiation of human periodontal ligament stem cells[J] J Periodontol. 2016;87(7):e127–e137. doi: 10.1902/jop.2016.150592. [DOI] [PubMed] [Google Scholar]
  • 12.Huang Y, Zhang Y, Li X, et al. The long non-coding RNA landscape of periodontal ligament stem cells subjected to compressive force[J] Eur J Orthod. 2018 doi: 10.1093/ejo/cjy057. [DOI] [PubMed] [Google Scholar]
  • 13.Zheng Y, Li X, Huang Y, et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis[J] J Periodontol. 2017;88(9):906–914. doi: 10.1902/jop.2017.170078. [DOI] [PubMed] [Google Scholar]
  • 14.Wang H, Feng C, Jin Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J] J Cell Physiol. 2018 doi: 10.1002/jcp.27686. [DOI] [PubMed] [Google Scholar]
  • 15.Walsh MC, Lee JE, Choi Y. Tumor necrosis factor receptorassociated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system[J] Immunol Rev. 2015;266(1):72–92. doi: 10.1111/imr.12302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hung PS, Chen FC, Kuang SH, et al. miR-146a induces differentiation of periodontal ligament cells[J] J Dent Res. 2010;89(3):252–257. doi: 10.1177/0022034509357411. [DOI] [PubMed] [Google Scholar]
  • 17.Tang L, Li X, Bai Y, et al. MicroRNA-146a negatively regulates the inflammatory response to Porphyromonas gingivialis in human periodontal ligament fibroblast via TRAF6/p38 pathway[J] J Periodontol. 2018 doi: 10.1002/JPER.18. [DOI] [PubMed] [Google Scholar]
  • 18.朱 东望, 薛 栋, 赖 文, et al. 微RNA-146a反转牙龈卟啉单胞菌脂多糖对人牙周膜细胞成骨的抑制作用[J] 中华口腔医学杂志. 2018;53(11):753–759. [Google Scholar]; Zhu DW, Xue D, Lai W, et al. microRNA-146a reverses the inhibitory effects of Porphyromonas gingivalis lipopolysaccharide on osteogenesis of human periodontal ligament cells[J] Chin J Stomatol. 2018;53(11):753–759. doi: 10.3760/cma.j.issn.1002-0098.2018.11.007. [DOI] [PubMed] [Google Scholar]
  • 19.Liu Y, Liu W, Hu C, et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis[J] Stem Cells. 2011;29(11):1804–1816. doi: 10.1002/stem.728. [DOI] [PubMed] [Google Scholar]
  • 20.Xing L, Zhang M, Chen D. Smurf control in bone cells[J] J Cell Biochem. 2010;110(3):554–563. doi: 10.1002/jcb.22586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liu W, Liu Y, Guo T, et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J] Cell Death Dis. 2013;4(3):e539. doi: 10.1038/cddis.2013.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Zhang JF, Fu WM, He ML, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J] RNA Biol. 2011;8(5):829–838. doi: 10.4161/rna.8.5.16043. [DOI] [PubMed] [Google Scholar]
  • 23.杨 倩娟, 刘 文佳, 常 文悦, et al. miR-20a对人炎症牙周膜干细胞成骨分化能力的影响[J] 实用口腔医学杂志. 2016;32(2):186–189. [Google Scholar]; Yang QJ, Liu WJ, Chang WY, et al. The effects of miR-20a on the osteogenic differentiation potential of the inflammatory PDLSCs[J] J Pract Stomatol. 2016;32(2):186–189. [Google Scholar]
  • 24.杨 倩娟. miR-17~92家族介导的HDAC9对炎症牙周膜干细胞成骨分化能力的影响[D] 西安: 第四军医大学; 2016. [Google Scholar]; Yang QJ. miR-17-92 cluster mediated HDAC9 effects on theosteogenic capability ofthe inflammatory PDLSCs[D] Xi'an: The Fourth Military Medical University; 2016. [Google Scholar]
  • 25.邓 超, 伍 燕, 杨 琨, et al. 微小RNA-17在糖基化终末产物刺激下人牙周膜干细胞骨向分化过程中的调控作用[J] 华西口腔医学杂志. 2015;33(1):21–24. doi: 10.7518/hxkq.2015.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]; Deng C, Wu Y, Yang K, et al. Effect of microRNA-17 on osteogenic differentiation of advanced glycation end products-stimulated human periodontal ligament stem cells[J] West China J Stomatol. 2015;33(1):21–24. doi: 10.7518/hxkq.2015.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.伍 燕, 邓 超, 杨 琨, et al. 糖基化终末产物对人牙周膜干细胞骨向分化过程中的Wnt经典信号通路研究[J] 华西口腔医学杂志. 2015;33(6):627–632. doi: 10.7518/hxkq.2015.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]; Wu Y, Deng C, Yang K, et al. Canonical Wnt signaling pathway of the osteogenic differentiation of human ligament stem cells induced by advanced glycation end products[J] West China J Stomatol. 2015;33(6):627–632. doi: 10.7518/hxkq.2015.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Yang N, Li Y, Wang G, et al. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 sunctionalaxis[J] Differentiation. 2017;97:33–43. doi: 10.1016/j.diff.2017.08.004. [DOI] [PubMed] [Google Scholar]
  • 28.Mahoney Rogers AA, Zhang J, Shim K. Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling[J] Dev Biol. 2011;353(1):94–104. doi: 10.1016/j.ydbio.2011.02.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Hu CH, Sui BD, Du FY, et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice[J] Sci Rep. 2017;7:43191. doi: 10.1038/srep43191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wei F, Yang S, Guo Q, et al. MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5[J] Sci Rep. 2017;7(1):16608. doi: 10.1038/s41598-017-16720-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Li C, Li C, Yue J, et al. miR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells[J] Mol Med Rep. 2012;5(5):1340–1346. doi: 10.3892/mmr.2012.797. [DOI] [PubMed] [Google Scholar]
  • 32.Wei F, Liu D, Feng C, et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells[J] Stem Cells Dev. 2015;24(3):312–319. doi: 10.1089/scd.2014.0191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation[J] Nat Med. 2013;19(1):93–100. doi: 10.1038/nm.3026. [DOI] [PubMed] [Google Scholar]
  • 34.Yu S, Zhu K, Lai Y, et al. ATF4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells[J] Int J Biol Sci. 2013;9(3):256–266. doi: 10.7150/ijbs.5898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yao S, Zhao W, Ou Q, et al. MicroRNA-214 suppresses osteogenic differentiation of human periodontal ligament stem cells by targeting ATF4[J] Stem Cells Int. 2017;2017:3028647. doi: 10.1155/2017/3028647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Cao F, Zhan J, Chen X, et al. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β catenin signaling[J] Mol Med Rep. 2017;16(6):9301–9308. doi: 10.3892/mmr.2017.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Wang H, Xie Z, Hou T, et al. MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b[J] Cell Physiol Biochem. 2017;41(2):530–542. doi: 10.1159/000457013. [DOI] [PubMed] [Google Scholar]
  • 38.Haemmig S, Baumgartner U, Glück A, et al. miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas[J] Cell Death Dis. 2014;5(6):e1279. doi: 10.1038/cddis.2014.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Xue N, Qi L, Zhang G, et al. miRNA-125b regulates osteogenic differentiation of periodontal ligament cells through NKIRAS2/NF-κB pathway[J] Cell Physiol Biochem. 2018;48(4):1771–1781. doi: 10.1159/000492350. [DOI] [PubMed] [Google Scholar]
  • 40.João SM, Arana-Chavez VE. Expression of connexin 43 and ZO-1 in differentiating ameloblasts and odontoblasts from rat molar tooth germs[J] Histochem Cell Biol. 2003;119(1):21–26. doi: 10.1007/s00418-002-0482-3. [DOI] [PubMed] [Google Scholar]
  • 41.杜 莉, 曹 伟靖, 田 莹, et al. MicroRNA-125b对人牙周膜干细胞成骨分化的影响[J] 上海口腔医学. 2018;27(1):11–17. [PubMed] [Google Scholar]; Du L, Cao WJ, Tian Y, et al. MicroRNA-125b regulates osteogenic differentiation of human periodontal ligament stem cells[J] Shanghai J Stomatol. 2018;27(1):11–17. [PubMed] [Google Scholar]
  • 42.Ge Y, Li J, Hao Y, et al. MicroRNA-543 functions as an osteogenesis promoter in human periodontal ligament-derived stem cells by inhibiting transducer of ERBB2, 2[J] J Periodontal Res. 2018;53(5):832–841. doi: 10.1111/jre.12572. [DOI] [PubMed] [Google Scholar]
  • 43.Yan G, Wang X, Yang F, et al. MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6[J] J Cell Biochem. 2017;118(7):1653–1658. doi: 10.1002/jcb.25931. [DOI] [PubMed] [Google Scholar]
  • 44.Diomede F, Merciaro I, Martinotti S, et al. miR-2861 is involved in osteogenic commitment of human periodontal ligament stem cells grown onto 3D scaffold[J] J Biol Reg Home Ag. 2016;30(4):1009–1018. [PubMed] [Google Scholar]
  • 45.Gay I, Cavender A, Peto D, et al. Differentiation of human dental stem cells reveals a role for microRNA-218[J] J Periodontal Res. 2014;49(1):110–120. doi: 10.1111/jre.12086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Chen Z, Liu HL. Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal ligament-derived stem cell proliferation, migration, and osteogenic differentiation[J] J Oral Pathol Med. 2016;46(4):313–320. doi: 10.1111/jop.12492. [DOI] [PubMed] [Google Scholar]
  • 47.赵 蔚光, 屈 爽, 尚 红卫, et al. MicroRNA-29家族在骨组织生理及病理进程中的作用研究进展[J] 牙体牙髓牙周病学杂志. 2017;27(11):664–668. [Google Scholar]; Zhao WG, Qu S, Shang HW, et al. The study progression of the function of MicroRNA-29 in bone diseases[J] Chin J Conserv Dent. 2017;27(11):664–668. [Google Scholar]
  • 48.Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J] Eur J Orthod. 2006;28(3):221–240. doi: 10.1093/ejo/cjl001. [DOI] [PubMed] [Google Scholar]
  • 49.Xu H, Han X, Meng Y, et al. Favorable effect of myofibroblasts on collagen synthesis and osteocalcin production in the periodontal ligament[J] Am J Orthod Dentofacial Orthop. 2014;145(4):469–479. doi: 10.1016/j.ajodo.2013.12.019. [DOI] [PubMed] [Google Scholar]
  • 50.Chen Y, Mohammed A, Oubaidin M, et al. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells[J] Gene. 2015;566(1):13–17. doi: 10.1016/j.gene.2015.03.055. [DOI] [PubMed] [Google Scholar]
  • 51.Qi L, Zhang Y. The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway[J] Cell Physiol Biochem. 2014;33(2):433–445. doi: 10.1159/000358624. [DOI] [PubMed] [Google Scholar]
  • 52.Chang M, Lin H, Fu H, et al. MicroRNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading[J] J Cell Physiol. 2017;232(12):3762–3774. doi: 10.1002/jcp.25856. [DOI] [PubMed] [Google Scholar]
  • 53.Kretz M, Webster DE, Flockhart RJ, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR[J] Genes Dev. 2012;26(4):338–343. doi: 10.1101/gad.182121.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Jia Q, Jiang W, Ni L. Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells[J] Arch Oral Biol. 2015;60(2):234–241. doi: 10.1016/j.archoralbio.2014.10.007. [DOI] [PubMed] [Google Scholar]
  • 55.Peng W, Deng W, Zhang J, et al. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758[J] Biochem Biophys Res Commun. 2018;503(2):815–821. doi: 10.1016/j.bbrc.2018.06.081. [DOI] [PubMed] [Google Scholar]
  • 56.Zhang X, Zhang Y, Mao Y, et al. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma[J] Onco Targets Ther. 2018;11:629–638. doi: 10.2147/OTT.S152063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.贾 搏. LncRNA-PCAT1对人牙周膜干细胞成骨分化调控机制的研究[D] 广州: 南方医科大学; 2018. [Google Scholar]; Jia B. A study on mechanism of LncRNA-PCAT1 in regulating osteogenic differentiation of human periodontal ligament stem cells[D] Guangzhou: Southern Medical University; 2018. [Google Scholar]
  • 58.Wang L, Wu F, Song Y, et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients[J] Cell Death Dis. 2016;7(8):e2327. doi: 10.1038/cddis.2016.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.邹 宛桦, 秦 文, 徐 悦蓉, et al. 长链非编码RNAlinc-01135对静态牵张力作用下人炎症牙周膜干细胞成骨分化的影响[J] 实用口腔医学杂志. 2018;34(2):193–197. [Google Scholar]; Zou WH, Qin W, Xu YR, et al. The effects of long non-coding RNA linc-01135 on the osteogenic differentiation capability of human inflammatory PDLSCs under static mechanical strain loading[J] J Pract Stomatol. 2018;34(2):193–197. [Google Scholar]
  • 60.Zhang Q, Chen L, Cui S, et al. Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment[J] Sci Rep. 2017;7(1):13991. doi: 10.1038/s41598-017-14451-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zheng Y, Li X, Huang Y, et al. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells[J] Peer J. 2018;6(4):e5214. doi: 10.7717/peerj.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Zhuang W, Ge X, Yang S, et al. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription[J] Stem Cells. 2015;33(6):1985–1997. doi: 10.1002/stem.1989. [DOI] [PubMed] [Google Scholar]
  • 63.Liu Y, Zeng X, Miao J, et al. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells[J] J Cell Physiol. 2018 doi: 10.1002/jcp.27248. [DOI] [PubMed] [Google Scholar]
  • 64.He Q, Yang S, Gu X, et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A[J] Cell Death Dis. 2018;9(5):455. doi: 10.1038/s41419-018-0484-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.徐 悦蓉, 邹 宛桦, 秦 文, et al. LncRNA-7460调控炎症来源牙周膜干细胞成骨分化的研究[J] 实用口腔医学杂志. 2018;34(3):327–331. [Google Scholar]; Xu YR, Zou WH, Qin W, et al. Long non-coding RNA 7460 regulates the osteogenic differentiation of hPDLSCs[J] J Pract Stomatol. 2018;34(3):327–331. [Google Scholar]
  • 66.Gu X, Li M, Jin Y, et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J] BMC Genet. 2017;18(1):100. doi: 10.1186/s12863-017-0569-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J] Nature. 2013;495(7441):333–338. doi: 10.1038/nature11928. [DOI] [PubMed] [Google Scholar]
  • 68.Li X, Zheng Y, Zheng Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J] Stem Cell Res Ther. 2018;9(1):232. doi: 10.1186/s13287-018-0976-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES