Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2020 Jul 23:2020.06.05.136861. Originally published 2020 Jun 5. [Version 2] doi: 10.1101/2020.06.05.136861

Insights on cross-species transmission of SARS-CoV-2 from structural modeling

João PGLM Rodrigues, Susana Barrera-Vilarmau, João MC Teixeira, Elizabeth Seckel, Panagiotis Kastritis, Michael Levitt
PMCID: PMC7302186  PMID: 32577636

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global pandemic that has infected more than 14 million people in more than 180 countries worldwide. Like other coronaviruses, SARS-CoV-2 is thought to have been transmitted to humans from wild animals. Given the scale and widespread geographical distribution of the current pandemic, the question emerges whether human-to-animal transmission is possible and if so, which animal species are most at risk. Here, we investigated the structural properties of several ACE2 orthologs bound to the SARS-CoV-2 spike protein. We found that species known not to be susceptible to SARS-CoV-2 infection have non-conservative mutations in several ACE2 amino acid residues that disrupt key polar and charged contacts with the viral spike protein. Our models also predict affinity-enhancing mutations that could be used to design ACE2 variants for therapeutic purposes. Finally, our study provides a blueprint for modeling viral-host protein interactions and highlights several important considerations when designing these computational studies and analyzing their results.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES