Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2020 Jun;38(3):245–249. [Article in Chinese] doi: 10.7518/hxkq.2020.03.003

RAB1A对舌鳞状细胞癌细胞增殖、侵袭和转移的影响

Effects of RAB1A on the proliferation, invasion, and metastasis of tongue squamous cell carcinoma cells

Xuehui Sun 1, Xin Fan 2, Kaili Hu 3, Wenting Hu 1,
Editor: 杜 冰
PMCID: PMC7296372  PMID: 32573129

Abstract

Objective

This study aimed to investigate the molecular mechanism of RAB1A in the proliferation, invasion, and metastasis of human tongue squamous cell carcinoma.

Methods

Western blot was used to detect the expression of RAB1A protein in human normal tongue epithelial cells (Hacat) and tongue squamous cell carcinoma Tca8113. The changes in RAB1A after plasmid transfection were also studied. The Tca8113 cells were named SiRAB1A/Tca8113 after RAB1A plasmid transfection. The expression of the epithelial–mesenchymal transition (EMT)-related markers of SiRAB1A/Tca8113 cells was also detected. CCK-8 assay was used to detect the proliferation of SiRAB1A/Tca8113 cells. Transwell and wound healing assays were used to detect the invasive and metastatic abilities of SiRAB1A/Tca8113 cells, respectively.

Results

Western blot results showed that the expression of RAB1A in tongue squamous cell carcinoma cells was significantly higher than that in Hacat. RAB1A decreased significantly after SiRAB1A plasmid transfection. CCK-8 proliferation assay showed that the proliferation of SiRAB1A/Tca8113 cells also decreased significantly. Transwell and wound healing assays demonstrated that the invasive and metastatic abilities of SiRAB1A/Tca8113 cells decreased significantly, respectively. In addition, Western blot results demonstrated that RAB1A deletion significantly increased the expression of E-cadherin and inhibited the expression of Vimentin.

Conclusion

RAB1A could promote the proliferation, invasion, and metastasis of tongue squamous cell carcinoma cells.

Keywords: tongue squamous cell carcinoma, RAB1A, proliferation, invasion, metastasis, epithelial-mesenchymal transition


2012年全球癌症统计显示,头颈部鳞状细胞癌已成为全身第六大高发病率恶性肿瘤[1],而舌鳞状细胞癌是其中最常见的恶性肿瘤之一,其发病率在近些年呈逐渐增加趋势[2]。据美国癌症协会报道,2019年度美国新增口腔癌患者53 000人,舌鳞状细胞癌患者占32.19%,新增因口腔癌死亡人数10 860人,其中舌鳞状细胞癌患者占27.81%[3]。舌鳞状细胞癌虽然被认为是口腔鳞状细胞癌或头颈部鳞状细胞癌的一种,但却具有特有的组织学和流行病学特征[4]。因舌体复杂的淋巴网络和肌肉结构,舌鳞状细胞癌具有复发、转移率高、预后差的特点[5]。因此,深入研究影响舌鳞状细胞癌增殖、侵袭和转移的重要分子机制,将为舌鳞状细胞癌早期诊断及靶向治疗提供理论基础。

RAB1A是Rab(Ras-related protein)蛋白家族成员之一,在恶性肿瘤增殖、侵袭和转移的分子机制中发挥重要功能[6]。研究发现,RAB1A在结直肠癌[7]、肝细胞癌[8]、胶质瘤[9]等异常表达,并与不良预后紧密相关。Shimada等[10]有报道RAB1A在舌鳞状细胞癌中也异常表达,但对RAB1A在舌鳞状细胞癌增殖、侵袭和转移方面的作用并未做深入的研究。本文在此基础上,进一步探讨RAB1A在舌鳞状细胞癌细胞增殖、侵袭和转移中发挥的功能。

1. 材料和方法

1.1. 材料

CCK-8试剂盒(北京索莱宝科技有限公司),Matrigel(BD公司,美国),Transwell小室(Corning公司,美国),兔抗人钙黏蛋白(E-cadherin)和波形蛋白(Vimentin)单克隆抗体、兔抗人RAB1A多克隆抗体(Abcam公司,英国),鼠抗人β-actin单克隆抗体(Cell Signaling Technology公司,美国),人正常舌上皮细胞Hacat及舌鳞状细胞癌细胞Tca8113均为潍坊医学院医学研究实验中心保存。

1.2. 细胞培养

Hacat和Tca8113细胞按照常规方法和条件进行培养。待细胞密度达到80%~90%时用于后续实验。RAB1A敲除实验方法参照文献[11]。舌鳞状细胞癌细胞转染分组如下。1)Tca8113组:常规培养,不做处理;2)Scr/Tca8113组:转入敲除RAB1A的对照质粒;3)SiRAB1A/Tca8113组:转入敲除RAB1A质粒。

1.3. Transwell侵袭实验

参照文献[12],取各组细胞150 µL悬液加入Transwell上室,下室加入含10%胎牛血清(fetal bovine serum,FBS)的培养基。将Transwell板放置细胞培养箱中继续培养24 h,用棉签擦去上室内基质胶,PBS清洗3次。无水甲醇固定10 min,吉姆萨染色35 min,PBS清洗3次。室温晾干后,光镜下随机选取10个视野拍照计数,取平均值进行统计学分析。

1.4. 伤口愈合实验

将各组细胞悬液接种到六孔板中常规培养24 h,当细胞密度达到70%~80%时,用10 µL的枪头在六孔板细胞中间轻划一条直线,PBS清洗未贴壁细胞,更换含1%FBS的培养基继续培养。光镜拍照,结果用Image J软件计算细胞迁移的距离进行统计学分析。

1.5. CCK-8增殖实验

将各组细胞悬液100 µL接种在96孔板中继续培养,每孔加入10 µL CCK-8溶液。将培养板在培养箱内继续孵育1 h,用酶标仪测定450 nm处的光密度(optical density,OD)值来反应各组细胞的增殖能力。

1.6. Western blot

将各组细胞加入RIPA蛋白裂解液,蛋白抽提,进行12%十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gelelectrophoresis,SDS-PAGE),转膜后使用5%脱脂奶粉封闭1 h,一抗4 °C过夜;TBST洗膜3次,每次10 min,对应二抗室温孵育1 h,TBST洗膜,3次,每次10 min,加电化学发光(electrochemiluminescence,ECL),显影,定影,X胶片曝光。一抗浓度:E-cadherin(1︰1 000)、N-cadherin(1︰1 000)、Vimentin(1︰1 000)、RAB1A(1︰1 000)、β-actin(1︰1 000)。

1.7. 统计学分析

采用SPSS 18.0统计学软件对数据进行分析,各组间采用独立样本t检验,P<0.05认为差异具有统计学意义。

2. 结果

2.1. 人正常舌上皮细胞和舌鳞状细胞癌细胞中RAB1A的表达

Western blot检测Hacat和Tca8113细胞中RAB1A的表达情况,结果显示其在Tca8113细胞中的表达明显高于Hacat细胞(图1)。实验设计RAB1A的2个敲除位点分别转染细胞,转染后的细胞分别命名为SiRAB1A1#/Tca8113和SiRAB1A2#/Tca8113。质粒转染后,SiRAB1A1#/Tca8113和SiRAB1A2#/Tca8113中RAB1A蛋白的表达与Scr/Tca8113相比明显降低,结果表明转染成功(图1)。而在SiRAB1A1#/Tca8113中敲除效率最高,所以将其用于后期功能实验,命名为SiRAB1A/Tca8113。

图 1. RAB1A在各组细胞中的表达.

图 1

Fig 1 The expression of RAB1A protein in various cells

左:RAB1A蛋白在Hacat和Tca8113中的表达;右:RAB1A蛋白在Tca8113、Scr/Tca8113、SiRAB1A1#/Tca8113和SiRAB1A2#/Tca8113中的表达;上:电泳图;下:蛋白的相对表达量。*P<0.05。

2.2. 敲除RAB1A对Tca8113细胞增殖能力的影响

应用CCK-8细胞增殖实验检测RAB1A对Tca8113细胞增殖能力的变化。结果显示,SiRAB1A/Tca8113细胞比Scr/Tca8113细胞增殖能力明显减弱,说明敲除RAB1A可抑制Tca8113细胞的增殖能力(图2)。

图 2. RAB1A对Scr/Tca8113和SiRAB1A/Tca8113细胞增殖能力的影响.

图 2

Fig 2 Influence of RAB1A on cell proliferation of Scr/Tca8113 and SiRAB1A/Tca8113 cells

*P<0.05。

2.3. 敲除RAB1A对Tca8113细胞侵袭能力的影响

Transwell侵袭实验结果显示,SiRAB1A/Tca8113组细胞比Scr/Tca-8113组细胞侵袭能力明显降低,说明敲除RAB1A可抑制Tca8113细胞的侵袭能力(图3)。

图 3. RAB1A对Scr/Tca8113和SiRAB1A/Tca8113细胞侵袭能力的影响.

图 3

Fig 3 Influence of RAB1A on the capacity of invasion of Scr/Tca8113 and SiRAB1A/Tca8113 cells

左:Scr/Tca8113细胞;中:SiRAB1A/Tca8113细胞;右:Scr/Tca8113和SiRAB1A/Tca8113细胞侵袭数,*P<0.05。

2.4. 敲除RAB1A对Tca8113细胞迁移运动能力的影响

伤口愈合实验检测Scr/Tca8113和SiRAB1A/Tca8113细胞迁移运动能力的变化。结果显示,SiRAB1A/Tca8113组细胞比Scr/Tca-8113组细胞迁移运动的距离明显缩短,说明敲除RAB1A可抑制Tca8113细胞的迁移运动能力(图4)。

图 4. RAB1A对Scr/Tca8113和SiRAB1A/Tca8113细胞迁移运动能力的影响.

图 4

Fig 4 Influence of RAB1A on the capacity of migration of Scr/ Tca8113 and SiRAB1A/Tca8113 cells

*P<0.05。

2.5. RAB1A对Tca8113细胞上皮-间质转化(epithelial-mesenchymal transition,EMT)的影响

Western blot实验检测Scr/Tca8113和SiRAB1A/Tca8113细胞中EMT相关标志物的变化。结果显示,与Scr/Tca8113组细胞相比,SiRAB1A/Tca8113组细胞中Vimentin的表达水平显著降低,而E-cadherin的表达水平明显增加,说明敲除RAB1A可抑制Tca8113细胞发生EMT(图5)。

图 5. RAB1A对Scr/Tca8113和SiRAB1A/Tca8113细胞EMT的影响.

图 5

Fig 5 Influence of RAB1A on the EMT of Scr/Tca8113 and SiRAB1A/Tca8113 cells

上:E-cadherin和Vimentin蛋白的电泳图;下:E-cadherin和Vimentin蛋白在Scr/Tca8113和SiRAB1A/Tca8113细胞中的相对表达量,*P<0.05。

3. 讨论

本实验结果表明,敲除RAB1A对舌鳞状细胞癌细胞的增殖、侵袭、迁移及EMT均具有抑制作用,其对舌癌细胞作用机制可能有关键影响。RAB1A是具有三磷酸鸟苷(guanosine triohosphte,GTP)酶活性的GTP结合蛋白,Rab家族成员之一,能够通过结合相关蛋白参与和调节细胞信号通路传导以及细胞自噬[13]。同时,它会定位于特定的细胞内参与囊泡运输和膜转运的不同过程[14]。前期研究[15]发现敲除胶质瘤细胞U87中的RAB1A可促进细胞凋亡,抑制细胞增殖,而miR-1202可通过下调RAB1A蛋白的表达,有效抑制胶质瘤细胞的增殖能力。RAB1A也可以促进肝细胞癌增殖能力[16]。Xu等[17]检测RAB1A在乳腺癌细胞系MDA-MB-231及BT-549中的作用,发现敲除RAB1A可有效抑制这2种乳腺癌细胞的增殖、细胞趋化、迁移及EMT。而且RAB1A可以通过激活雷帕霉素靶蛋白复合物1(mammalian target of rapamycin complex 1,mTORC1)信号通路来调控三阴乳腺癌的增殖、侵袭和转移能力。所有这些结果表明RAB1A在许多肿瘤中起癌基因的作用,能影响肿瘤的发生发展和EMT,与本实验结果具有一致性。

EMT是使上皮细胞失去极性及黏附能力从而获得间充质细胞浸润性和游走迁移能力的过程,是一种较为普遍的肿瘤细胞形态的转化。一旦发生转化,就能够促进肿瘤细胞的生长,导致细胞黏附能力减弱,细胞活力显著增强,从而引起肿瘤细胞的侵袭和迁移[18]。EMT被认为是引起肿瘤侵袭转移的重要分子机制之一,有研究[19]表明LncRNA-NKILA能够抑制EMT进而有效地抑制舌鳞状细胞癌细胞的转移和侵袭能力。LncRNA-MALAT1通过调节富含脯氨酸的小蛋白和Wnt/β-catenin信号通路诱导舌鳞状细胞癌细胞中的EMT,抑制舌鳞状细胞癌细胞发生凋亡同时增加其增殖能力[20][21]。本实验结果表明RAB1A在舌鳞状细胞癌细胞EMT过程中起着关键的作用。

综上所述,本实验证实RAB1A在舌鳞状细胞癌中异常表达并促进舌鳞状细胞癌发生EMT,进而促进其增殖、侵袭和迁移。通过探讨RAB1A对舌鳞状细胞癌的影响机制,可以为临床预防舌鳞状细胞癌病变发展提供一个重要的理论支撑和研究方向。

Funding Statement

[基金项目] 国家自然科学基金应急管理项目(81641111)

Supported by: The National Natural Science Foundation of China, Emergency Management Project (81641111)

Footnotes

利益冲突声明:作者声明本文无利益冲突。

References

  • 1.Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J] CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262. [DOI] [PubMed] [Google Scholar]
  • 2.Tota JE, Anderson WF, Coffey C, et al. Rising incidence of oral tongue cancer among white men and women in the United States, 1973-2012[J] Oral Oncol. 2017;67:146–152. doi: 10.1016/j.oraloncology.2017.02.019. [DOI] [PubMed] [Google Scholar]
  • 3.Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J] CA Cancer J Clin. 2019;69(1):7–34. doi: 10.3322/caac.21551. [DOI] [PubMed] [Google Scholar]
  • 4.Li R, Koch WM, Fakhry C, et al. Distinct epidemiologic characteristics of oral tongue cancer patients[J] Otolaryngol Head Neck Surg. 2013;148(5):792–796. doi: 10.1177/0194599813477992. [DOI] [PubMed] [Google Scholar]
  • 5.Jansen L, Buttmann-Schweiger N, Listl S, et al. Differences in incidence and survival of oral cavity and pharyngeal cancers between Germany and the United States depend on the HPV-association of the cancer site[J] Oral Oncol. 2018;76:8–15. doi: 10.1016/j.oraloncology.2017.11.015. [DOI] [PubMed] [Google Scholar]
  • 6.Li Y, Wang HY, Zheng XF. Rab1 GTPases as oncogene[J] Aging. 2015;7(11):897–898. doi: 10.18632/aging.100849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Thomas JD, Zhang YJ, Wei YH, et al. Rab1A is an mTORC1 activator and a colorectal oncogene[J] Cancer cell. 2016;30(1):181–182. doi: 10.1016/j.ccell.2016.06.014. [DOI] [PubMed] [Google Scholar]
  • 8.Xu BH, Li XX, Yang Y, et al. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A[J] Oncotarget. 2015;6(25):20813–20828. doi: 10.18632/oncotarget.5175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bao ZS, Li MY, Wang JY, et al. Prognostic value of a nine-gene signature in glioma patients based on mRNA expression profiling[J] CNS Neurosci Ther. 2014;20(2):112–118. doi: 10.1111/cns.12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Shimada K, Uzawa K, Kato M, et al. Aberrant expression of RAB1A in human tongue cancer[J] Br J Cancer. 2005;92(10):1915–1921. doi: 10.1038/sj.bjc.6602594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Yin C, Mou Q, Pan X, et al. MiR-577 suppresses epithelial-mesenchymal transition and metastasis of breast cancer by targeting Rab25[J] Thorac Cancer. 2018;9(4):472–479. doi: 10.1111/1759-7714.12612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Yin C, Zhang G, Sun R, et al. miR-185-5p inhibits F-actin polymerization and reverses epithelial mesenchymal transition of human breast cancer cells by modulating RAGE[J] Mol Med Rep. 2018;18(3):2621–2630. doi: 10.3892/mmr.2018.9294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Charng WL, Yamamoto S, Jaiswal M, et al. Drosophila Tempura, a novel protein prenyltransferase αsubunit, regulates notch signaling via Rab1 and Rab11[J] PLoS Biol. 2014;12(1):e1001777. doi: 10.1371/journal.pbio.1001777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bucci C, Alifano P. The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors[J] Membranes. 2014;4(4):642–677. doi: 10.3390/membranes4040642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Quan Y, Song Q, Wang J, et al. MiR-1202 functions as a tumor suppressor in glioma cells by targeting Rab1A[J] Tumor Biol. 2017;39(4):1–10. doi: 10.1177/1010428317697565. [DOI] [PubMed] [Google Scholar]
  • 16.Zhang CZ, Cao Y, Fu J, et al. miR-634 exhibits anti-tumor activities toward hepatocellular carcinoma via Rab1A and DHX33[J] Mol Oncol. 2016;10(10):1532–1541. doi: 10.1016/j.molonc.2016.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Xu H, Qian M, Zhao B, et al. Inhibition of RAB1A suppresses epithelial-mesenchymal transition and proliferation of triple-negative breast cancer cells[J] Oncol Rep. 2017;37(3):1619–1626. doi: 10.3892/or.2017.5404. [DOI] [PubMed] [Google Scholar]
  • 18.Xie S, Lu Z, Lin Y, et al. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT)[J] Tumor Biol. 2016;37(5):6681–6689. doi: 10.1007/s13277-015-4486-8. [DOI] [PubMed] [Google Scholar]
  • 19.Huang W, Cui X, Chen J, et al. Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition[J] Oncotarget. 2016;7(38):62520–62532. doi: 10.18632/oncotarget.11528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Fang Z, Zhang S, Wang Y, et al. Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins[J] BMC cancer. 2016;16(9):706. doi: 10.1186/s12885-016-2735-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liang J, Liang L, Ouyang K, et al. MALAT1 induces tongue cancer cells' EMT and inhibits apoptosis through Wnt/β-catenin signaling pathway[J] J Oral Pathol Med. 2017;46(2):98–105. doi: 10.1111/jop.12466. [DOI] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES