Skip to main content
Evidence-based Complementary and Alternative Medicine : eCAM logoLink to Evidence-based Complementary and Alternative Medicine : eCAM
. 2020 Jun 12;2020:4538602. doi: 10.1155/2020/4538602

Antimalarial Plants Used across Kenyan Communities

Timothy Omara 1,2,3,
PMCID: PMC7306085  PMID: 32617107

Abstract

Malaria is one of the serious health problems in Africa, Asia, and Latin America. Its treatment has been met with chronic failure due to pathogenic resistance to the currently available drugs. This review attempts to compile phytotherapeutical information on antimalarial plants in Kenya based on electronic data. A comprehensive web search was conducted in multidisciplinary databases, and a total of 286 plant species from 75 families, distributed among 192 genera, were retrieved. Globally, about 139 (48.6%) of the species have been investigated for antiplasmodial (18%) or antimalarial activities (97.1%) with promising results. However, there is no record on the antimalarial activity of about 51.4% of the species used although they could be potential sources of antimalarial remedies. Analysis of ethnomedicinal recipes indicated that mainly leaves (27.7%) and roots (19.4%) of shrubs (33.2%), trees (30.1%), and herbs (29.7%) are used for preparation of antimalarial decoctions (70.5%) and infusions (5.4%) in Kenya. The study highlighted a rich diversity of indigenous antimalarial plants with equally divergent herbal remedy preparation and use pattern. Further research is required to validate the therapeutic potential of antimalarial compounds from the unstudied claimed species. Although some species were investigated for their antimalarial efficacies, their toxicity and safety aspects need to be further investigated.

1. Introduction

Globally, malaria continues to be in the top list of the major global health challenges. A global estimate of 655,000 malarial deaths was reported in 2010 of which 91% were in Africa and 86% of these were children under 5 years of age [1, 2]. Africa is particularly more susceptible, and conservative estimates cited that malaria causes up to 2 million deaths annually in Africa [3, 4]. The World Health Organization reported that about 2 billion people in over 100 countries are exposed to malaria, and the situation is exacerbated on the African continent which is characterized by limited access to health services and chronic poverty [5]. In East Africa and Kenya particularly, malaria remains endemic in the Lake Victoria basin and the coast with the country's highest rate of infection at 27% (6 million cases) in 2015 from 38% in 2010 [6, 7]. The Kenyan population at risk of malaria as of 2016 was estimated at 100% [5]. Anopheles gambiae and A. funestus are the primary vectors of malaria in East Africa [8], while Plasmodium falciparum and P. vivax are the deadliest malarial parasites in sub-Saharan Africa.

The misuse of chloroquine in the management of malaria has led to the development of chloroquine-resistant parasites worldwide [9]. In Kenya, the use of chloroquine has been discontinued as the first line treatment for malaria due to the prevalence of resistant P. falciparum strains [10, 11]. Artemisinin-based combination therapy (ACT) is currently the only available treatment option for malaria as the quinolines (quinine, chloroquine, and mefloquine) have been reported to cause cardiotoxicity, and the malarial parasites have already developed sturdy resistance to them [12, 13]. Unfortunately, resistance of P. falciparum to artemisinin has also been reported elsewhere [14].

The Kenyan government has attempted to reduce malaria incidences in Kenya through several approaches including entomologic monitoring, insecticide resistance management, encouraging the population to sleep under insecticide-treated mosquito nets, intermittent preventive treatment for pregnant women, and indoor residual spraying [6, 7, 15, 16]. The situation has been made more complicated by the emergence of pyrethroid-resistant mosquitoes throughout Western Kenya which prompted the government to declare no spraying of mosquitoes between 2013 and 2016 [6].

Malaria may manifest with relatively simple symptoms such as nausea, headache, fatigue, muscle ache, abdominal discomfort, and sweating usually accompanied by high fever [17]. However, at advanced stages, it can result in serious complications such as kidney failure, pulmonary oedema, brain tissue injury, severe anaemia, and skin discoloration [5, 18]. Conventional treatment is usually costly, and in rural Kenya just like in other parts of the world, the use of plants for either preventing or treating malaria is a common practice [3]. The current study attempted to gather comprehensive ethnobotanical information on various antimalarial plants and their use in Kenyan communities to identify which plants require further evaluation for their efficacy and safety in malaria management.

2. Methods

2.1. Literature Search Strategy and Inclusion and Exclusion Criteria

Relevant literature pertaining to antimalarial plants and their use in management of malaria and malarial symptoms in Kenya were sourced from Scopus, Web of Science Core Collection, PubMed, Science Direct, Google Scholar, and Scientific Electronic Library Online from November 2019 to February 2020 following procedures previously used [1921]. The searches were performed independently in all the databases. Key search words such as malaria, vegetal, traditional medicine, ethnobotany, alternative medicine, ethnopharmacology, antimalarial, quinine, chloroquine, antimalarial activity, antiplasmodial activity, malaria management, and Kenya were used. All publishing years were considered, and reports with information on antimalarial or medicinal plants in Kenya were carefully screened. Thus, references contained within the returned scientometric results were assessed concerning their inclusion in the study, and further searches were carried out at the Google search engine using more general search terms, to broaden the search, as follows: words: malaria, plants, plant extract, vegetal, vegetal species, vegetal extract, traditional medicine, alternative medicine, complementary therapy, natural medicine, ethnopharmacology, ethnobotany, herbal medicine, herb, herbs, decoction, infusion, macerate, concoction, malaria fever, malaria incidence, and Kenya were used. The last search was done on 15th February 2020. The search outputs were saved wherever possible on databases, and the author received notification of any new searches meeting the search criteria from Science Direct, Scopus, and Google scholar. For this study, only full-text original research articles published in peer-reviewed journals, books, theses, dissertations, patents, and reports on antimalarial plants or malaria phytotherapy in Kenya written in English and dated until February 2020 were considered.

Missing information in some studies particularly the local names, growth habit of the plants, and misspelled botanical names were retrieved from botanical databases: The Plant List, International Plant Names Index, NCBI taxonomy browser and Tropicos, and the Google search engine. Where a given species was considered as distinct species in different reports, the nomenclature as per the botanical databases took precedence. The traditional perception of malaria as well as the families, local names (Digo, Giriama, Kamba, Kikuyu, Kipsigis, Kuria, Luo, Markweta, Maasai, Nandi, and Swahili), growth habit, part (s) used, preparation, and administration mode of the different antimalarial plants were captured.

2.2. Data Analysis

All data were entered into Microsoft Excel 365 (Microsoft Corporation, USA). Descriptive statistical methods, percentages, and frequencies were used to analyze ethnobotanical data on reported medicinal plants and associated indigenous knowledge. The results were subsequently presented as tables and charts.

3. Results and Discussion

3.1. Antimalarial Plants Used in Kenya

In aggregate, 61 studies and reports identified 286 plant species from different regions of Kenya belonging to 75 botanical families distributed among 192 genera (Table 1). Asteraceae (36.5%), Fabaceae (29.7%), Lamiaceae (24.3%), Euphorbiaceae (21.6%), Rutaceae (17.6%), and Rubiaceae (17.6%) were the most common plant families (Figure 1). The most frequently encountered species were Toddalia asiatica (L.) Lam (11 times), Aloe secundiflora Engl. (10 times), Azadirachta indica A. Juss, Carissa edulis (Forsk.) Vahl., Harrisonia abyssinica Olive (9 times each), Zanthoxylum chalybeum Engl. (8 times), Ajuga remota Benth., Rotheca myricoides (Hochst.) Steane and Mabb, Warburgia ugandensis Sprague (7 times each), Albizia gummifera (J. F. Gmel.), Erythrina abyssinica Lam. ex DC., Plectranthus barbatus Andrews, Rhamnus prinoides L.'Herit, Senna didymobotrya (Fresen) Irwin and Barneby, and Solanum incanum L. (6 times). One botanically unidentified plant (Ima) was reported by Kuria et al. [11]. Decoction of a whole lichenized fungi (Usnea species and Intanasoito in Maasai dialect) and Engleromyces goetzei P. Henn. fungi were also reported to be used in management of malaria in rural Kenya [22, 23].

Table 1.

Synopsis of medicinal plants used in the management of malaria in Kenya.

Plant family Botanical name Local name Part(s) used Habit Preparation mode Reference(s)
Acanthaceae Justicia betonica L. Shikuduli Aerial parts Herb Decoction [34, 35]

Alliaceae Allium sativum L. Kitungu saumu (Luo) Roots Herb Crushed, chewed [36]

Aloeaceae Aloe barbadensis Mill. (vera) Oldopai (Maasai) Leaves Herb Not specified [37]
Aloe kedongensis Reynolds Osukuroi (Maasai) Leaves, roots Herb Infusion [3, 3840]
Aloe elgonica Bullock Not reported Leaves, roots Herb Decoction [41]
Aloe lateritia Engl. Kiiruma (Kikuyu) Leaves, root Herb Decoction [3, 42]
Aloe volkensii Engl. Osukuroi (Maasai) Leaves Herb Decoction [22]
Caesalpinia volkensii Harms Mujuthi (Kikuyu) Leaves Liana Decoction [3, 11, 43, 44]

Amaranthaceae Achyranthes aspera L. Uthekethe (Kamba) Whole plant Herb Not specified [23, 45]
Amaranthus hybridus L. Mchicha (Swahili) Leaves Herb Decoction [17, 46]
Celosia schweinfurthiana Schinz. Not reported Not specified Shrub Not specified [47]
Cyathula schimperiana non Moq Namgwet Leaves, roots Herb Decoction [38, 40]
Cyathula cylindrica Moq Ng'atumyat Roots Herb Decoction [38, 40]
Sericocomopsis hildebrandtii Schinz. Oloituruj-ilpeles (Maasai) Roots Shrub Decoction [22, 48]

Anacardiaceae Heeria insignis Del. Mwamadzi (Swahili) Bark, stem bark Tree Decoction [17, 46]
Lannea schweinfurthii (Engl.) Engl. Mnyumbu Bark, leaves Shrub Not specified [49, 50]
Ozoroa insignis Delile Not reported Not reported Shrub Not specified [42]
Rhus natalensis Bernh. ex Krauss Muthigiu (Kikuyu) Root, stem, fruits, root bark Tree Decoction [3, 42, 4951]
Rhus vulgaris Meikle Sungula Leaves Herb Decoction [3, 42]
Sclerocarya birrea (A. Rixh.) Hochst Oloisuki (Maasai) Bark Tree Not specified [49]
Searsia natalensis (Bernh. ex C. Krauss) Olmisigiyioi (Maasai) Leaves Herb Decoction [34]

Annonaceae Uvaria acuminata Oliv. Mukukuma (Kamba) Roots Shrub Not specified [50]
Uvaria scheffleri Diels Not reported Leaves Liana Decoction [17]
Apiaceae Centella asiatica (L.) Urb. Not reported Leaves Herb Decoction [17]

Apocynaceae Carissa edulis (Forssk.) Vahl. Olamuriaki (Maasai), Mukawa (Kikuyu) Root, root bark Shrub Decoction, inhale steam [3, 17, 34, 38, 40, 47, 48, 52, 53]
Catharanthus roseus (L.) G. Don Olubinu Not specified Herb Not specified [47]
Gomphocarpus fruticosus (L.) W. T. Aiton Kosirich Root Herb Not specified [54]
Laudolphia buchananii (Hall.f) Stapf Mhonga (Swahili) Leaves Liana Decoction [17, 46]
Mondia whitei Ogombo (Luo) Roots Herb Chewed [42]
Rauwolfia cothen Not reported Root bark Shrub Decoction [17]
Saba comorensis (Bojer ex A.D.C) Pichon Abuno (Luo) Not specified Herb Not reported [42]

Asclepiadaceae Curroria volubilis (Schltr.) Bullock Simatwet Bark Liana Decoction [38, 40]
Periploca linearifolia Dill. & A. Rich. Muimbathunu (Kikuyu) Bark Liana Decoction [3, 44]

Asteraceae Achyrothalamus marginatus O. Hoffm. Not reported Leaves Herb Decoction [55]
Acmella caulirhiza Del. Shituti Aerial parts Shrub Decoction [34, 56]
Ageratum conyzoides L. Not reported Whole plant Herb Decoction [56, 57]
Artemisia afra Jacq Not reported Leaves Shrub Decoction [41]
Artemisia annua L. Not reported Leaves Shrub Decoction [42]
Aspilia pluriseta Schweinf. Rirangera Leaves Herb Decoction [35]
Bidens pilosa L. Nyanyiek mon (Luo) Leaves Herb Decoction [11, 37]
Ethulia scheffleri S. Moore Not reported Leaves Herb Decoction [58]
Gutenbergia cordifolia Benth. Olmiakaru-kewon (Maasai) Leaves Herb Decoction [48]
Kleinia squarrosa Mungendya (Kamba) Leaves Shrub Infusion [55]
Launaea cornuta (Oliv and Hiern) C. Jeffrey Uthunga (Kamba) Leaves Liana Infusion/decoction [17, 46, 55]
Microglossa pyrifolia (Lam.) O. Kuntze Nyabung-Odide (Luo) Root, leaves Shrub Decoction [34, 37, 38]
Psiadia arabica Jaub. & Pach Nyabende winy (Luo) Not specified Herb Not specified [42]
Psiadia punctulata (D.C.) Vatke Olobai (Maasai) Roots Herb Not specified [48]
Sonchus schweinfurthii Oliv. & Hiern Egesemi (Kuria) Not specified Herb Not specified [37]
Schkuhria pinnata (Lam.) Kuntze ex Thell Gakuinini (Kikuyu) Whole plant Herb Infusion [3, 23, 42, 44]
Senecio syringitolia O. Hoffman Reisa (Digo) Leaves Herb Decoction [17, 46]
Solanecio mannii (Hook. f) C. Jeffrey Maroo, marowo (Luo), Livokho Leaves Shrub Decoction [23]
Sonchus luxurians (R.E. Fries) C. Jeffrey Kimogit (Nandi) Roots Herb Decoction [38]
Sphaeranthus suaveolens (Forsk.) DC Njogu-ya-iria Whole plant Herb Infusion, rubbed on the body [44, 52]
Tithonia diversifolia (Hemsl.) Gray Maua madongo (Luo) Leaves Shrub Decoction [3, 34, 42]
Tridax procumbens L. Not reported Whole plant Herb Infusion [17]
Vernonia amygdalina Del. Musulilitsa Leaves Shrub Decoction [17, 34, 42]
Vernonia auriculifera (Welw.) Hiern Muthakwa Leaves, roots, bark Shrub Infusion, decoction [35, 37, 38, 41, 44]
Vernonia brachycalyx O. Hoffm. Schreber Irisabakw (Kuria) Leaves Herb Decoction [37, 44, 58]
Vernonia brachycalyx O. Hoffm. Lasiopa Lam. Olusia (Luo) Leaves Herb Decoction [37]
Vernonia lasiopus O. Hoffm. Shiroho, Mwatha Leaves, root bark Shrub Infusion [23, 35, 44]

Bignoniaceae Kigelia africana (Lamk.) Benth. Omurabe, Morabe Leaves, bark, fruits Tree Decoction [44, 58, 59]
Markhamia lutea (Benth.) K. Schum. Lusiola, Shisimbali Bark Tree Decoction [34, 47]
Markhamia platycalyx Sprague Siala (Luo) Not specified Tree Not specified [42]
Spathodea campanulata P. Beauv. Muthulio, Mutsuria Leaves Tree Decoction [34]

Boraginaceae Ehretia cymosa Thonn Mororwet Leaves, roots Shrub Infusion [38, 40]

Burseraceae Commiphora eminii Engl Mukungugu (Kikuyu) Not specified Tree Not specified [3]
Commiphora schimperi (Berg) Engl. Osilalei (Maasai), Dzongodzongo (Swahili) Inner bark, roots, stem bark Tree Decoction [17, 46, 48]

Canellaceae Warburgia salutaris (Bertol.F.) Chiov. Osokonoi (Maasai) Bark Tree Decoction [22, 37, 45]
Warburgia stuhlmannii Engl. Not reported Stem bark Tree Decoction [17]
Warburgia ugandensis Sprague subsp ugandensis Muthiga (Kikuyu) Stem bark, fruits, leaves Tree Decoction [3, 11, 22, 34, 43, 51, 54]

Capparaceae Boscia angustifolia A. Rich. Oloiroroi (Maasai) Inner bark fibres, stem bark Tree Decoction [42, 44, 48, 52]
Boscia salicifolia Oliv. Mwenzenze (Kamba) Not specified Tree Not specified [49]
Cadaba farinosa Forssk Akado marateng (Luo) Not specified Shrub Not specified [42]
Capparidaceae Cleome gynandra L. Isakiat Leaves, roots Herb Decoction [40]
Cariaceae Carica papaya L. Poipoi, Apoi (Luo) Leaves, roots, sap Shrub Infusion, decoction [36]

Celastraceae Maytenus arbutifolia (A. Rich.) Wilczek Muraga Root bark Shrub Decoction [44]
Maytenus heterophylla (Eckl. & Zeyh.) N. Robson Muraga Root, root bark Shrub Decoction [41, 44]
Maytenus putterlickioides (Loes.) Excell & Mendonca Muthuthi Root bark Shrub Decoction [44]
Maytenus senegalensis (Lam.) Exell Muthuthi (Kikuyu) Not specified Shrub Not specified [3, 47]
Maytenus undata (Thunb.) Blakelock Muthithioi Root bark, leaves Shrub Decoction [44]

Cleomaceae Cleome gynandra L. Isakiat Leaves roots Herb Decoction [38]

Combretaceae Combretum illairii Engl. Mshinda arume Leaves, root bark Tree Decoction [50]
Combretum molle G. Don Muama, Kiama (Kamba) Bark, leaves Tree Decoction [17, 45]
Combretum padoides Engl. & Diels Mshinda arume Leaves, roots Tree Decoction [17, 46, 50, 60]
Terminalia brownii Fresen. Muuku (Kamba) Bark Tree Decoction [55]
Terminalia spinosa Engl. Not reported Bark, stem bark Tree Decoction, infusion [17, 61]

Commelinaceae Aneilema spekei (C. B. Clarke) Enkaiteteyiai (Maasai) Whole plant Liana Decoction [22]
Commelina forskaolii Vah Not reported Not specified Herb Not specified [47]

Crassulaceae Kalanchoe lanceolata (Forsk.) Pers. Mahuithia (Kikuyu) Not specified Herb Not specified [3]

Cucurbitaceae Cucumis aculeatus Cogn. Gakungui (Kikuyu) Leaves Climber Decoction [3, 34, 42, 62]
Cucumis prophetarum L. Chepsawoy (Kipsigis) Root tuber Herb Decoction [39]
Gerranthus lobatus (Cogn.) Jeffrey Mgore manga (Digo) Leaves, roots Herb Decoction [17, 46]
Momordica foetida Schumach Cheptenderet (Kipsigis) Leaves, roots Liana Decoction, roasting [17, 38, 41]
Momordica friesiorum Hams C. Jeffrey Libobola Root tuber Herb Decoction [54]
Zehneria minutiflora (Cogn.) C. Jeffrey Manereriat (Kimanererit) Leaves, roots Liana Decoction [38]

Cyperaceae Cyperus articulatus L. Ndago Tuber Herb Infusion [44]

Ebenaceae Euclea divinorum Hiern Uswet (Markweta) Root bark Tree Decoction, use for brushing teeth [38, 47]
Diospyros abyssinica (Hiern) F. White subsp. abyssinica Lusui Bark Tree Decoction [41, 59]
Diospyros scabra Not reported Bark Tree Decoction [61]

Euphorbiaceae Bridelia micrantha Baill. (Hochst). Mdungu (Digo) Leaves, bark, stem bark Shrub Decoction [17, 46]
Clutia abyssinica Jaub. & Spach Muthima mburi (Kikuyu) Leaves, root, root bark Shrub Decoction [3, 38, 44]
Croton dichogamus Pax. Oloiborrbenek (Maasai) Whole plant Shrub Decoction [22, 38]
Croton macrostachyus Hochst. ex Del. Mukinduri (Kikuyu) Leaves, root, bark Tree Decoction [34, 38, 56]
Croton megalocarpoides Friis & M.G. Gilbert Ormegweit (Maasai) Bark Tree Decoction [22]
Croton megalocarpus Del. Not reported Not specified Tree Not specified [3]
Euphorbia inaequilatera Sond. Ogota Kwembeba Whole plant Shrub Decoction [35]
Euphorbia meridionalis Bally & S. Carter Enkokuruoi (Maasai) Stem Climber Not specified [22]
Euphorbia tirucalli L. Kariria (Kikuyu) Not specified Tree Not specified [3]
Flueggea virosa (Willd.) Voigt Mukwamba Root bark Tree Decoction [50]
Flueggea virosa (Roxb.ex Willd.) Royle Mkwamba, mteja (Swahili) Aerial parts, root bark Shrub Decoction [17, 34]
Neoboutonia macrocalyx Pax Mutuntuki Leaves, stem bark Tree Decoction [44, 53]
Phyllanthus sepialis Müll. Arg. Not reported Leaves Shrub Decoction [34]
Ricinus communis L. Kivaiki (Kamba) Root, seeds, leaves Shrub Decoction, topical [17, 38, 46]
Sapium ellipticum Achak (Luo) Not specified Shrub Not specified [42]
Suregada zanzibariensis Baill Not reported Root bark Shrub Decoction [17]

Fabaceae Abrus precatorius L. ssp africanus Verdc Ndirakalu Leaves Herb Not specified [42, 50]
Acacia hockii De Wild. Eluai (Maasai) Root bark Tree Decoction [48]
Acacia mellifera (M.Vahl) Benth. Oiti (Maasai), Muthiia (Kamba) Stem bark, root, pith Tree Decoction [11, 22, 48, 52, 63]
Acacia nilotica (L.) Willd.ex Delile Olkirorit, Ol-rai (Masaai) Bark, root Tree Decoction [22, 37, 53, 64]
Acacia oerfota (Forssk.) Schweinf. Not reported Root Tree Not reported [63]
Acacia seyal Delile Mgunga (Digo) Root Tree Decoction [17]
Acacia tortilis (Forssk.) Hayne Oltepesi (Maasai) Sap, roots Tree Taken directly, decoction [22, 48]
Albizia amara (Roxb.) Boiv. Mwiradathi Stem bark Tree Decoction [44]
Albizia anthelmintica Brongn. Kyoa (Kamba) Root, bark Tree Decoction [17, 22, 63]
Albizia coriaria Welw ex Oliver Omubeli Multiple parts Tree Decoction [42, 47, 57, 65]
Albizia gummifera (J.F. Gmel.) Seet (Nandi) Root, stem bark Tree Decoction [23, 34, 38, 42, 44, 66]
Albizia zygia (DC) J.F. Macbr. Ekegonchori (Kuria) Not specified Tree Not specified [37]
Cassia didymobotrya Fres. Irebeni (Kuria), Murao Leaves, roots, root bark Shrub Infusion, decoction [37, 38, 40, 44]
Cassia occidentalis L. Mnuka uvundo (Swahili) Leaves, roots Herb Decoction [11, 17, 46]
Dichrostachys cinereal L. Chinjiri (Digo) roots Tree Decoction [17]
Erythrina abyssinica Lam. ex DC. Omutembe (Kuria), Muhuti (Kikuyu) Root, bark Tree Decoction [3, 23, 34, 37, 38, 42]
Indigofera arrecta A. Rich Not reported Roots Herb Decoction, chew directly [41]
Mucuna gigantea Ogombo (Luo) Not specified Liana Not specified [42]
Senna didymobotrya (Fresen) Irwin & Barneby Osenetoi (Maasai) Roots, leaves, bark, stem Shrub Decoction [3, 23, 34, 41, 42, 67]
Senna occidentalis (L.) Link Imbindi Roots Shrub Decoction [34, 47]
Tamarindus indica L. Muthumula (Kamba), Mkwadzu (Swahili) Bark, fruits, roots, leaves Tree Decoction, fruit eaten [17, 46, 47, 54]
Tylosema fassoglense Not reported Tuber Climber Not specified [56]

Hydnoraceae Hydnora abyssinica Schweinf. Muthigira (Kikuyu) Not specified Herb Not specified [3]

Hypericaceae Harungana madagascariensis Lam. ex Poir. Musila Stem bark Tree Decoction [17, 34, 42]

Icacinaceae Pyrenacantha malvifolia Engl. Empalua (Maasai) Roots Climber Not specified [22]

Lamiaceae Ajuga integrifolia Buch. Ham. Imbuli yumtakha Aerial parts Herb Decoction [34]
Ajuga remota Benth. Wanjiru (Kikuyu) Leaves, roots, whole plant Herb Decoction [3, 11, 23, 38, 44, 68, 69]
Clerodendrum johnstonii Oliv Singoruet (Nandi) Leaves Shrub Infusion [34, 38]
Fuerstia africana T.C.E.Fr. Kwa matsai, aremo (Luo) Aerial parts, leaves, whole plant Herb Decoction, infusion [34, 38, 44, 48, 65]
Hoslundia opposita Vahl. Cheroronit, Cherungut (Nandi) Leaves, whole plant Shrub Decoction [17, 38, 46, 50]
Leucas calostachys Oliv Bware (Luo), Lumetsani Leaves, roots, aerial parts Shrub Decoction [34, 37, 38]
Leucas martinicensis (Jacq.) Ait.f. Chepkari (Nandi) Flowers Herb Infusion [38]
Leonotis mollissima Guerke Nyanyondhi (Luo), Orbibi (Maasai) Leaves, roots Shrub Decoction [23, 37, 38]
Leonotis nepetifolia (R. Br) Ait.f. Kipchuchuniet (Kipsigis) Not specified Shrub Decoction [47, 70]
Ocimum basilicum L. Sisiyat (Nandi) Leaves Herb Decoction [23, 46]
Ocimum balansae Briq. Not reported Leaves Herb Decoction [17]
Ocimum gratissimum L. Suave wiild, O. tomentosum Oliv. Mukandu (Kamba) Leaves Herb Decoction [17, 23]
Ocimum kilimandscharicum Guerke Mutaa (Kamba) Aerial parts Herb Inhale steam [3, 34, 56]
Ocimum lamiifolium Benth Not reported Roots Shrub Decoction [38]
Ocimum suave Willd Murihani (Giriama) Leaves Herb Decoction [17, 46, 71]
Plectranthus barbatus Andrews Kan'gurwet (Markweta) Leaves Shrub Infusion, decoction [17, 34, 42, 46, 56, 58]
Plectranthus sylvestris Gurke Not reported Leaves Herb Not specified [58]
Rotheca myricoides (Hochst.) Steane and Mabb (Clerodendrum myricoides (Hochst.) Vatke) Olmakutukut (Maasai), Munjuga iria (Kikuyu) Roots, leaves, root bark Shrub Decoction [17, 34, 38, 42, 44, 48, 67]

Lauraceae Ocotea usambarensis Engl. Muthaiti (Kikuyu) Root bark Tree Infusion [3, 44]

Loganiaceae Strychnos henningsii Gilg Muteta (Kamba, Kikuyu) Roots, leaves, stem bark Tree Decoction [3, 11, 44, 47, 55, 67]

Malvaceae Adansonia digitata L. Mbamburi (Swahili) Leaves Tree Decoction [17, 46]
Azanza gackeana (F. Hoffm.) Excell & Hillcoat Mutoo (Kikuyu) Not specified Tree Not specified [3]
Grewia bicolor Juss Esiteti (Maasai) Not specified Shrub Not specified [47]
Grewia hainesiana Hole Not reported Leaves Shrub Decoction [17]
Grewia hexamita Burret Mkone (Digo) Roots, leaves Shrub Decoction [46]
Grewia plagiophylla K. Schum Mkone (Digo) Bark, leaves Not specified [50]
Grewia trichocarpa (Hochst) ex A. Rich. Cone (Digo) Roots Shrub Decoction [17, 41, 46]
Pavonia kilimandscharica Gurke Chemanjililiet, Chepsabuni (Nandi) Roots Herb Decoction [38]
Sida cordifolia L. Menjeiwet (Nandi) Leaves Shrub Infusion [38]
Meliaceae Azadirachta indica A. Juss Muarubaini (Kamba) Leaves, roots, bark Tree Decoction, inhalation, topical [3, 11, 17, 36, 43, 50, 54, 55, 72]
Azadirachta indica (L) Burm. Mkilifi (Digo) Leaves, roots, root bark Tree Decoction [46, 73]
Ekebergia capensis Sparrm. Olperre-longo (Maasai) Bark Tree Decoction [3, 48]
Melia azedarach L. Mwarubaine Not specified Tree Not specified [47]
Melia volkensii L. Mukau (Kamba) Bark Tree Decoction [55]
Melia azedarach L. Mwarubaini (Nandi) Leaves, bark Tree Decoction [34, 38, 42]
Trichilia emetica Vahl. Munyama Bark Tree Decoction [34, 72]
Turraea mombassana C. DC Onchani Orok (Maasai) Leaves, root, fruits Shrub Decoction [67]
Turraea robusta Not reported Root bark Shrub Decoction [49]

Melianthaceae Bersama abyssinica Fres. Kibuimetiet (Nandi) Root bark, bark, seeds Tree Decoction [38, 41]

Menispermaceae Cissampelos mucronata A. Rich. Mukoye Root Climber Root chewed [17, 34, 74, 75]
Cissampelos pareira L. Karigi munana Root, root bark Liana Decoction [39]

Moraceae Ficus bussei Warb ex Mildbr and Burret Mgandi (Digo) Roots, leaves Tree Decoction [17, 46]
Ficus cordata Thunb Oladardar (Maasai) Branches, roots, stem Tree Decoction [67]
Ficus sur. Forssk Omora Stem bark Tree Decoction [35]
Ficus thonningii Blume Mutoto Stem bark Tree Decoction [34]

Myricaceae Myrica salicifolia A. Rich. Murima Root bark Tree Decoction [44]

Myrsinaceae Embelia schimperi Vatke Kibong'ong'inik (Nandi) Seeds Tree Decoction [38]
Maesa lanceolata Forssk Katera (Luo), Kibabustanyiet (Nandi) Roots, fruits, seeds, bark Shrub Decoction [22, 34, 38, 76]

Myrtaceae Eucalyptus globulus Labil. Mubau (Kikuyu) Not specified Tree Not specified [3]
Psidium guajava L. Mapera (Luo) Leaves, fruits Tree Decoction [36]

Oleaceae Jasminum floribunda R.Br. Not reported Root Herb Decoction [41]
Jasminum fluminense Vell. Kipkoburo Bark, stem, root tuber Vine Not specified [77]
Olea capensis L. Mutukhuyu, Mucharage Stem bark Tree Decoction [41, 44]
Olea europaea L. Oloirien (Maasai) Inner/stem bark Tree Decoction [3, 22, 44, 45, 48]
Ximenia americana L. Olamai (Maasai) Leaves Tree Decoction [47]

Onagraceae Ludwigia erecta (L.) Hara Mungei Whole plant Herb Infusion, decoction [44, 52]

Opiliaceae Opilia campestris Engl. Enkirashai (Maasai) Roots Shrub Decoction [22]

Oxalidaceae Oxalis corniculata L. Nyonyoek (Nandi) Whole plant Herb Decoction [38]

Papilionaceae Cajanus cajan Millsp. Mucugu (Kikuyu) Not specified Herb Not specified [3]
Dalbergia lactea Vatke Mwaritha (Kikuyu) Not specified Shrub Not specified [3]
Ormocarpum trachycarpum (Taub.) Harms Muthingii (Kamba) Bark, leaves Shrub Decoction [52, 58]
Rhynchosia hirta (Andrews) Meikle & Verdc. Tilyamook (Nandi) Roots Liana Decoction [38]
Stylosanthes fruticosa (Retz.) Alston Kalaa (Kamba) Leaves, whole plant Herb Infusion [55]

Passifloraceae Passiflora ligularis A. Juss. Hondo (Kikuyu) Not specified Shrub Not specified [3]

Piperaceae Piper capense L.f. Olerrubaat (Maasai) Roots Herb Decoction [48]

Pittosporaceae Pittosporum lanatum Hutch. & Bruce Munyamati (Kikuyu) Not specified Herb Not specified [3]
Pittosporum viridiflorum Sims Munati Stem bark Tree Decoction [34, 44, 52]

Poaceae Pennisetum hohenackeri Hochst. ex Steud Olmakutian (Maasai) Bark, branches, roots Grass Decoction [67]
Rottboellia exaltata L.f. Mpunga (Digo) Leaves Herb Decoction [17, 46]
Sporobolus stapfianus Not reported Not specified Herb Not specified [45]

Podocarpaceae Podocarpus latifolius (Thunb.) R.Br. ex Mirb. Enchani-enkashi (Maasai) Roots Tree Decoction [48]

Polygonaceae Rumex abyssinicus Jacq. Shikachi Leaves Herb Decoction [34]
Rumex steudelii Hochst ex A. Rich Alukhava Roots Herb Decoction [34]

Polygalaceae Securidaca longifolia Poepp. Not reported Roots Tree Decoction [17]
Securidaca longipedunculata Fres. Mzigi (Digo) Roots, bark, leaves Shrub Decoction [46]

Primulaceae Myrsine africana L. Oseketeki (Maasai) Seeds, fruits, roots, multiple parts Shrub Decoction [54, 67]

Rahmnaceae Rhamnus prinoides L.'Herit Orkonyil (Maasai) Roots, root bark Shrub Decoction [3, 11, 35, 38, 44, 48, 69, 78]
Rhamnus staddo A. Rich Orkokola (Maasai), Ngukura (Kikuyu) Root bark, stem bark Shrub Decoction [3, 11, 35, 44, 48, 69]
Scutia myrtina (Burm. f.) Kurz Osanankoruri (Maasai) Not specified Shrub Not specified [3]

Ranunculaceae Clematis brachiata Thunb. Olkisusheeit (Maasai) Roots, root bark Liana Decoction [44, 48]

Rhizophoraceae Cassipourea malosana (Baker) Alston Muthathi (Kikuyu) Not specified Tree Not specified [3]

Rosaceae Prunus africana (Hook. f.) Kalkman Orkujuk (Maasai), Muiri (Kikuyu) Bark, root, stem, stem bark Tree Decoction [3, 38, 44, 79, 80]
Rubus pinnatus Wild. Butunduli Leaves, bark, fruits Shrub Decoction [3, 34]

Rubiaceae Aganthesanthemum bojeri Klotzsch. Kahithima Whole plant Herb Not specified [50]
Agathisanthenum globosum (Hochst. ex A. Rich.) Bremek. Chivuma nyuchi (Digo) Roots Herb Decoction [17, 46]
Canthium glaucum Hiern. Mhonga/Mronga (Digo) Fruits Shrub Decoction [17, 46]
Gardenia ternifolia subsp. Jovistonatis Kibulwa Fruits Shrub Decoction [54]
Keetia gueinzii (Sond.) Bridson Mugukuma (Kikuyu) Not specified Shrub Not specified [3]
Pentanisia ouranogyne S. Moore Chungu (Digo) Roots Herb Decoction [17, 46]
Pentas bussei K. Krause Not reported Root bark Shrub Decoction [17]
Pentas longiflora Oliv. Muhuha (Kikuyu), Cheroriet (Nandi) Bark, fruits, leaves, roots Shrub Decoction, rub on skin [3, 17, 38, 41, 61]
Pentas lanceolata (Forssk.) Deflers Olkilaki-olkerr (Maasai) Root bark Herb Decoction [48]
Rubia cordifolia L. Urumurwa (Kuria) Not specified Herb Not specified [37]
Spermacoce princeae (K. Schum.) Verdc. Omonhabiebo Whole plant Herb Decoction [35]
Vangueria madagascariensis
Gmel (Vangueria acutiloba Robyns)
Mubiru Stem bark Shrub Decoction [44]
Vangueria volkensii K.Schum. Kimoluet (Nandi) Roots Shrub Decoction [38, 47]

Rutaceae Citrus aurantiifolia (Christm.) Swingle Mutimu (Kikuyu) Not specified Tree Not specified [3]
Citrus limon (L.) Burm.f. Ndim (Luo) Fruits, leaves Tree Eaten, decoction [36]
Clausena anisata (Willd) Hook. f. ex Benth. Mtondombare (Digo), Mukibia Leaves, roots, bark, root bark Shrub Decoction [17, 34, 41, 44, 46]
Fagaropsis angolensis (Eng.) H.M. Gardner Murumu, mukuriampungu Leaves, roots, stem bark Tree Decoction [3, 23, 38, 44, 53]
Fagaropsis angolensis (Eng.) Dale Mukaragati (Kikuyu) Leaves, roots Tree Decoction [3, 17, 46]
Fagaropsis hildebrandtii (Engl.) Milne-Redh. Muvindavindi (Kamba) Leaves Tree Decoction [3, 81]
Harrisonia abyssinica Olive Osiro (Luo), Orongoriwe (Kuria) Leaves, roots, root bark Tree Decoction [17, 23, 37, 44, 46, 47, 54, 82, 83]
Teclea nobilis Not reported Stem bark Shrub Decoction [11, 45]
Teclea simplicifolia (Engl.) Verdoorn Mutuiu (Kamba), Munderendu (Kikuyu) Leaves, roots, stem bark Shrub Decoction [3, 17, 44, 46, 55]
Toddalia asiatica (L.) Lam Mururue (Kikuyu), Oleparmunyo (Maasai) Roots, root bark, leaves, fruits (multiple parts) Shrub Decoction [3, 11, 17, 44, 45, 47, 58, 59, 62, 67, 84]
Zanthoxylum chalybeum Engl. Oloisuki (Maasai) Stem bark, root bark Tree Decoction [3, 17, 44, 46, 55, 61, 71, 85]
Zanthoxylum gilletii (De Wild.) P.G. Waterman Shihumba/Shikuma Bark Tree Decoction [34, 86]
Zanthoxylum usambarense (Engl.) Kokwaro Oloisuki (Maasai) Root, fruits, bark, leaves, stem Tree Decoction [3, 11, 67, 78, 85]

Salicaceae Dovyalis abyssinica (A. Rich.) Warb Kaiyaba (Kikuyu) Leaves, roots Shrub Decoction [3, 38]
Dovyalis caffra (Hook. f. & Harv.) Warb Mukambura (Kikuyu) Not specified Shrub Not specified [3]
Flacourtia indica (Burm.f) Merr. Mtondombare (Digo) Roots, bark Shrub Decoction [17, 46]
Trimeria grandifolia (Hochst.) Warb Oledat (Maasai) Roots Shrub Decoction [3, 38, 47]

Salvadoraceae Salvadora persica L. Mukayau (Kamba) Root, stem Shrub Decoction; prepared with salt and milk [22, 51, 63]

Santalaceae Osyris lanceolata Hochst. & Steudel Olosesiai (Maasai), muthithii (Kikuyu) Not specified Shrub Not specified [3]

Sapindaceae Allophylus pervillei Blume. Mvundza kondo Leaves, roots, bark Shrub Decoction [50]
Cardiospermum corundum Not reported Not specified Shrub Not specified [23]
Pappea capensis (Spreng) Eckl. & Zeyh. Muba (Kikuyu), Enkorr irri (Maasai) Branches Shrub Decoction [3, 48]

Sapotaceae Manilkara butegi Anon Bark Shrub Decoction [54]
Mimusops bagshawei S. Moore Lolwet (Nandi) Leaves, bark Tree Decoction [38]

Solanaceae Physalis peruviana L. Mayengo Leaves Shrub Inhale steam [34]
Solanum aculeastrum Dunal Mutura (Kikuyu) Not specified Shrub Not specified [3]
Solanum incanum L. Mutongu (Kamba), Entulelei (Maasai) Roots, leaves, root bark Shrub Decoction [17, 34, 37, 44, 46, 87]
Solanum taitense Vatke Entemelua (Maasai) Roots Shrub Chewed directly [22]
Withania somnifera (L.) Dunal Murumbae (Kikuyu) Root bark Shrub Decoction [3, 44]

Ulmaceae Chaetacme aristate Planch Not reported Roots Shrub Decoction [41]

Urticaceae Urtica massaica Mildbr. Thabai (Kikuyu) Aerial parts Herb Decoction [3, 35]

Verbenaceae Clerodendrum eriophyllum Guerke Muumba Root bark Shrub Decoction [44, 52]
Lantana camara L. Ruithiki, Mukenia (Kikuyu) Leaves Shrub Decoction [3, 73]
Lantana trifolia L. Ormokongora (Maasai) Leaves Shrub Decoction [34, 72]
Lippia javanica (Burm.f.) Spreng Angware-Rao (Luo) Roots Herb Not specified [37, 58]
Premna chrysoclada (Bojer) Gürke Mvuma Roots, leaves Herb Not specified [50]

Vitaceae Cissus quinquangularis L. Not reported Not specified Herb Not specified [45]
Cyphostemma maranguense (Gilg) Desc. Mutambi (Kikuyu) Not specified Herb Not specified [3]
Rhoicissus tridentata (L.f.) Wild & Drum Ndurutua (Kikuyu) Bark, roots Shrub Decoction [3, 34, 38, 62]

Xanthorrhoeaceae Aloe deserti A. Berger Ngolonje (Digo) Leaves Herb Decoction, infusion [17, 46]
Aloe macrosiphon Bak. Golonje (Giriama) Leaves Herb Infusion [46]
Aloe secundiflora Engl. Osukuroi (Maasai), Kiluma (Kamba) Leaves, leaf sap (exudate) Herb Infusion, decoction [11, 17, 34, 43, 44, 46, 58, 78, 88, 89]
Aloe vera (L) Webb. Alvera (Digo) Leaves Herb Infusion [17, 46]
Rhoicissus revoilli Rabongo (Luo)

Zingiberaceae Zingiber officinale Tangawizi (Luo) Roots Herb Chewed [36]

Zygophyllaceae Balanites glabrus Mildbr. & Schltr. Orng'osua (Maasai) Not specified Tree Not specified [22]
Balanites glabra Mildbr. & Schltr. Olng'osua (Maasai) Bark Shrub Decoction [22]
Balanites aegyptiaca (L.) Del. Olngosua (Maasai) Bark Shrub Decoction [48]

Language is also known as Kikamba. Local names with language(s) not indicated are sometimes a blend of Kiswahili and other local languages or were not specified by the authors. Decoction involves boiling a plant part in water. Infusion entails soaking of a plant part in water.

Figure 1.

Figure 1

Major botanical families from which antimalarial remedies are obtained in Kenya.

Some of the plants such as Acacia mellifera has been reported for treatment of malaria in Somalia [24], Albizia coriaria Welw. ex Oliver, Artemisia annua L., Momordica foetida Schumach, Carica papaya L., and Catharanthus roseus (L.) G. Don in Uganda [25, 26], Cameroon [27], and Zimbabwe [28], Clematis brachiata and Harrisonia abyssinica Oliv in Tanzania [29] and South Africa [30], Artemisia afra in Ethiopia [31], and Tamarindus indica L., Carica papaya L., and Ocimum basilicum L. in Indonesia [32].

3.2. Growth Habit, Part(s) Used, Preparation, and Administration of Antimalarial Plants

Antimalarial plants used in Kenya are majorly shrubs (33.2%), trees (30.1%), and herbs (29.7%) (Figure 2), and the commonly used plant parts are leaves (27.7%) and roots (19.4%) followed by bark (10.8%), root bark (10.5%), and stem bark (6.9%) (Figure 3). Comparatively, plant parts such as fruits, seeds, buds, bulbs, and flowers which have reputation for accumulating phytochemicals are rarely used, similar to reports from other countries [26, 28, 33].

Figure 2.

Figure 2

Growth habit of antimalarial plants used in Kenyan communities as per ethnobotanical surveys.

Figure 3.

Figure 3

Frequency of the reported plant parts used for preparation of antimalarial remedies in Kenya.

The dominant use of leaves presents little threat to the survival of medicinal plants. This encourages frequent and safe utilization of the plants for herbal preparations. Roots and root structures such as tubers and rhizomes are rich sources of potent bioactive chemical compounds [33], but their frequent use in antimalarial preparations may threaten the survival of the plant species used. For example, Zanthoxylum chalybeum and African wild olive (Olea europaea) have been reported to be threatened due to improper harvesting methods [2]. Thus, proper harvesting strategies and conservation measures are inevitable if sustainable utilization of such medicinal plants are to be realized.

Antimalarial remedies in Kenya are prepared by different methods. These include decoctions (70.5%), infusions (5.4%), ointments and steaming (1.3%), and roasting (0.3%). Preparation of antimalarial remedies from dry parts of one plant or several plants and ashes by using grinding stones was reported [38]. Burning, chewing, heating/roasting, pounding, and boiling or soaking in hot or cold water and milk were reported, and these are then orally administered as is the case with Western medicine [38]. Preparations for application onto the skin such as ointments, poultices, and liniments are frequently percutaneous, by rubbing or covering which are occasionally complimented by massage [38]. Rarely are antimalarial remedies administered through the nasal route. Fresh solid materials are eaten and chewed directly upon collection or after initial pounding/crushing. Dry plant materials are smoked and inhaled. These findings corroborate observations in other countries [33, 9092].

Malaria is caused by protozoan intracellular haemoparasites, and its treatment entails delivering adequate circulating concentration of appropriate antiprotozoal chemicals. The oral route is a convenient and noninvasive method of systemic treatment as it permits relatively rapid absorption and distribution of active compounds from herbal remedies, enabling the delivery of adequate curative power [93]. In addition, potential risk of enzymatic breakdown and microbial fermentation of active chemical entities may prompt the use of alternative routes of herbal remedy administration like inhalation of the steam or rubbing on the skin.

In this survey, it was noted that few plant species are used for management of malaria simultaneously in different locations. This could probably be attributed to the abundant distribution of the analogue active substances among species, especially belonging to family Asteraceae, Euphorbiaceae, Fabaceae, Meliaceae, Rubiaceae, and Rutaceae. Differences in geographical and climatic conditions may also influence the flora available in a given region. However, some plants have a wider distribution and therefore are used by most communities [34].

3.3. Perception, Prevention, and Treatment of Malaria and Its Symptoms

In rural Kenya, some believe that esse (malaria in native Tugen dialect) is caused by Cheko che makiyo (fresh unboiled milk), dirty water, ikwek (vegetables such as Solanum nigrum and Gynadropis gynadra) [54], mosquito bites, or cold weather [42]. Thus, burning of logs and plants such as Albizia coriaria with cow dung, Azadirachta indica (L) Burm (fresh leaves), Ocimum basilicum L., Ocimum suave Willd. (fresh leaves), and Plectranthus barbatus Andr. (ripe fruits or seeds) are done to keep mosquitoes away [17, 42]. Artemisia annua L. is planted in the home vicinity or near the bedroom window to repel mosquitoes believed to cause malaria [42].

Except in the case of life-threatening illnesses or where there is concern that there may be some supernatural forces in the aetiology of the disease, malaria and its symptoms (periodic fever, sweating, headache, backache, and chills) are treated primarily using decoctions and infusions of plants. Whenever it is thought that malaria is due to supernatural forces, diviners (such as Orgoiyon among the Tugen and Oloiboni among the Maasai) are consulted [94]. Croton dichogamus Pax though used for normal malaria treatment is used by Oloiboni for treatment of malaria or other ailment(s) thought to be due to witchcraft [22]. According to indigenous diagnoses, malaria is due to the presence of excess bile in the body, so the bile has to be expelled before healing can take place. Thus, purgation is regarded as the key treatment regimen for malaria [22, 54].

On the basis of this knowledge, different forms of herbal medications are prescribed according to the severity of the illness. Treatment of malaria is based on a number of interlinked elements: beliefs related to causation, the action or effectiveness of “modern” medicines, and the availability of plant treatments [54]. Salvadora persica L. is used for management of malarial colds, while Aneilema spekei (C. B. Clarke) is used for prevention of malaria fever [22]. The whole plant is mixed with other herbs in milk and sprinkled onto the patient. This is often administered by an Oloibon among the Maasai [22].

Though single plant parts are often used, more than one plant part, for example, decoctions from a mixture of roots of Plectranthus sylvestris together with those of Cassia didymobotrya and Clerodendrum johnstonii may be used as a remedy for malaria and headache [52]. Acacia species stem bark was reported to be used as a first treatment and is usually prepared as an overnight cold-water infusion, and then 40 ml is taken three times a day [11]. A follow-up medication would involve taking a decoction made from powders of Aloe species (leaf juice), Rhamnus staddo (stem or root bark), Clerodendrum myricoides (root bark), Warburgia ugandensis, Teclea nobilis (stem barks), and Caesalpinia volkensii, Ajuga remota Benth, Rhamnus prinoides, and Azadirachta indica leaves [11]. For this, 40 ml is taken thrice a day for 5 days.

The popular method of preparation as decoctions and concoctions suggest that the herbal preparations may only be active in combination, due to synergistic effects of several compounds that are inactive singly [95]. It is possible that some of the compounds that are inactive in vitro could exhibit activity in vivo due to enzymatic transformation into potent prodrugs [96] as reported for Azadirachta indica extracts [97].

3.4. Adverse Side Effects, Antidotes, and Contraindications of Medicinal Plants in Kenya

In traditional context, the pharmacological effect of medicinal plants is generally ascribed to their active and “safe” content that will only exert quick effect when taken in large quantities [22, 33]. Most reviewed reports in this study did not mention the side effects of antimalarial preparations. Nevertheless, herbal preparations from some antimalarial plants were reported to induce vomiting, diarrhea, headache, and urination [22, 54] (Table 2). This may be due to improper dosage, toxic phytochemicals, or metabolic by-products of these preparations [22].

Table 2.

Side effects, antidotes, and contraindications of medicinal plants used for traditional management of malaria in Kenya.

Plant Side effects Antidote(s) Contraindication Reference(s)
Albizia anthelmintica Brongn. Induces vomiting, diarrhea, and bile release from the gall bladder Not reported Pregnant women [22]
Aloe volkensii L. Induces vomiting Not reported Children [22]
Balanites glabrus Mildbr. & Schltr. Induces vomiting, diarrhea, and bile release from the gall bladder Not reported Pregnant women [22]
Croton megalocarpoides Friis & M.G. Gilbert Stomachache, induce vomiting, and bile release from the gall bladder Not reported Not reported [22]
Euphorbia meridionalis Bally & S. Carter Induces diarrhea as a means of cleansing the body Taken with goat or sheep soup Not reported [22]
Momordica friesiorum Hams C. Jeffrey Induces vomiting and bile release from the gall bladder Not reported Not reported [54]
Opilia campestris Engl. Induces vomiting and bile release from the gall bladder Mixed with soup Not reported [22]
Pyrenacantha malvifolia Engl. Induces vomiting Not reported Pregnant women [22]
Salvadora persica L. Induces vomiting and bile release Milk, salt Not reported [22]
Sericocomopsis hildebrandtii Schinz. Stomachache, weight loss through induced vomiting, and bile release from the gall bladder Milk Pregnant women [22]

However, purgation and emesis are interpreted as signs that malaria is leaving the body and that the healing process has begun [22, 54]. It is reasonable that some side effects might also be masked through the use of more than one plant (or plant parts) especially for bitter remedies (such as Ajuga remota Benth.) [11, 38]. However, some herbalists are known to use more than one plant (plant parts) as a trick of keeping the secrecy of their formula [11]. Boiling of plant parts in goat fat, meat bone broth (as is done for Carissa edulis), taking decoctions mixed with milk (for Rhamnus prinoides), and mixing remedies with milk and salt for Salvadora persica L. [22] could serve as antidotes for potential side effects from use of the herbal preparations as reported elsewhere [33]. Some of the plants reported in this study such as Ajuga integrifolia and Croton macrostachyus were reported in Ethiopia to cause vomiting, nausea, headache, urination, and diarrhea when used for management of malaria [33]. Because the outcome of the treatment remains generally unclear due to lack of feedback from patients, herbalists rely on anecdotal reporting as far as efficacy and side effects are concerned.

Some antimalarial plants were reported as contraindicated to pregnant women and children (Table 2). Gathirwa et al. [50] reported that the posology of antimalarial herbal preparations in Kenya sometimes is dictated by the plant to be used, the traditional herbalist, the sex and the age of the patient, reiterating that pregnant women and children are often given lower dosages compared to other adults. This indicates the existence of research gaps with regard to the potential toxicities and corresponding counteracting mechanisms of antimalarial plants in Kenya. This gap represents a barrier to effective development and exploitation of indigenous antimalarial plants. In essence, some of the plants listed are reported to exhibit marked toxicity. Teclea simplicifoli (roots) is regarded to be poisonous by rural Kenyans [98]. Catharanthus roseus (L.) G. Don is another such plant known to house neurotoxic alkaloids [99]. Vincristine and vinblastine in this plant are highly cytotoxic antimitotics that block mitosis in metaphase after binding to mitotic microtubules [100]. Side effects such as kidney impairment, nausea, myelosuppression, constipation, paralytic ileus, ulcerations of the mouth, hepatocellular damage, abdominal cramps, pulmonary fibrosis, urinary retention, amenorrhoea, azoospermia, orthostatic hypotension, and hypertension [101103] have been documented for antitumor drugs vincristine and vinblastine derived from this plant. These observations could partly explain why some antimalarial herbal preparations in Kenya are ingested in small amounts, applied topically, or are used for bathing. This gives a justification for the investigation of the plants for their potential toxicity.

3.5. Other Ethnomedicinal Uses of Antimalarial Plants Used in Rural Kenya

Most of the antimalarial plant species identified are used for traditional management of other ailments in Kenya and in other countries. Ajuga remota Benth (different parts), for example, are used to relieve toothache, severe stomachache, oedema associated with protein-calorie malnutrition disorders in infants when breast-feeding is terminated, pneumonia, and liver problems [52, 104, 105]. Such plants are used across different ethnic communities for managing malaria and can be a justification of their efficacy in malaria treatment [19].

3.6. Toxicity, Antiplasmodial, and Antimalarial Studies

Table 3 shows the list of some of the antimalarial plants used in Kenya with reports of toxicity/safety, antimalarial, and antiplasmodial activity evaluation. Across African countries, many antimalarial plants captured in this review have demonstrated promising therapeutic potential on preclinical and clinical investigations [68, 106111]. Interestingly, antimalarial compounds have been identified and isolated from some of these species [62, 112].

Table 3.

Antiplasmodial/antimalarial activities of investigated plants used for malaria treatment in Kenya and their active chemical constituents.

Plant Part used Extracting solvent Antiplasmodial (IC50μg/ml)/antimalarial activity (Plasmodium strain) Active phytochemicals and toxicity information Reference (s)
Justicia betonica L. Shoot Methanol, water, ether 69.6 (K39), >100 (K39), 13.36 μg/ml Justetonin (indole(3,2-b) quinoline alkaloid glycoside) [117, 118]
Allium sativum L. Synthetic Ethanol 50 mg/kg of ajoene suppressed development of parasitemia; ajoene (50 mg/kg) and chloroquine (4.5 mg/kg), given as a single dose, prevented development of parasitemia Ajoene, nontoxic [119]
Acmella caulirhiza Whole plant Dichloromethane 9.939 (D6); 5.201 (W2) No reports [56]
Aloe kedongensis Reynolds Leaves Methanol 87.7 (D6); 67.8 (W2) Anthrone, C-glucoside homonataloin, anthraquinones, aloin, lectins [120, 121]
Aloe secundiflora Eng. Leaf exudate Tested direct 66.20 (K39) No reports [58]
Achyranthes aspera L. Leaf, stem, roots, seeds Ethanol >100, 76.75, >100, >100 μg/ml Alkaloids, glycosides, saponins, triterpenoids [122]
Artemisia annua L. Leaves Water 1.1 (D10), 0.9 (W2) Sesquiterpenes and sesquiterpene lactones including artemisinin; safe and effective; artemisinin is safe for pregnant women [120, 123, 124]
Bidens pilosa L. Leaves Dichloromethane, chloroform, water, and methanol 8.5, 5, 11, 70 (D10) No reports [76]
Maytenus undata (Thunb.) Blakelock Leaves Dichloromethane, dichloromethane/chloroform (1 : 1), methanol, water >100, 21, 60, >100 (D10) No reports [76]
Stem Dichloromethane, dichloromethane/chloroform (1 : 1), methanol, water 85, 24, 38, >100 (D10)
Roots Dichloromethane, chloroform, methanol, water 23, 36, 40, >100 (D10)
Rhus natalensis Bernh. ex Krauss Stem bark, leaves Ethanol >50 (FcB1) Triterpenoids [50, 125]
Leaves, roots Methanol 43.92 (D6), 51.2 (W2); >100 (D6), 80.44 (W2)
Carissa edulis (Forssk.) Vahl Stem bark, root bark, roots Dichloromethane, chloroform, water, and methanol 33 (D10), 6.41 (D6), >250, 148.53 and >250, >250 against ENT 30, and NF 54, respectively Lignan, nortrachelogenin, cytotoxicity IC50 > 20, LD50 of 260.34, and 186.71 μg/ml for water and methanol extracts [48, 53, 76]
Euphorbia tirucalli L. Leaves Dichloromethane, dichloromethane/methanol (1 : 1), methanol, water 12, 23.5, >100, 83 (D10) No reports [76]
Psiadia punctulata Twigs Dichloromethane, water 9, >100 (D10) No reports [76]
Leaves Dichloromethane, dichloromethane/methanol (1 : 1), water 14, 22.5, >100 (D10)
Whole plant Dichloromethane/methanol (1 : 1), water 18 (D10), >100 (D10)
Ricinus communis L. Leaves Dichloromethane/methanol (1 : 1), water 27.5, >100 (D10) No reports [76]
Stems Dichloromethane/methanol (1 : 1), water 8, >100 (D10)
Fruit Dichloromethane/methanol (1 : 1), water 90, >100 (D10)
Catharanthus roseus G. Don Leaves Methanol 4.6 (D6); 5.3 (W2) Has neurotoxic alkaloids, terpenoids, flavonoids, sesquiterpenes [57, 126]
Caesalpinia volkensii Harms Leaves Decoction, ethanol, petroleum ether, methanol, water 480, 481, 490, 858, 404 (FCA: 20 GHA), 923, 960, 250, 961, 563 (W2) No reports [11]
Artemisia afra Jacq. ex Willd Leaves Methanol 9.1 (, D6); 3.9 (W2) Acacetin, genkwanin, 7-methoxyacacetin; cytotoxicity observed in Vero cells [57, 127]
Microglossa pyrifolia (Lam.) O. Ktze Leaves Chloroform, dichloromethane <5 (both NF54 and FCR3) E-Phytol, 6e-geranylgeraniol-19-oic acid; cytotoxic to human foetal lung fibroblast cell lines [18, 25, 128, 129]
Cucumis aculeatus Cogn Fruit Water >30 No reports [62]
Schkuhria pinnata (Lam.) Whole plant Water 22.5 (D6); 51.8 (W2) Schkuhrin I and schkuhrin II; methanol extract: low cytotoxicity against human cells; aqueous extracts: no toxicity observed in mice [57, 130]
Solanecio mannii (Hook. f.) C. Jeffrey Leaves Methanol 21.6 (3D7); 26.2 (W2) Phytosterols, n-alkanes, and N-hexacosanol [120, 128]
Tagetes minuta L. Leaves Ethyl acetate 61.0% inhibition at 10 μg/ml No reports [130]
Tithonia diversifolia A. Gray Leaves, aerial parts Methanol, ether 1.2 (3D7), 1.5 (W2), methanolic extract had 74% parasitemia suppression Tagitinin C and sesquiterpene lactones; aerial parts are cytotoxic against cells from the human foetal lung fibroblast cell line. [128, 131133]
Vernonia amygdalina Del. Leaves Methanol/dichloromethane, ethanol 2.7 (K1), 9.83. In vivo parasite suppression of between 57.2 and 72.7% in combination with chloroquine Vernolepin, vernolin, vernolide, vernodalin and hydroxy vernodalin, and steroid glucosides; petroleum ether extract shows strong cytotoxicity [111, 120, 130, 131, 134, 135]
Vernonia auriculifera (Welw.) Hiern Leaves Ethane, chloroform, ethyl acetate, water >100, 37.7, 40.3, 55.2, >100 (K39) No reports [35]
Vernonia brachycalyx O. Hoffm. Schreber Leaves Chloroform/ethyl acetate, methanol 6.6, 31.2 (K39) 29.6, 30.2 (V1/S) 5-Methylcoumarin isomers, 16,17-dihydrobrachycalyxoloid [58]
Vernonia lasiopus O. Hoffm. Leaves Methanol 44.3 (D6); 52.4 (W2) Sesquiterpene lactones, polysaccharides [57, 120]
Markhamia lutea (Benth.) K. Schum. Leaves Ethyl acetate 71% inhibition of P. falciparum at 10 μg/ml Phenylpropanoid glycosides, cycloartane triterpenoids, musambins A-C, Candmusambiosides A-C [130, 136]
Spathodea campanulata Stem bark, leaves Ethyl acetate, ethanol 28.9% inhibition of P. falciparum Quinone (lapachol) [130, 137, 138]
Cassia didymobotrya Fres. Leaves Methanol 23.4 (D6); undetectable (W2) Alkaloids [57]
Warbugia ugandensis Sprague Stem bark Methanol, water 6.4 (D6); 6.9 (W2), 12.9 (D6); 15.6 (W2) Coloratane sesquiterpenes, e.g., muzigadiolide [57, 131, 139141]
Dichloromethane 69% parasite inhibition
Carica papaya L. Leaves Ethyl acetate 2.96 (D10), 3.98 (DD2) Alkaloids, saponins, tannins, glycosides; no serious toxicity reported; carpaine, an active compound against P. falciparum had high selectivity and was nontoxic to normal red blood cells [142, 143]
Maytenus senegalensis Roots Ethanol 1.9 (D6), 2.4 (W2) Terpenoids, pentacyclic triterpenes, e.g., pristimerin; no toxicity observed in ethanol extract [144, 145]
Ethulia scheffleri S.Moore Leaves Chloroform/ethyl acetate/methanol 49.8 (K39), 32.2 (V1/S) No reports [58]
Combretum molle G. Don Stem bark Acetone 8.2 (3D7) Phenolics, punicalagin [146]
Momordica foetida Schumach Shoot Water 6.16 (NF54); 0.35 (FCR3) Saponins, alkaloid, and cardiac glycosides; no pronounced toxicity against human hepatocellular (HepG2) and human urinary bladder carcinoma (ECV-304, derivative of T-24) cells [25, 134, 147]
Clutia abyssinica Jaub. & Spach Leaves Methanol 7.8 (D6); 11.3 (W2) Diterpenes [57]
Croton macrostachyus Olive. Leaves Chloroform, dichloromethane Chemotherapeutic effect of 66–82%, 2 (D6) Triterpenoids including lupeol [14, 56]
Flueggea virosa (Roxb. ex Willd) Voigt Leaves Water/methanol 2.0 (W2) Bergenin, nontoxic, extracts exposed to murine macrophages did not slow or inhibit growth of cells [148, 149]
Erythrina abyssinica Lam. Stem bark Ethyl acetate 83.6% inhibition of P. falciparum at 10 μg/ml Chalcones (5-prenylbutein and homobutein), flavanones including 5-deoxyabyssinin II, abyssinin III, and abyssinone IV [130, 137]
Kigelia africana (Lam.) Benth Bark, fruit Chloroform/ethyl acetate, methanol 59.9 (K39), 83.8 (V1/S); fruits had 165.9 (K39) No reports [58]
Trichilia emetica Vahl Leaves, twigs Dichloromethane/methanol (1 : 1) 3.5 for all (D10) Kurubasch aldehyde [76, 150]
Senna didymobotrya (Fresen.) H. S. Irwin & Barneby Leaves, twigs Methanol, dichloromethane/methanol (1 : 1) >100 (K39), 9.5 (D10) Quinones [35, 76, 117]
Tamarindus indica L. Stem bark Water 25.1% chemosuppressive activity at 10 mg/kg (P. berghei) Saponins (leaves), tannins (fruits) [73]
Harungana madagascariensis Lam. Stem bark Water, ethanol 9.64 (K1); <0.5 with 28.6–44.8% parasite suppression Quinones including bazouanthrone, ferutinin A, harunganin, harunganol A, anthraquinones, saponins, steroids [137, 151153]
Rotheca myricoides (Hochst.) Steane and Mabb Leaves Methanol 9.51–10.56 and 82% parasite suppression at 600 mg/kg No reports [154]
Leucas calostachys Oliv. Leaves Methanol 3.45 with parasite inhibition of 3.5–5.2% No reports [82]
Ajuga remota Benth. Whole plant Ethanol; decoction, ethanol, petroleum ether, methanol, and water 55 (FCA/GHA), 57 (W2); 937, 55, 149, 504, 414 (FCA/GHA), 371, 57, 253, 493, 101 (W2) Ajugarin-1, ergosterol-5,8-endoperoxide, 8-oacetylharpagide, steroids [11, 14]
Suregada zanzibariensis Baill Root bark Water, methanol ≤10 (K67), (ENT36) Alkaloids [96, 155]
Clerodendrum myricoides R. Br. Root bark Ethanol 4.7 (D6); 8.3 (W2) No reports [156, 157]
Chloroform >10 (D6) Cytotoxicity, IC50 > 20.0 μg/ml [48]
Hoslundia opposita Vahl. Leaves Ethyl acetate 66.2% inhibition of P. falciparum at 10 μg/ml Quinones, saponins, abietane diterpenes (3-obenzoylhosloppone) [50, 130]
Roots; aerial parts Methanol 79.38 (D6), 64.21 (W2); 19.73 (D6), 29.41 (W2)
Leonotis nepetifolia Leaves Ethyl acetate, dichloromethane/methanol (1 : 1), water 27.0% inhibition of P. falciparum at 10 μg/ml, 15, >100 (D10) No reports [76, 130]
Ocimum basilicum L. Leaves, whole plant Ethanol 68.14 (3D7); 67.27 (INDO) No reports [156, 157]
Ocimum gratissimum Wild Leaves/twigs Dichloromethane 8.6 (W2) Flavonoids [56, 158]
Ocimum suave Wild Leaves Water (hot), chloroform/methanol mixture 100 mg/kg/day of extracts provided 81.45% and 78.39% parasite chemosuppression [71]
Plectranthus barbatus Andrews Leaves Dichloromethane No activity No toxicity recorded [56, 71]
Root bark Water (hot), chloroform/methanol mixture 100 mg/kg/day of extracts had 55.23% and 78.69% parasite chemosuppression
Azadirachta indica A. Juss. Leaves Water, methanol 17.9 (D6); 43.7 (W2) Terpenoids, isoprenoids, gedunin, limonoids: khayanthone, meldenin, and nimbinin; cytotoxicity LD50 of 101.26 and 61.43 μg/ml for water and methanol extracts [53, 144, 158160]
Melia azedarach Leaves Methanol, dichloromethane 55.1 (3D7), 19.1 (W2); 28 No reports [161, 162]
Ficus thonningii Blume Leaves Hexane 10.4 No reports [163]
Cissampelos mucronata A. Rich. Root bark, root Methanol, ethyl acetate 8.8 (D6); 9.2 (W2); root extract <3.91 (D6), 0.24 (W2) for the active compound (curine) Benzylisoquinoline alkaloids, curine [74, 75, 157]
Acacia nilotica L. Stem bark Methanol 100 mg/kg produced 77.7% parasitic inhibition Tannins, flavonoids, terpenes [53, 164]
Water, methanol >250, 153.79 (ENT 30), 73.59, 70.33 (NF 54) LD50 of 368.11 and 267.31 μg/ml for water and methanol extracts
Albizia coriaria Welw. ex Oliv Stem bark Methanol 15.2 (D6); 16.8 (W2) Triterpenoids, lupeol, lupenone [57]
Ageratum conyzoides L. Whole plant Dichloromethane, methanol 2.15 (D6); 3.444 (W2), 11.5 (D6); 12.1 (W2) Flavonoids [57]
Albizia zygia (DC.) Macbr. Stem bark Methanol 1.0 (K1) Flavonoids mainly 3′,4′,7-trihydroxyflavone; aqueous extract is relatively safe on subacute exposure [165, 166]
Maesa lanceolata Forsk. Twig Dichloromethane: methanol (1 : 1) 5.9 (D10) Lanciaquinones, 2,5, dihydroxy-3-(nonadec-14-enyl)-1,4-benzoquinone [76, 128, 167]
Securidaca longipedunculata Fresen. Leaves Dichloromethane 6.9 (D10) Saponins, flavonoids, alkaloids, steroids [168]
Prunus africana (Hook. f.) Kalkman Stem bark Methanol 17.3 (D6); not detected (W2) Terpenoids [57]
Pentas longiflora Oliv. Root Methanol 0.99 (D6); 0.93 (W2) Pyranonaphthoquinones, pentalongin and psychorubrin, and naphthalene derivative mollugin; low cytotoxicity [169]
Teclea nobilis Delile Bark 70% ethanol 53.27% suppression of parasitemia at 700 mg/kg Tannins, alkaloids, saponins, flavonoids [167, 170]
Ethyl acetate 54.7% inhibition of P. falciparum at 10 μg/ml Quinoline alkaloids [130]
Toddalia asiatica Root bark, fruits, and leaves Methanol, water, ethyl acetate, hexane 6.8 (D6); 13.9 (W2); ethyl acetate fruit extract (1.80 mg/ml), root bark aqueous (2.43) (W2) Furoquinolines (nitidine and 5,6-dihydronitidine), coumarins; acute and cytotoxicity of the extracts, with the exception of hexane extract from the roots showed LD50 > 1000 mg/kg and CC50 > 100 mg/ml, respectively [84, 157]
Zanthoxylum chalybeum Engl. Stem bark Water 4.3 (NF54); 25.1 (FCR3) Chelerythine, nitidine, and methyl canadine; no toxicity recorded [25, 71]
Trimeria grandifolia (Hochst.) Warb. Leaves Methanol >50 (3D7) No reports [128]
Harrisonia abyssinica Olive. Roots Water, methanol 4.4 (D6), 10.25 (W2); 89.74, 79.50 (ENT 30); 86.56, 72.66 (NF 54) Limonoids and steroids; LD50 of 234.71 and 217.34 μg/ml for water and methanol extracts [53, 144]
Lantana camara L. Leaves, leaves/twigs Dichloromethane, dichloromethane/methanol (1 : 1), water 8.7 (3D7), 5.7 (W2), 11 (D10), >100 (D10), >100 (D10) Lantanine, sesquiterpenes, triterpenes, flavonoids [76, 171]
Flacourtia indica (Burm. f.) Merr. Roots Dichloromethane, dichloromethane/methanol (1 : 1), water 86.5 (D10), 78 (D10), >100 (D10) No reports [76]
Clausena anisata Twigs, leaves Dichloromethane/methanol (1 : 1), water 18 (D10), >100 (D10); 55, >100 (D10) No reports [76]
Flueggea virosa (Roxb.ex Willd.) Baill. Leaves/twigs Dichloromethane/methanol (1 : 1), water 19 (D10), 11.4 (D10)
Alkaloids: Securinine and viroallosecurinine had IC50 of 2.7 and 2.9
Alkaloids, bergenin (root bark), securinine, and viroallosecurinine [76, 172174]
Lantana trifolia L. Ariel parts Petroleum ether, chloroform, ethanol 13.2, >50, >50 (plasmodial lactate dehydrogenase) Steroids, terpenoids, alkaloids, saponins [125]
Bridelia micrantha (Hochst.) Baill. Stem bark, leaves Methanol 158.7 (K1) No reports [175]
Balanites aegyptiaca (L.) Del. Root bark Chloroform 3.49 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Sericocomopsis hildebrandtii Root bark Chloroform 3.78 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Boscia angustifolia Inner bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Acacia tortilis Root bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Commiphora schimperi Inner bark Chloroform 4.63 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Acacia mellifera Inner bark Chloroform 4.48 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Fuerstia africana Leaf, aerial parts, leaves Chloroform, petroleum ether, methanol 3.76 (D6), 1.5, <15 with >70% parasite suppression Ferruginol, cytotoxicity IC50 > 20 μg/ml [48, 65, 131, 176]
Psiadia punctulata Root bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Ajuga integrifolia Buch.-Ham Leaves Methanol 35.17% at 800 mg/kg/day parasite suppression Alkaloids, flavonoids, saponins, terpenoids, anthraquinone, steroids, tannins, phenols, and fatty acids; no lethal effect on mice in 24 h and within 10 days of observation [177]
Albizia gummifera Methanol 0.16 (NF54), 0.99 (ENT 30) for alkaloidal fraction, spermine alkaloids had parasite suppression of 43–72% Spermine alkaloids (budmunchiamine K, 6-hydroxybudmunchiamine K, 5-normethylbudmunchiamine K, 6-hydroxy-5-normethylbudmunchiamine K, 9-normethylbudmunchiamine K) [178]
Rhamnus staddo Root bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Ocimum kilimandscharicum Leaves, twigs Dichloromethane 0.843 (D6); 1.547 (W2) No reports [56]
Gutenbergia cordifolia Leaves Chloroform 0.4 (D6) Cytotoxicity IC50 = 0.2 μg/ml [48]
Piper capense Root bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Pentas lanceolata Root bark Chloroform 5.15 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Clematis brachiata Root bark Chloroform 4.15 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Ekebergia capensis Inner bark, fruit, twigs Chloroform, dichloromethane/methanol (1 : 1) 3.97 (D6), 10, 18 (D10) Cytotoxicity IC50 > 20 μg/ml [48, 76]
Rhamnus prinoides Root bark Chloroform 3.53 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Olea europaea ssp. Africana Inner bark, leaves, twigs Chloroform, dichloromethane/methanol (1 : 1) 9.48 (D6), 12, 13 (D10) Cytotoxicity IC50 > 20 μg/ml [48, 76]
Pappea capensis Inner bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Pittosporum viridiflorum Sims Whole plant, leaves/flowers Dichloromethane, methanol, dichloromethane/methanol (1 : 1) 3, 10, 27.7, (D10), 28, 47, 70.5 (D10) Triterpenoid estersaponin, pittoviridoside (saponins) [76, 179, 180]
Podocarpus latifolius Root bark Chloroform 6.43 (D6) Cytotoxicity IC50 > 20 μg/ml [48]
Rumex abyssinicus Jacq. Root Dichloromethane <15 No reports [176]
Rubus pinnatus Wild Leaves Ethanol 20% parasite suppression No reports [130]
Zanthoxylum gilletii Stem bark Dichloromethane/methanol (1 : 1) 2.52 (W2), 1.48 (D6), 1.43 (3D7) Nitidine, seas amine 8-acetyl dihydrochelerythrine [86, 176]
Solanum incanum L. Leaves Chloroform/methanol 31% parasite suppression No reports [87]
Rhoicissus tridentata Roots Water >40.0 No reports [62]
Acacia hockii Root bark Chloroform >10.0 (D6); not active Cytotoxicity IC50 > 20 μg/ml [48]
Lippia javanica (Burm.f.) Spreng Roots Chloroform/ethyl acetate, methanol 16.7, 40.6 (K39), 19.2, 40.1 (V1/S) No reports [58, 76]
Roots, stem Dichloromethane, methanol, dichloromethane/methanol (1 : 1) 3.8, 27, 24 (D10), 4.5, 21.8, 29.8 (D10)
Premna chrysoclada (Bojer) Gürke Roots, leaves Methanol 27.63 (D6), 52.35 (W2); 7.75 (D6), 9.02 (W2) Not cytotoxic at 100 μg/ml [50]
Allophylus pervillei Blume Roots, stem bark Methanol 45.62 (D6), 48.91 (W2); >100 (D6),>100 (W2) Not cytotoxic at 100 μg/ml [50]
Aganthesanthemum bojeri Klotzsch. Whole plant Methanol 55.3 (D6), 55.97 (W2) Not cytotoxic at 100 μg/ml [50]
Abrus precatorius L. Leaves Methanol 85.59 (D6), >100 (W2) Not cytotoxic at 100 μg/ml [50]
Combretum illairii Engl. Stem bark, leaves Methanol 55.96 (D6), 58.54 (W2); 24.21 (D6), 33.31 (W2) Not cytotoxic at 100 μg/ml [50]
Grewia plagiophylla K. Schum Leaves, stem bark Methanol 13.28 (D6), 34.2 (W2); >100 (D6), >100 (W2) Not cytotoxic at 100 μg/ml [50]
Combretum padoides Engl. & Diels Roots Methanol 21.73 (D6), 59.43 (W2) Not cytotoxic at 100 μg/ml [50]
Uvaria acuminata Leaves, roots Methanol 51.13 (D6), >100 (W2); 8.89 (D6), 6.90 (W2) Cytotoxic with CC50 of 2.37 μg/ml. [50]
Ormocarpum trachycarpum Roots Chloroform/ethyl acetate, methanol, water 19.6, 41.7, 79.4 (K39); 17.5, 32.8 (V1/S) No reports [58]
Plectranthus sylvestris Gurke Leaves Chloroform/ethyl acetate, methanol 41.1, 56.2 (K39); 61.0 (V1/S) No reports [58]
Turraea robusta Root bark Water, methanol 25.32, 2.09 (D6), 42.41, 10.32 (W2) IC50 of 24.38 and 45.72 μg/ml for methanol and aqueous extracts against Vero cells (cytotoxic) [49]
Lannea schweinfurthii Stem bark Water, methanol 10.55 and 75.90, 11.38 and 36.26 (D6 and W2) IC50 of 225.25 and 3256.52 μg/ml for methanol and aqueous extracts against Vero cells [49]
Sclerocarya birrea Stem bark Water, methanol 18.96 and 71.74, 5.91 and 24.96 (D6 and W2) IC50 of 361.24 and 3375.22 μg/ml for methanol and aqueous extracts against Vero cells [49]
Withania somnifera Stem bark Water, methanol >250, >250 (ENT 30); 145.86, 125.59 (NF 54) LD50 of 301.44 and 207.27 μg/ml for water and methanol extracts [53]
Zanthoxylum usambarense Stem bark Water, methanol 14.33, 5.25 (ENT 30); 5.54, 3.20 (NF 54) LD50 of 260.90 and 97.66 μg/ml for water and methanol extracts [53]
Fagaropsis angolensis Stem bark Water, methanol 10.65, 6.13 (ENT 30); 5.04, 4.68 (NF 54) LD50 of 173.48 and 57.09 μg/ml for water and methanol extracts [53]
Myrica salicifolia Stem bark Water, methanol 85.97, 66.84 (ENT 30); 55.89, 51.07 (NF 54) LD50 of 328.22 and 320.17 μg/ml for water and methanol extracts [53]
Strychnos henningsii Gilg Stem bark Water, methanol 73.39, 67.16 (ENT 30); 190.0, 159.71 (NF 54) LD50 of 293.93 and 101.22 μg/ml for water and methanol extracts [53]
Neoboutonia macrocalyx Stem bark Water, methanol 92.85, 84.56 (ENT 30); 78.44, 78.40 (NF 54) LD50 of 41.69 and 21.04 μg/ml for water and methanol extracts [53]
Urtica massaica Mildbr. Aerial parts Hexane, chloroform, ethyl acetate, water, methanol >100 (K39) No reports [35]
Uvaria scheffleri Diels Leaves, stem, root bark Petroleum ether, dichloromethane, methanol 5–500 (K1) Indole alkaloid-(±L)-schefflone, uvaretin, diuvaretin [181, 182]
Rauwolfia cothen Root bark Petroleum ether, dichloromethane, methanol 0–499 (K1) Yohimbine, an indole alkaloid [183, 184]
Tridax procumbens L. Whole plant Dichloromethane/methanol (1 : 1), water 17 (D10), >100 (D10) Bergenin [76, 184, 185]
Centella asiatica Leaves Dichloromethane/methanol (1 : 1) 8.3 (D10) Alkaloids, sesquiterpenes [76, 186]
Ficus sur Stem bark Hexane, chloroform, ethyl acetate, water, methanol 19.2, 9.0, >100, >100, >100 (K39) No reports [35]
Euphorbia inaequilatera Sond. Whole plant Hexane, chloroform, ethyl acetate, water, methanol 19.2, 9.0, >100, >100, >100 (K39) No reports [35]
Spermacoce princeae (K. Schum.) Verdc. Whole plant Hexane, chloroform, ethyl acetate, water, methanol >100 (K39) No reports [35]
Senna occidentalis Leaves Dimethyl sulfoxide, ethanol 48.80 (3D7), 54.28 (NIDO); <3; Quinones [156, 187, 188]
Ethanol, dichloromethane >60% parasitemia suppression
Searsia natalensis (Bernh. ex C. Krauss) Leaves Chloroform 1.8 (plasmodial lactate dehydrogenase) No reports [125]

Plasmodium falciparum isolates: D6, 3D7, D10, FCA/GHA (FCA: 20 GHA), FCR3, K39, and NF54 are chloroquine sensitive; DD2, ENT 30, FCR3, K1, NIDO, V1/S, and W2 are chloroquine resistant. For [48], control used for cytotoxicity study (vinblastine) had the effective dose to inhibit 50% growth (ED50) = 0.038 μg/ml. An ED50 greater than 20 μg/ml indicates that the plant extract lacks cytotoxicity. The control drug chloroquine had a toxicity of 17.4 μg/ml and IC50 of 0.004 μg/ml against D6 clone.

Export of indigenous medicinal plants bring substantial foreign exchange to African countries such as Egypt [113], South Africa [114], Uganda, Tanzania, and Kenya [115]. Despite the success of traditional practices and abundance of indigenous medicinal plants (Table 1), antimalarial plants research in Kenya stops mostly on ethnobotanical surveys, with extensions limited to evaluation of crude extracts from plants against Plasmodium berghei [48, 56, 71]. A gap is evident with regard to research geared towards identifying and isolating plant bioactive compounds and establishing the efficacy and safety of medicinal plants through in vitro assays using human Plasmodium parasites and in vivo assay involving higher animal models and randomized clinical trials [50]. For example, the toxicity of 16,17-dihydrobrachycalyxolid isolated in Vernonia brachycalyx has been reported to be due to its ability to inhibit the proliferation of phytohaemmaglutinin-treated human lymphocytes [116]. A median inhibitory concentration (IC50) of 7.8 μg/ml was reported, which is comparable to the median concentration obtained in the antiplasmodial assay by Oketch-Rabah et al. [58] (Table 3). To assess whether observed antiplasmodial activities are due to a specific or a general toxicity effect, the experimental selectivity index (SI) needs to be calculated for extracts and only a few studies in Kenya has attempted this [4850]. It is worth noting that there is always a variation in the degree of toxicity depending on the sensitivity of the animals, tissue, or cells used, type of extract, nature of the test substance, dose, and mode of administration. In this study, 38.8% (54/139) of the total plants were evaluated for their toxicities. Of these, 41 showed low cytotoxicity with LC50 > 20 μg/ml. Some of these plants such as Artemisia annua, Carica papaya, Flueggea virosa, and Schkuhria pinnata fortuitously showed good antimalarial activity. On the contrary, extracts of some plants used for malaria treatment with good activity are potentially toxic, for example, dichloromethane leaf extract of Microglossa pyrifolia, methanolic extract of Uvaria acuminata (CC50 = 2.37 μg/ml), and petroleum ether leaf extract of Vernonia amygdalina.

In total, 139 (48.6%) of the species identified have been investigated for antiplasmodial (n = 25, 18%) or antimalarial activities (n = 135, 97.1%). However, there is no record on antiplasmodial or antimalarial activity of about 51.4% of the species used although they could be potential sources of antimalarial remedies. In the antiplasmodial activity, parasite suppression ranged from 3.5 to 5.2% in Leucas calostachys Olive aqueous leaf extracts [82] to 90% in Ajuga integrifolia aqueous leaf extracts [177]. In antimalarial studies against chloroquine-sensitive (D6, 3D7, D10, FCA/GHA, FCR3, K39, and NF54) and chloroquine-resistant (DD2, ENT 30, FCR3, K1, V1/S, and W2) P. falciparum isolates, 49.6% (67/135) were active with the lowest IC50 of 0.16 μg/ml recorded against NF54 isolate for spermine alkaloids in Albizia gummifera [178]. On the other hand, 68 species (50.4%) were inactive. The most active extracts were those of isolated pure compounds. For example, spermine alkaloids: budmunchiamine K, 6-hydroxybudmunchiamine K, 5-normethylbudmunchiamine K, 6-hydroxy-5-normethylbudmunchiamine K, and 9-normethylbudmunchiamine K from Albizia gummifera bark [178] had IC50 of 0.16 μg/ml recorded against ENT30. Curine, isolated from Cissampelos mucronate roots, showed antimalarial activity against W2 isolate with IC50 of 0.24 μg/ml [74]. At present, Artemisia annua [106, 107], Azadirachta indica [108], and Vernonia amygdalina [111] have been subjected to clinical studies. Artemisinin from Artemisia annua is an ingredient of artemisinin-based combination therapy currently recommended for treatment of malaria [124]. As identified earlier, few clinical trials have been done on antimalarial plants. This is partly due to the regulatory requirements for clinical studies, as well as the financial input required.

4. Conclusion

Indigenous knowledge on medicinal plants in Kenya is a good resource for malaria management. However, further studies are required to isolate the active compounds in the unstudied plants which can be used to standardize plant materials so as to install a reproducible herbal medicine practice. Safety and toxicity as well as clinical studies are required as some of the plants are used as admixtures in traditional herbal management of malaria.

Acknowledgments

The author is grateful to the World Bank and the Inter-University Council of East Africa (IUCEA) for the scholarship awarded to him through the Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE) at Moi University, Kenya, that prompted this ethnomedical communication. The author commends preceding authors for their fruitful quest for knowledge on medicinal plants utilized by rural communities of Kenya and Eastern Africa as a whole.

Data Availability

This is a review article, and no raw data were generated. All data generated or analyzed in this study are included in this article.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

References

  • 1.WHO. World Malaria Report. Geneva, Switzerland: World Health Organization Global Malaria Programme; 2011. [Google Scholar]
  • 2.Burness Communications. Antimalarial trees in East Africa threatened with extinction. ScienceDaily. 21 April 2011 [Google Scholar]
  • 3.Njoroge G. N., Bussman R. W. Diversity and utilization of antimalarial ethnophytotherapeutic remedies among the Kikuyus (Central Kenya) Journal of Ethnobiology and Ethnomedicine. 2006;2(8):p. 7. doi: 10.1186/1746-4269-2-54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.World Health Organization. World Health Report 2000. Geneva, Switzerland: WHO Press; 2000. [Google Scholar]
  • 5.World Health Organization. World Malaria Report 2017. Geneva, Switzerland: World Health Organization; 2017. [Google Scholar]
  • 6. President’s Malaria Initiative, Kenya, Malaria Operational Plan FY, 2018, https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-2018/fy-2018-kenya-malaria-operational-plan.pdf?sfvrsn=5.
  • 7.Machini B., Waqo E., Kizito W., et al. Trends in outpatient malaria cases, following Mass Long Lasting Insecticidal Nets (LLIN) distribution in epidemic prone and endemic areas of Kenya. East African Medical Journal. 2016;93(10):S10–S115. [Google Scholar]
  • 8.Murphy M. W., Dunton R. F., Perich M. J., Rowley W. A. Attraction of Anopheles (Diptera: Culicidae) to volatile chemicals in Western Kenya. Journal of Medical Entomology. 2001;38(2):242–244. doi: 10.1603/0022-2585-38.2.242. [DOI] [PubMed] [Google Scholar]
  • 9.Milliken W. Traditional anti-malarial medicine in Roraima, Brazil. Economic Botany. 1997;51(3):212–237. doi: 10.1007/bf02862091. [DOI] [Google Scholar]
  • 10.Dianne J., Jeanne M., Margarette S., et al. Treatment history and treatment dose are important determinants of sulfadoxine-pyrimethamine efficacy in children with uncomplicated malaria in Western Kenya. Journal of Infectious Diseases. 2003;187:467–468. doi: 10.1086/367705. [DOI] [PubMed] [Google Scholar]
  • 11.Kuria K. A. M., De Coster S., Muriuki G., et al. Antimalarial activity of Ajuga remota Benth (Labiatae) and Caesalpinia volkensii Harms (Caesalpiniaceae): in vitro confirmation of ethnopharmacological use. Journal of Ethnopharmacology. 2001;74(2):141–148. doi: 10.1016/s0378-8741(00)00367-6. [DOI] [PubMed] [Google Scholar]
  • 12.White N. J. Cardiotoxicity of antimalarial drugs. The Lancet Infectious Diseases. 2007;7(8):549–558. doi: 10.1016/s1473-3099(07)70187-1. [DOI] [PubMed] [Google Scholar]
  • 13.Price R. N., Uhlemann A.-C., Brockman A., et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. The Lancet. 2004;364(9432):438–447. doi: 10.1016/s0140-6736(04)16767-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Rahmatullah M., Hossan S., Khatun A., Seraj S., Jahan R. Medicinal plants used by various tribes of Bangladesh for treatment of malaria. Malaria Research and Treatment. 2012;5:p. 2012. doi: 10.1155/2012/371798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Division of Malaria Control (Ministry of Public Health and Sanitation), Kenya National Bureau of Statistics and ICF Macro 2011; 2010 Kenya Malaria Indicator Survey, DO MC, KNBS and ICF Macro, Nairobi, Kenya.
  • 16.Helen L. G., Sarah K. C., Timothy P. R., et al. Malaria prevention in highland Kenya: indoor residual house spraying vs. insecticide-treated bed nets. Tropical Medicine and International Health. 2002;7:298–303. doi: 10.1046/j.1365-3156.2002.00874.x. [DOI] [PubMed] [Google Scholar]
  • 17.Nguta J. M., Mbaria J. M., Gathumbi P. K., et al. Ethnodiagnostic skills of the Digo community for malaria: a lead to traditional bioprospecting. Frontiers in Pharmacology. 2011;2(30):1–14. doi: 10.3389/fphar.2011.00030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Pan W.-H., Xu X.-Y., Shi N., Tsang S., Zhang H.-J. Antimalarial activity of plant metabolites. International Journal of Molecular Sciences. 2018;19(5):p. 1382. doi: 10.3390/ijms19051382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Omara T., Kiprop A. K., Ramkat R. C., et al. Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evidence-Based Complementary and Alternative Medicine. 2020;2020(6):1–26. doi: 10.1186/s41182-019-0187-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Omara T., Kagoya S., Openy A., et al. Antivenin plants used for treatment of snakebites in Uganda: ethnobotanical reports and pharmacological evidences. Tropical Medicine and Health. 2020;48(6):1–16. doi: 10.1155/2020/3529081.352908 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bongomin O., Ocen G. G., Nganyi E. O., Musinguzi A., Omara T. Exponential disruptive technologies and the required skills of Industry 4.0. Journal of Engineering. 2020;2020:p. 17. doi: 10.1155/2020/4280156.4280156 [DOI] [Google Scholar]
  • 22.Kiringe J. W. A survey of traditional health remedies used by the Maasai of Southern Kaijiado district, Kenya. Ethnobotany Research and Applications. 2006;4:61–73. doi: 10.17348/era.4.0.61-74. [DOI] [Google Scholar]
  • 23.Kareru P. G., Kenji G. M., Gachanja A. N., Keriko J. M., Mungai G. Traditional medicines among the Embu and Mbeere people of Kenya. African Journal of Traditional, Complementary and Alternative Medicine. 2007;4:75–86. doi: 10.4314/ajtcam.v4i1.31193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Samuelsson G., Farah M. H., Claeson P., et al. Inventory of plants used in traditional medicine in Somalia. III. Plants of the families Lauraceae-Papilionaceae. Journal of Ethnopharmacology. 1992;37(2):93–112. doi: 10.1016/0378-8741(92)90068-3. [DOI] [PubMed] [Google Scholar]
  • 25.Adia M. M., Emami S. N., Byamukama R., Faye I., Borg-Karlson A.-K. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. Journal of Ethnopharmacology. 2016;186:14–19. doi: 10.1016/j.jep.2016.03.047. [DOI] [PubMed] [Google Scholar]
  • 26.Okello D., Kang Y. Exploring antimalarial herbal plants across communities in Uganda based on electronic data. Evidence-Based Complementary and Alternative Medicine. 2019;2019:p. 27. doi: 10.1155/2019/3057180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Pierre S., Toua V., Tchobsala, Fohouo T. Medicinal plants used in traditional treatment of malaria in Cameroon. Journal of Ecology and the Natural Environment. 2011;3(3):104–117. [Google Scholar]
  • 28.Ngarivhume T., van’t Klooster C. I. E. A., de Jong J. T. V. M., Van der Westhuizen J. H. Medicinal plants used by traditional healers for the treatment of malaria in the Chipinge district in Zimbabwe. Journal of Ethnopharmacology. 2015;159:224–237. doi: 10.1016/j.jep.2014.11.011. [DOI] [PubMed] [Google Scholar]
  • 29.Chhabra S. C., Mahunnah R. L. A., Mshiu E. N. Plants used in traditional medicine in eastern Tanzania. VI. Angiosperms (Sapotaceae to Zingiberaceae) Journal of Ethnopharmacology. 1993;39(2):83–103. doi: 10.1016/0378-8741(93)90024-y. [DOI] [PubMed] [Google Scholar]
  • 30.Watt J. M., Breyer-Brandwijk M. G. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Edinburgh, UK: E.&S. Livingstone; 1962. [Google Scholar]
  • 31.Eneyew A., Asfaw Z., Kelbessa E., Nagappan R. Ethnobotanical study of traditional medicinal plants in and around Fiche district, Central Ethiopia. Current Research Journal of Biological Sciences. 2014;6:154–167. [Google Scholar]
  • 32.Taek M., Prajogo B., Agil M. Plants used in traditional medicine for treatment of malaria by Tetun ethnic people in West Timor Indonesia. Asian Pacific Journal of Tropical Medicine. 2018;11(11):630–637. doi: 10.4103/1995-7645.246339. [DOI] [Google Scholar]
  • 33.Alebie G., Urga B., Worku A. Systematic review on traditional medicinal plants used for the treatment of malaria in Ethiopia: trends and perspectives. Malaria Journal. 2017;16(307):p. 13. doi: 10.1186/s12936-017-1953-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Mukungu N., Abuga K., Okalebo F., Ingwela R., Mwangi J. Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-county, Kenya. Journal of Ethnopharmacology. 2016;194:98–107. doi: 10.1016/j.jep.2016.08.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Muregi F. W., Chbabra S. C., Njagi E. N., et al. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. Journal of Ethnopharmacology. 2003;84(2-3):235–239. doi: 10.1016/s0378-8741(02)00327-6. [DOI] [PubMed] [Google Scholar]
  • 36.Nagata J. M., Jew A. R., Kimeu J. M., Salmen C. R., Bukusi E. A., Cohen C. R. Medical pluralism on Mfangano island: use of medicinal plants among persons living with HIV/AIDS in Suba district, Kenya. Journal of Ethnopharmacology. 2011;135(2):501–509. doi: 10.1016/j.jep.2011.03.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Nyambati G. K., Maranga R. O., Ozwara H., Mbugua P. K. Use of putative antimalarial herbal medicines among communities in Trans-Mara, Kuria and Suba districts of Kenya. SEJ Pharmacognosy. 2018;1:1–14. [Google Scholar]
  • 38.Jeruto P., Mutai C., Ouma G., Lukhoba C. An inventory of medicinal plants that the people of Nandi use to treat malaria. Journal of Animal & Plant Sciences. 2011;9(3):1192–1200. [Google Scholar]
  • 39.Kigen G., Some F., Kibosia J., et al. Ethnomedicinal plants traditionally used by the Keiyo community in Elgeyo Marakwet county, Kenya. Journal of Biodiversity, Bioprospecting and Development. 2014;1(3):p. 11. [Google Scholar]
  • 40.Jeruto P., Lukhoba C., Ouma G., Otieno D., Mutai C. An ethnobotanical study of medicinal plants used by the Nandi people in Kenya. Journal of Ethnopharmacology. 2008;116(2):370–376. doi: 10.1016/j.jep.2007.11.041. [DOI] [PubMed] [Google Scholar]
  • 41.Okello S. V., Nyunja R. O., Netondo G. W., Onyango J. C. Ethnobotanical study of medicinal plants used by Sabaots of Mt. Elgon Kenya. African Journal of Traditional, Complementary and Alternative Medicine. 2010;7(1):1–10. doi: 10.4314/ajtcam.v7i1.57223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Olala C. N. Nairobi, Kenya: 2014. Identification of plants used for treatment of malaria and factors influencing their use in Boro division, Siaya county, Kenya. MSc Thesis, Kenyatta University. [Google Scholar]
  • 43.Onyambu M. O., Gikonyo N. K., Nyambaka H. N., Thoithi G. N. A review of trends in herbal drugs standardization, regulation and integration to the national healthcare systems in Kenya and the globe. International Journal of Pharmacognosy and Chinese Medicine. 2019;3(3):p. 13. [Google Scholar]
  • 44.Muthaura C. N., Rukunga G. M., Chhabra S. C., Mungai G. M., Njagi E. N. M. Traditional phytotherapy of some remedies used in treatment of malaria in Meru district of Kenya. South African Journal of Botany. 2007;73(3):402–411. doi: 10.1016/j.sajb.2007.03.004. [DOI] [Google Scholar]
  • 45.Bussmann R. W., Gilbreath G. G., Solio J., et al. Plant use of the Maasai of Sekenani valley, Maasai Mara, Kenya. Journal of Ethnobiology and Ethnomedicine. 2006;2(22):p. 7. doi: 10.1186/1746-4269-2-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Nguta J. M., Mbaria J. M., Gakuya D. W., Gathumbi P. K., Kiama S. G. Traditional antimalarial phytotherapy remedies used by the South Coast community, Kenya. Journal of Ethnopharmacology. 2010;131(2):256–267. doi: 10.1016/j.jep.2010.06.031. [DOI] [PubMed] [Google Scholar]
  • 47.Orwa J. A., Mwitari P. G., Mtu E., Rukunga G. M. Traditional healers and the management of Malaria in Kisumu district, Kenya. East African Medical Journal. 2008;84:51–55. doi: 10.4314/eamj.v84i2.9504. [DOI] [PubMed] [Google Scholar]
  • 48.Koch A., Tamez P., Pezzuto J., Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. Journal of Ethnopharmacology. 2005;101(1–3):95–99. doi: 10.1016/j.jep.2005.03.011. [DOI] [PubMed] [Google Scholar]
  • 49.Gathirwa J. W., Rukunga G. M., Njagi E. N. M., et al. The in vitro anti-plasmodial and in vivo anti-malarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. Journal of Ethnopharmacology. 2008;115(2):223–231. doi: 10.1016/j.jep.2007.09.021. [DOI] [PubMed] [Google Scholar]
  • 50.Gathirwa J. W., Rukunga G. M., Mwitari P. G., et al. Traditional herbal antimalarial therapy in Kilifi district, Kenya. Journal of Ethnopharmacology. 2011;134(2):434–442. doi: 10.1016/j.jep.2010.12.043. [DOI] [PubMed] [Google Scholar]
  • 51.Kimondo J., Miaron J., Mutai P., Njogu P. Ethnobotanical survey of food and medicinal plants of the Ilkisonko Maasai community in Kenya. Journal of Ethnopharmacology. 2015;175:463–469. doi: 10.1016/j.jep.2015.10.013. [DOI] [PubMed] [Google Scholar]
  • 52.Kokwaro J. O. Medicinal Plants of East Africa. Nairobi, Kenya: Kenya Literature Bureau; 1993. [Google Scholar]
  • 53.Kirira P. G., Rukunga G. M., Wanyonyi A. W., et al. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi districts of Kenya. Journal of Ethnopharmacology. 2006;106(3):403–407. doi: 10.1016/j.jep.2006.01.017. [DOI] [PubMed] [Google Scholar]
  • 54.Kaendi J. M. Coping with Malaria and Visceral Leishmaniasis (Kala-azar) in Baringo District, Kenya: Implications for Disease Control. Los Angeles, CA, USA: University of California; 1994. PhD Thesis. [Google Scholar]
  • 55.Kisangau D., Kauti M., Mwobobia R., Kanui T., Musimba N. Traditional knowledge on use of medicinal plants in Kitui county, Kenya. International Journal of Ethnobiology and Ethnomedicine. 2017;4(1):1–10. [Google Scholar]
  • 56.Owuor B. O., Ochanda J. O., Kokwaro J. O., et al. In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants. Journal of Ethnopharmacology. 2012;144(3):779–781. doi: 10.1016/j.jep.2012.09.045. [DOI] [PubMed] [Google Scholar]
  • 57.Muthaura C. N., Keriko J. M., Mutai C., et al. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi county of Kenya. Journal of Ethnopharmacology. 2015;175:315–323. doi: 10.1016/j.jep.2015.09.017. [DOI] [PubMed] [Google Scholar]
  • 58.Oketch-Rabah H. A., Dossaji S. F., Mberu E. K. Antimalarial activity of some Kenyan medicinal plants. Pharmaceutical Biology. 1999;37(5):329–334. doi: 10.1076/phbi.37.5.329.6053. [DOI] [Google Scholar]
  • 59.Kigen G., Kamuren Z., Njiru E., Wanjohi B., Kipkore W. Ethnomedical survey of the plants used by traditional healers in Narok county, Kenya. Evidence-Based Complementary and Alternative Medicine. 2019;2019:8. doi: 10.1155/2019/8976937.8976937 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Prota4U. Combretum Padoides Engl. & Diels. https://www.prota4u.org/database/protav8.asp?g=pe&p=Combretum+padoides+Engl.+&+Diels. [Google Scholar]
  • 61.Kipkore W., Wanjohi B., Rono H., Kigen G. A study of the medicinal plants used by the Marakwet community in Kenya. Journal of Ethnobiology and Ethnomedicine. 2014;10(24):p. 21. doi: 10.1186/1746-4269-10-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Gakunju D. M., Mberu E. K., Dossaji S. F., et al. Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrobial Agents and Chemotherapy. 1995;39(12):2606–2609. doi: 10.1128/aac.39.12.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Nankaya J., Gichuki N., Lukhoba C., Balslev H. Medicinal plants of the Maasai of Kenya: a review. Plants. 2019;9(1):p. 44. doi: 10.3390/plants9010044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Omwenga E. O., Hensel A., Shitandi A., Goycoolea F. M. Ethnobotanical survey of traditionally used medicinal plants for infections of skin, gastrointestinal tract, urinary tract and the oral cavity in Borabu sub-county, Nyamira county, Kenya. Journal of Ethnopharmacology. 2015;176:508–514. doi: 10.1016/j.jep.2015.11.032. [DOI] [PubMed] [Google Scholar]
  • 65.Kigondu E. V. M., Matu E. N., Gathirwa J. W., et al. Medicinal properties of Fuerstia africana T.C.E. Friers (Lamiaceae) African Journal of Health Sciences. 2011;19(3):38–41. [Google Scholar]
  • 66.Rukunga G. M., Gathirwa J. W., Omar S. A., et al. Anti-plasmodial activity of the extracts of some Kenyan medicinal plants. Journal of Ethnopharmacology. 2009;121(2):282–285. doi: 10.1016/j.jep.2008.10.033. [DOI] [PubMed] [Google Scholar]
  • 67.Nankaya J., Nampushi J., Petenya S., Balslev H. Ethnomedicinal plants of the Loita Maasai of Kenya. Environment, Development and Sustainability. 2019;15(5) [Google Scholar]
  • 68.Kuria K. A. M., Chepkwony H., Govaerts C., et al. The antiplasmodial activity of isolates from Ajugaremota. Journal of Natural Products. 2002;65(5):789–793. doi: 10.1021/np0104626. [DOI] [PubMed] [Google Scholar]
  • 69.Muregi F. W., Ishih A., Miyase T., et al. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (CQ) against a CQ-tolerant rodent parasite, in mice. Journal of Ethnopharmacology. 2007;111(1):190–195. doi: 10.1016/j.jep.2006.11.009. [DOI] [PubMed] [Google Scholar]
  • 70.Okach D. O., Nyunja A. R. O., Opande G. Phytochemical screening of some wild plants from Lamiaceae and their role in traditional medicine in Uriri district–Kenya. International Journal of Herbal Medicine. 2013;1(5):135–143. [Google Scholar]
  • 71.Kiraithe M. N., Nguta J. M., Mbaria J. M., Kiama S. G. Evaluation of the use of Ocimum suave Willd. (Lamiaceae), Plectranthus barbatus Andrews (Lamiaceae) and Zanthoxylum chalybeum Engl. (Rutaceae) as antimalarial remedies in Kenyan folk medicine. Journal of Ethnopharmacology. 2016;178:266–271. doi: 10.1016/j.jep.2015.12.013. [DOI] [PubMed] [Google Scholar]
  • 72.Otieno N. E., Analo C. Local indigenous knowledge about some medicinal plants in and around Kakamega forest in Western Kenya. F1000Research. 2012;1:p. 40. doi: 10.12688/f1000research.1-40.v2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Nguta J. M., Mbaria J. M. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. Journal of Ethnopharmacology. 2013;148(3):988–992. doi: 10.1016/j.jep.2013.05.053. [DOI] [PubMed] [Google Scholar]
  • 74.Omole R. A. Nairobi, Kenya: 2012. Anti-malarial activity and phytochemical studies of Cissampelos mucronata and Stephania abyssinica. Department of Chemistry, Kenyatta University. [Google Scholar]
  • 75.Ndiege I. O. Nairobi, Kenya: 2011. Anti-malarial activity and phytochemical studies of Cissampelos mucronata and Stephania abyssinica. Department of Chemistry, Kenyatta University. [Google Scholar]
  • 76.Clarkson C., Maharaj V. J., Crouch N. R., et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. Journal of Ethnopharmacology. 2004;92(2-3):177–191. doi: 10.1016/j.jep.2004.02.011. [DOI] [PubMed] [Google Scholar]
  • 77.Kemboi D. Review of traditionally used medicinal plants by the Kipsigis community in Kenya. British Journal of Pharmaceutical Research. 2016;12(5):1–6. doi: 10.9734/bjpr/2016/28341. [DOI] [Google Scholar]
  • 78.Muthee J. K., Gakuya D. W., Mbaria J. M., Kareru P. G., Mulei C. M., Njonge F. K. Ethnobotanical study of anthelmintic and other medicinal plants traditionally used in Loitoktok district of Kenya. Journal of Ethnopharmacology. 2011;135(1):15–21. doi: 10.1016/j.jep.2011.02.005. [DOI] [PubMed] [Google Scholar]
  • 79.Nyamai D. W., Mawia A. M., Wambua F. K., et al. Phytochemical profile of Prunus africana stem bark from Kenya. Journal of Pharmacognosy and Natural Products. 2015;1(1):8. [Google Scholar]
  • 80.Amuka O., Machocho A. K., Mbugua P. K., Okemo P. O. Ethnobotanical survey of selected medicinal plants used by the Ogiek communities in Kenya against microbial infections. Ethnobotany Research and Applications. 2014;12:627–641. doi: 10.17348/era.12.0.627-641. [DOI] [Google Scholar]
  • 81.Maundu P., Tengnèas B., Birnie A., Muema N. Useful Trees and Shrubs for Kenya. 2nd. Nairobi, Kenya: World Agroforestry Centre; 2005. [Google Scholar]
  • 82.Nyambati G. K., Lagat Z. O., Maranga R. O., Samuel M. I., Ozwara H. In vitro anti-plasmodial activity of Rubia cordifolia, Harrizonia abyssinica, Leucas calostachys Oliv and Sanchus schweinfurthii medicinal plants. Journal of Applied Pharmaceutical Science. 2013;3:57–62. [Google Scholar]
  • 83.Nyambati G. K., Lagat Z. O., Maranga R. O., Samuel M. I., Ozwara H. Anti-plasmodial activity and toxicity of selected crude plant extracts from Kenya, against Plasmodium berghei in Balb/C mice. International Journal of Current Research. 2015;7:19893–19900. [Google Scholar]
  • 84.Orwa J. A., Ngeny L., Mwikwabe N. M., Ondicho J., Jondiko I. J. O. Antimalarial and safety evaluation of extracts from Toddalia asiatica (L) Lam. (Rutaceae) Journal of Ethnopharmacology. 2013;145(2):587–590. doi: 10.1016/j.jep.2012.11.034. [DOI] [PubMed] [Google Scholar]
  • 85.Kato A., Moriyasu M., Ichimaru M., et al. Isolation of alkaloidal constituents of Zanthoxylum usambarense and Zanthoxylum chalybeum using ion-pair HPLC. Journal of Natural Products. 1996;59(3):316–318. doi: 10.1021/np960183w. [DOI] [Google Scholar]
  • 86.Masinde W. R. G. Phytochemical Investigation of Zanthoxylum Gilletii (Rutaceae) for Antiplasmodial Biomolecules Chemistry. Nairobi, Kenya: University of Nairobi; 2014. [Google Scholar]
  • 87.Murithi C., Fidahusein D., Nguta J., Lukhoba C. Antimalarial activity and in vivo toxicity of selected medicinal plants naturalized in Kenya. International Journal of Education Research. 2014;2:395–406. [Google Scholar]
  • 88.Kokwaro J. O. Medicinal Plants of East Africa. 3rd. Nairobi, Kenya: University of Nairobi Press; 2009. [Google Scholar]
  • 89.Kamau L. N., Mbaabu P. M., Karuri P. G., Mbaria J. M., Kiama S. G. Medicinal plants used in the management of diabetes by traditional healers of Narok county, Kenya. Tang Medicine. 2017;7(2):p. e10. doi: 10.5667/tang.2017.0008. [DOI] [Google Scholar]
  • 90.Maroyi A. Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. Journal of Ethnobiology and Ethnomedicine. 2013;9(31):18. doi: 10.1186/1746-4269-9-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Musa S. M., Abdelrasool F. E., Elsheikh A. E., et al. Ethnobotanical study of medicinal plants in the Blue nile state, south-eastern Sudan. Journal of Medicinal Plants Research. 2011;5:4287–4297. [Google Scholar]
  • 92.Adekunle M. F. Indigenous uses of plant leaves to treat malaria fever at Omo Forest reserve (OFR) Ogun state, Nigeria. Ethiopian Journal of Environmental Studies and Management. 2008;1:31–35. doi: 10.4314/ejesm.v1i1.41567. [DOI] [Google Scholar]
  • 93.Teklay A., Abera B., Giday M. An ethnobotanical study of medicinal plants used in Kilte Awulaelo district, Tigray region of Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2013;9(65):p. 22. doi: 10.1186/1746-4269-9-65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Sindiga I. Indigenous medical knowledge of the Maasai. Indigenous Knowledge and Development Monitor. 1994;2:16–18. [Google Scholar]
  • 95.Gessler M. C., Nkunya M. H. H., Mwasumbi M., Heinrich M., Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Tropica. 1994;56:56–77. doi: 10.1016/0001-706x(94)90041-8. [DOI] [PubMed] [Google Scholar]
  • 96.Omulokoli E., Khan B., Chhabra S. C. Antiplasmodial activity of four Kenyan medicinal plants. Journal of Ethnopharmacology. 1997;56(2):133–137. doi: 10.1016/s0378-8741(97)01521-3. [DOI] [PubMed] [Google Scholar]
  • 97.Parida M. M., Upadhyay C., Pandya G., Jana A. M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. Journal of Ethnopharmacology. 2002;79(2):273–278. doi: 10.1016/s0378-8741(01)00395-6. [DOI] [PubMed] [Google Scholar]
  • 98.Neuwinger H. D. African Ethnobotany: Poisons and Drugs: Chemistry, Pharmacology, Toxicology. New York, NY, USA: Chapman & Hall; 1996. [Google Scholar]
  • 99.Nobili S., Lippi D., Witort E., et al. Natural compounds for cancer treatment and prevention. Pharmacological Research. 2009;59(6):365–378. doi: 10.1016/j.phrs.2009.01.017. [DOI] [PubMed] [Google Scholar]
  • 100.Jordan M. A., Wilson L. Microtubules as a target for anticancer drugs. Nature Reviews Cancer. 2004;4(4):253–265. doi: 10.1038/nrc1317. [DOI] [PubMed] [Google Scholar]
  • 101.Annan K., Dickson R. Evaluation of wound healing actions of Hoslundia opposita Vahl, Anthocleista nobilis G. Don. and Balanites aegyptiaca L. Journal of Science and Technology. 2008;28(2):26–35. doi: 10.4314/just.v28i2.33091. [DOI] [Google Scholar]
  • 102.Sherines R. J., Howard S. S. Male infertility. In: Harrison J. H., Gittes R. F., Perlmutter A. D., Stamey T. A., Walsh P. C., editors. Campbells Urology. 4th. Philadelphia, PA, USA: WB Saunders; 1978. [Google Scholar]
  • 103.James S. A., Bilbiss L., Muhammad B. Y. The effects of Catharanthus roseus (L) G. Don 1838 aqueous leaf extract on some liver enzymes, serum proteins and vital organs. Science World Journal. 2007;2:5–9. [Google Scholar]
  • 104.Kuria KA, Muriuki G. A new cardiotonic agent from Ajuga remota benth (Labiatae) East African Medical Journal. 1984;61(7):533–538. [PubMed] [Google Scholar]
  • 105.Gachathi F.N. Kikuyu Botanical Dictionary of Plant Names and Uses. Nairobi, Kenya: AMREF; 1993. p. p. 118. [Google Scholar]
  • 106.Mueller M. S., Runyambo N., Wagner I., Borrmann S., Dietz K., Heide L. Randomized controlled trial of a traditional preparation of Artemisia annua L. (Annual Wormwood) in the treatment of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2004;98(5):318–321. doi: 10.1016/j.trstmh.2003.09.001. [DOI] [PubMed] [Google Scholar]
  • 107.Blanke C. H., Naisabha G. B., Balema M. B., Mbaruku G. M., Heide L., Müller M. S. HerbaArtemisiae annuaetea preparation compared to sulfadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria in adults: a randomized double-blind clinical trial. Tropical Doctor. 2008;38(2):113–116. doi: 10.1258/td.2007.060184. [DOI] [PubMed] [Google Scholar]
  • 108.Barlow-Benschop N. M., Gamba C., Barlow S. P., Blasco T. M. The effect of a homeopathic neem preparation for the prophylaxis of malaria. An exploratory trial in an at-home setting in Tanzania. pp. 1–12. https://pdfs.semanticscholar.org/177a/390381a2a7c7a19566a20f57330f50751101.pdf.
  • 109.Bidla G., Titanji V. P. K., Jako B., et al. Anti-plasmodial activity of seven plants used in African folk medicine. Indian Journal of Pharmacy. 2004;36:245–246. [Google Scholar]
  • 110.Ohigashi H., Huffman M. A., Izutsu D., et al. Toward the chemical ecology of medicinal plant use in chimpanzees: the case of Vernonia amygdalina, a plant used by wild chimpanzees possibly for parasite-related diseases. Journal of Chemical Ecology. 1994;20(3):541–553. doi: 10.1007/bf02059596. [DOI] [PubMed] [Google Scholar]
  • 111.Challand S., Willcox M. A clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated malaria. The Journal of Alternative and Complementary Medicine. 2009;15(11):1231–1237. doi: 10.1089/acm.2009.0098. [DOI] [PubMed] [Google Scholar]
  • 112.Bah S., Jäger A. K., Adsersen A., Diallo D., Paulsen B. S. Antiplasmodial and GABAA-benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali, West Africa. Journal of Ethnopharmacology. 2007;110(3):451–457. doi: 10.1016/j.jep.2006.10.019. [DOI] [PubMed] [Google Scholar]
  • 113.Abdel-Azim N. S., Shams K. A., Shahat A. A., et al. Egyptian herbal drug industry: challenges and future prospects. Research Journal of Medicinal Plant. 2011;5(2):136–144. doi: 10.3923/rjmp.2011.136.144. [DOI] [Google Scholar]
  • 114.Dold A. L., Cocks M. L. The trade in medicinal plants in the Eastern Cape province, South Africa. South African Journal of Sciences. 2002;98:p. 589. [Google Scholar]
  • 115. The New Humanitarian, Small farmers cash in on Artemisinin production, http://www.thenewhumanitarian.org/report/82486/kenya-small-farmers-cash-artemisinin-production.
  • 116.Oketch-Rabah H., Christensen S., Frydenvang K., et al. Antiprotozoal properties of 16,17-Dihydroxybrachycalyxolide from Vernonia brachycalyx. Planta Medica. 1998;64(6):559–562. doi: 10.1055/s-2006-957514. [DOI] [PubMed] [Google Scholar]
  • 117.Ssegawa P., Kasenene J. M. Plants for malaria treatment in Southern Uganda: traditional use, preference and ecological viability. Journal of Ethnobiology. 2007;27(1):110–131. doi: 10.2993/0278-0771(2007)27[110:pfmtis]2.0.co;2. [DOI] [Google Scholar]
  • 118.Bbosa S., Kyegombe D. B., Lubega A., et al. Anti-plasmodium falciparum activity of Aloe dawei and Justicia betonica. African Journal of Pharmacy and Pharmacology. 2013;7(31):2258–2263. doi: 10.5897/ajpp12.479. [DOI] [Google Scholar]
  • 119.Perez H. A., De la Rosa M., Apitz R. In vivo activity of ajoene against rodent malaria. Antimicrobial Agents and Chemotherapy. 1994;38(2):337–339. doi: 10.1128/aac.38.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Strangeland T., Alele P. E., Katuura E., Lye K. A. Plants used to treat malaria in Nyakayojo sub-county, Western Uganda. Journal of Ethnopharmacology. 2011;137(1):154–166. doi: 10.1016/j.jep.2011.05.002. [DOI] [PubMed] [Google Scholar]
  • 121.Kigondu E. V. M., Rukunga G. M., Keriko J. M., et al. Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. Journal of Ethnopharmacology. 2009;123(3):504–509. doi: 10.1016/j.jep.2009.02.008. [DOI] [PubMed] [Google Scholar]
  • 122.Inbaneson S. J., Ravikumar S., Suganthi P. In vitro antiplasmodial effect of ethanolic extracts of coastal medicinal plants along Palk Strait against Plasmodium falciparum. Asian Pacific Journal of Tropical Biomedicine. 2012;2(5):364–367. doi: 10.1016/s2221-1691(12)60057-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Lemma M. T., Ahmed A. M., Elhady M. T., et al. Medicinal plants for in vitro antiplasmodial activities: a systematic review of literature. Parasitology International. 2017;66(6):713–720. doi: 10.1016/j.parint.2017.09.002. [DOI] [PubMed] [Google Scholar]
  • 124.Yarnell E. Artemisia annua (sweet annie), other artemisia species, artemisinin, artemisinin derivatives, and malaria. Journal of Restorative Medicine. 2014;3(1):69–84. doi: 10.14200/jrm.2014.3.0105. [DOI] [Google Scholar]
  • 125.Katuura E., Waako P., Tabuti J. R. S., Bukenya-Ziraba R., Ogwal-Okeng J. Antiplasmodial activity of extracts of selected medicinal plants used by local communities in Western Uganda for treatment of malaria. African Journal of Ecology. 2007;45(s3):94–98. doi: 10.1111/j.1365-2028.2007.00864.x. [DOI] [Google Scholar]
  • 126.Kabubbi Z. N., Mbaria J. M., Mbaabu M. Acute toxicity studies of Caranthus roseus aqueous extract in male Wistar rats. African Journal of Pharmacology and Therapeutics. 2015;4(4):130–134. [Google Scholar]
  • 127.Liu N. Q., Van Der Kooy F., Verpoorte R. Artemisia afra: a potential flagship for African medicinal plants? South African Journal of Botany. 2009;75(2):185–195. doi: 10.1016/j.sajb.2008.11.001. [DOI] [Google Scholar]
  • 128.Muganga R., Angenot L., Tits M., Frédérich M. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. Journal of Ethnopharmacology. 2010;128(1):52–57. doi: 10.1016/j.jep.2009.12.023. [DOI] [PubMed] [Google Scholar]
  • 129.Kohler I., Jenett-Siems K., Kraft C., et al. Herbal remedies traditionally used against malaria in Ghana: bioassay-guided fractionation of Microglossa pyrifolia (Asteraceae) Zeitschrift fur Naturforschung C. 2002;57(11-12):1022–1027. doi: 10.1515/znc-2002-11-1212. [DOI] [PubMed] [Google Scholar]
  • 130.Lacroix D., Prado S., Kamoga D., et al. Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda. Journal of Ethnopharmacology. 2011;133(2):850–855. doi: 10.1016/j.jep.2010.11.013. [DOI] [PubMed] [Google Scholar]
  • 131.Onguén P. A., Ntie-Kang F., Lifongo L. L., Ndom J., Sippl W., Mbaze L. The potential of anti-malarial compounds derived from African medicinal plants. Part I: a pharmacological evaluation of alkaloids and terpenoids. Malaria Journal. 2013;12:449. doi: 10.1186/1475-2875-12-449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Goffin E., Ziemons E., De Mol P., et al. In vitro antiplasmodial activity of Tithonia diversifolia and identification of its main active constituent: tagitinin C. Planta Medica. 2002;68(6):543–545. doi: 10.1055/s-2002-32552. [DOI] [PubMed] [Google Scholar]
  • 133.Oyewole I. O., Ibidapo C. A., Moronkola D. O., et al. Anti-malarial and repellent activities of Tithonia diversifolia (Hemsl.) leaf extracts. Journal of Medicinal Plants Research. 2008;2:171–175. [Google Scholar]
  • 134.Obbo C. J. D., Kariuki S. T., Gathirwa J. W., Olaho-Mukani W., Cheplogoi P. K., Mwangi E. M. In vitro antiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: refocusing into multi-component potentials. Journal of Ethnopharmacology. 2019;229:127–136. doi: 10.1016/j.jep.2018.09.029. [DOI] [PubMed] [Google Scholar]
  • 135.Omoregie E. S., Pal A., Sisodia B. In vitro antimalarial and cytotoxic activities of leaf extracts of Vernonia amygdalina (Del.) Nigerian Journal of Basic and Applied Sciences. 2011;19:121–126. doi: 10.4314/njbas.v19i1.69356. [DOI] [Google Scholar]
  • 136.Lacroix D., Prado S., Deville A., et al. Hydroperoxy-cycloartane triterpenoids from the leaves of Markhamia lutea, a plant ingested by wild chimpanzees. Phytochemistry. 2009;70(10):1239–1245. doi: 10.1016/j.phytochem.2009.06.020. [DOI] [PubMed] [Google Scholar]
  • 137.Ntie-Kang F., Onguene P. A., Lifongo L. L., et al. The potential of anti-malarial compounds derived from African medicinal plants, Part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malaria Journal. 2014;13(1):81. doi: 10.1186/1475-2875-13-81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Rangasamy D., Asirvatham D., Muthusamy J., et al. Preliminary phytochemical screening and antimalarial studies of Spathodea campanulatum P. Beauv leaf extracts. Ethnobotany Leaflets. 2008;12:811–819. [Google Scholar]
  • 139.Okello D., Komakech R., Matsabisa M. G., Kang Y.-M. A review on the botanical aspects, phytochemical contents and pharmacological activities of Warburgia ugandensis. Journal of Medicinal Plants Research. 2018;12(27):448–455. doi: 10.5897/jmpr2018.6626. [DOI] [Google Scholar]
  • 140.Wube A. A., Bucar F., Gibbons S., Asres K., Rattray L., Croft S. L. Antiprotozoal activity of drimane and coloratane sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro. Phytotherapy Research. 2010;24(10):1468–1472. doi: 10.1002/ptr.3126. [DOI] [PubMed] [Google Scholar]
  • 141.Were P. S., Kinyanjui P., Gicheru M. M., Mwangi E., Ozwara H. S. Prophylactic and curative activities of extracts from Warburgia ugandensis Sprague (Canellaceae) and Zanthoxylum usambarense (Engl.) Kokwaro (Rutaceae) against Plasmodium knowlesi and Plasmodium berghei. Journal of Ethnopharmacology. 2010;130(1):158–162. doi: 10.1016/j.jep.2010.04.034. [DOI] [PubMed] [Google Scholar]
  • 142.Melariri P., Campbell W., Etusim P., Smith P. Antiplasmodial properties and bioassay-guided fractionation of ethyl acetate extracts from Carica papaya leaves. Journal of Parasitology Research. 2011;2011:7. doi: 10.1155/2011/104954.104954 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Teng W.-C., Chan W., Suwanarusk R., et al. In vitro antimalarial evaluations and cytotoxicity investigations of Carica papaya leaves and carpaine. Natural Product Communications. 2019;14(1):33–36. doi: 10.1177/1934578x1901400110. [DOI] [Google Scholar]
  • 144.Nanyingi M. O., Kipsengeret K. B., Wagate C. G., Langat B. K., Asaava L. L., Midiwo J. O. In vitro and in vivo antiplasmodial activity of Kenyan medicinal plants. In: Midiwo J. O., Clough J., editors. Aspects of African Biodiversity: Proceedings of the Pan-Africa Chemistry Network. Cambridge, UK: RCS Publishing; 2010. pp. 20–28. [Google Scholar]
  • 145.Malebo H. M., Wiketye V., Katani S. J., et al. In vivo antiplasmodial and toxicological effect of Maytenus senegalensis traditionally used in the treatment of malaria in Tanzania. Malaria Journal. 2015;14(1):p. 79. doi: 10.1186/s12936-014-0525-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Asres K., Bucar F., Knauder E., Yardley V., Kendrick H., Croft S. L. In vitro antiprotozoal activity of extract and compounds from the stem bark of Combretum molle. Phytotherapy Research. 2001;15(7):613–617. doi: 10.1002/ptr.897. [DOI] [PubMed] [Google Scholar]
  • 147.Froelich S., Onegi B., Kakooko A., Siems K., Schubert C., Jenett-Siems K. Plants traditionally used against malaria: phytochemical and pharmacological investigation of Momordica foetida. Revista Brasileira de Farmacognosia. 2007;17(1):1–17. doi: 10.1590/s0102-695x2007000100002. [DOI] [Google Scholar]
  • 148.Singh S. V., Manhas A., Kumar Y., et al. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action. Biomedicine and Pharmacotherapy. 2017;89:761–771. doi: 10.1016/j.biopha.2017.02.056. [DOI] [PubMed] [Google Scholar]
  • 149.Kaou A. M., Mahiou-Leddet V., Hutter S., et al. Antimalarial activity of crude extracts from nine African medicinal plants. Journal of Ethnopharmacology. 2008;116(1):74–83. doi: 10.1016/j.jep.2007.11.001. [DOI] [PubMed] [Google Scholar]
  • 150.Bero J., Frédérich M., Quetin-Leclercq J. Antimalarial compounds isolated from plants used in traditional medicine. Journal of Pharmacy and Pharmacology. 2009;61(11):1401–1433. doi: 10.1211/jpp.61.11.0001. [DOI] [PubMed] [Google Scholar]
  • 151.Memvanga P. B., Tona G. L., Mesia G. K., Lusakibanza M. M., Cimanga R. K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: a review. Journal of Ethnopharmacology. 2015;169:76–98. doi: 10.1016/j.jep.2015.03.075. [DOI] [PubMed] [Google Scholar]
  • 152.Iwalewa E. O., Suleiman M. M., Mdee L. K., Eloff J. N. Antifungal and antibacterial activities of different extracts ofHarungana madagascariensisstem bark. Pharmaceutical Biology. 2009;47(9):878–885. doi: 10.1080/13880200903029316. [DOI] [Google Scholar]
  • 153.Iwalewa E. O., Omisore N. O., Adewunmi C. O., et al. Anti-protozoan activities of Harungana madagascariensis stem bark extract on trichomonads and malaria. Journal of Ethnopharmacology. 2008;117(3):507–511. doi: 10.1016/j.jep.2008.02.019. [DOI] [PubMed] [Google Scholar]
  • 154.Deressa T., Mekonnen Y., Animut A. In vivo anti-malarial activities of Clerodendrum myricoides, Dodonea angustifolia and Aloe debrana against Plasmodium berghei. Ethiopian Journal of Health and Development. 2010;24:25–29. doi: 10.4314/ejhd.v24i1.62941. [DOI] [Google Scholar]
  • 155.Smolenski S. J., Silinis H., Farnsworth N. R. Alkaloid screening VIII. Lloydia. 1975;386:497–528. [PubMed] [Google Scholar]
  • 156.Murugan K., Aarthi N., Kovendan K., et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitology Research. 2015;114(10):3657–3664. doi: 10.1007/s00436-015-4593-x. [DOI] [PubMed] [Google Scholar]
  • 157.Muthaura C. N., Keriko J. M., Mutai C., et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the kwale community of the Kenyan Coast. Journal of Ethnopharmacology. 2015;170:148–157. doi: 10.1016/j.jep.2015.05.024. [DOI] [PubMed] [Google Scholar]
  • 158.Asase A., Akwetey G. A., Achel D. G. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West district of Ghana. Journal of Ethnopharmacology. 2010;129(3):367–376. doi: 10.1016/j.jep.2010.04.001. [DOI] [PubMed] [Google Scholar]
  • 159.Khalid S. A., Duddeck H., Gonzalez-Sierra M. Isolation and characterization of an antimalarial agent of the neem tree Azadirachta indica. Journal of Natural Products. 1989;52(5):922–927. doi: 10.1021/np50065a002. [DOI] [PubMed] [Google Scholar]
  • 160.Bray D. H., Warhurst D. C., Connolly J. D., O’Neill M. J., Phillipson J. D. Plants as sources of antimalarial drugs. Part 7. Activity of some species of meliaceae plants and their constituent limonoids. Phytotherapy Research. 1990;4(1):29–35. doi: 10.1002/ptr.2650040108. [DOI] [Google Scholar]
  • 161.Batista R., De Jesus Silva Júnior A., Jr., de Oliveira A. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II: non-alkaloidal natural products. Molecules. 2009;14(8):3037–3072. doi: 10.3390/molecules14083037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Lusakibanza M., Mesia G., Tona G., et al. In vitro and in vivo antimalarial and cytotoxic activity of five plants used in Congolese traditional medicine. Journal of Ethnopharmacology. 2010;129(3):398–402. doi: 10.1016/j.jep.2010.04.007. [DOI] [PubMed] [Google Scholar]
  • 163.Falade M. O., Akinboye D.O., Gbotosho G. O., et al. In vitro and in vivo antimalarial activity of Ficus thonningii Blume (Moraceae) and Lophira alata banks (Ochnaceae), identified from the ethnomedicine of the Nigerian Middle Belt. Journal of Parasitology Research. 2014;2014:6. doi: 10.1155/2014/972853.972853 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Alli L., Adesokan A., Salawu A. Antimalarial activity of fractions of aqueous extract of Acacia nilotica root. Journal of Intercultural Ethnopharmacology. 2016;5(2):180–185. doi: 10.5455/jice.20160331064817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Ndjakou Lenta B., Vonthron-Sénécheau C., Fongang Soh R., et al. In vitro antiprotozoal activities and cytotoxicity of some selected Cameroonian medicinal plants. Journal of Ethnopharmacology. 2007;111(1):8–12. doi: 10.1016/j.jep.2006.10.036. [DOI] [PubMed] [Google Scholar]
  • 166.Okpo S. O., Igwealor C. O., Eze G. I. Sub-acute toxicity study on the aqueous extract of Albizia zygia stem bark. Journal of Pharmacy & Bioresources. 2016;13(1):32–41. doi: 10.4314/jpb.v13i1.5. [DOI] [Google Scholar]
  • 167.Katuura E., Waako P., Ogwal-Okeng J., Bukenya-Ziraba R. Traditional treatment of malaria in Mbarara district, Western Uganda. African Journal of Ecology. 2007;45(1):48–51. doi: 10.1111/j.1365-2028.2007.00737.x. [DOI] [Google Scholar]
  • 168.Pillay P., Maharaj V. J., Smith P. J. Investigating South African plants as a source of new antimalarial drugs. Journal of Ethnopharmacology. 2008;119(3):438–454. doi: 10.1016/j.jep.2008.07.003. [DOI] [PubMed] [Google Scholar]
  • 169.Endale M., Alao J., Akala H., et al. Antiplasmodial Quinones from Pentas longiflora and Pentas lanceolata. Planta Medica. 2012;78(1):31–35. doi: 10.1055/s-0031-1280179. [DOI] [PubMed] [Google Scholar]
  • 170.Chinwuba P., Akah P. A., Iiodigwe E. E. In vivo antiplasmodial activity of the ethanol stem extract and fractions of Citrus sinensis in mice. Merit Research Journal of Medicine and Medical Sciences. 2015;3(4):140–146. [Google Scholar]
  • 171.Burkill H. R. M. The useful plants of West tropical Africa. Vol. 5. London, UK: Royal Botanic Gardens; 2000. [Google Scholar]
  • 172.Nyasse B, Nono J, Sonke B, Denier C, Fontaine C. Trypanocidal activity of bergenin, the major constituent of Flueggea virosa, on Trypanosoma brucei. Die Pharmazie. 2004;59(6):492–494. [PubMed] [Google Scholar]
  • 173.Gan L.-S., Fan C.-Q., Yang S.-P., et al. Flueggenines A and B, two novel C,C-linked dimeric indolizidine alkaloids from Flueggea virosa. Organic Letters. 2006;8(11):2285–2288. doi: 10.1021/ol060551f. [DOI] [PubMed] [Google Scholar]
  • 174.Al-Rehaily A. J., Yousaf M., Ahmad M. S., et al. Chemical and biological study of Flueggea virosa native to Saudi Arabia. Chemistry of Natural Compounds. 2015;51(1):187–188. doi: 10.1007/s10600-015-1240-9. [DOI] [Google Scholar]
  • 175.Ajaiyoba E., Ashidi J., Abiodun O., et al. Antimalarial ethnobotany: in vitro antiplasmodial activity of seven plants identified in the Nigerian middle belt. Pharmaceutical Biology. 2005;42(8):588–591. doi: 10.1080/13880200490902455. [DOI] [Google Scholar]
  • 176.Muganga R., Angenot L., Tits M., Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Medica. 2014;80(6):482–489. doi: 10.1055/s-0034-1368322. [DOI] [PubMed] [Google Scholar]
  • 177.Asnake S., Teklehaymanot T., Hymete A., Erko B., Giday M. Evaluation of the antiplasmodial properties of selected plants in southern Ethiopia. BMC Complementary and Alternative Medicine. 2015;15(448):12. doi: 10.1186/s12906-015-0976-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Rukunga G. M., Muregi F. W., Tolo F. M., et al. The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia. 78:455–459. doi: 10.1016/j.fitote.2007.02.012. [DOI] [PubMed] [Google Scholar]
  • 179.Seo Y., Berger J. M., Hoch J., et al. A New Triterpene Saponin fromPittosporumviridiflorumfrom the Madagascar Rainforest1. Journal of Natural Products. 2002;65(1):65–68. doi: 10.1021/np010327t. [DOI] [PubMed] [Google Scholar]
  • 180.Nyongbela K. D., Lannang A. M., Ayimele G. A., Ngemenya M. N., Bickle Q., Efange S. Isolation and identification of an antiparasitic triterpenoid estersaponin from the stem bark of Pittosporum mannii (Pittosporaceae) Asian Pacific Journal of Tropical Disease. 2013;3(5):389–392. doi: 10.1016/s2222-1808(13)60089-4. [DOI] [Google Scholar]
  • 181.Nkunya M. H. H., Jonker S. A., De Gelder R., Wachira S. W., Kihampa C. (±)-Schefflone: a trimeric monoterpenoid from the root bark of Uvaria scheffleri. Phytochemistry. 2004;65(4):399–404. doi: 10.1016/j.phytochem.2003.10.011. [DOI] [PubMed] [Google Scholar]
  • 182.Nkunya M., Weenen H., Bray D., Mgani Q., Mwasumbi L. Antimalarial activity of Tanzanian plants and their active constituents: The GenusUvaria. Planta Medica. 1991;57(04):341–343. doi: 10.1055/s-2006-960113. [DOI] [PubMed] [Google Scholar]
  • 183.Iwu M., Court W. Alkaloids of Rauwolfia mombasiana stem bark. Planta Medica. 1979;36(7):208–212. doi: 10.1055/s-0028-1097272. [DOI] [Google Scholar]
  • 184.Weenen H., Nkunya M., Bray D., Mwasumbi L., Kinabo L., Kilimali V. Antimalarial activity of Tanzanian medicinal plants. Planta Medica. 1990;56(4):368–370. doi: 10.1055/s-2006-960984. [DOI] [PubMed] [Google Scholar]
  • 185.Akbar E., Malik A., Afza N., Hai S. M. A. Flavone glycosides and bergenin derivatives from Tridax procumbens. Heterocycles. 2002;57:733–739. doi: 10.3987/com-02-9432. [DOI] [Google Scholar]
  • 186.Holeman M., Theron E., Pinel R. Centella asiatica analyses by GC-MS and infrared MS. Parfums Cosmetica Aromes. 1994;120:52–55. [Google Scholar]
  • 187.Kayembe J. S., Taba K. M., Ntumba K., Tshiongo M. T. C., Kazadi T. K. In vitro antimalarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. Journal of Medicinal Plants Research. 2010;4:991–994. [Google Scholar]
  • 188.Tona L., Mesia K., Ngimbi N. P., et al. In-vivo antimalarial activity of Cassia occidentalism Morinda morindoides and Phyllanthus niruri. Annals of Tropical Medicine & Parasitology. 2001;95(1):47–57. doi: 10.1080/00034983.2001.11813614. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This is a review article, and no raw data were generated. All data generated or analyzed in this study are included in this article.


Articles from Evidence-based Complementary and Alternative Medicine : eCAM are provided here courtesy of Wiley

RESOURCES