Abstract
Chronic human immunodeficiency virus (HIV) infection not only causes a gradual loss of CD4+ T cells but also leads to a disturbance of the T cell receptor (TCR) repertoire. In people living with HIV (PLWH), monitoring TCR repertoire is challenged by the inconsistency of complementarity determining region 3 (CDR3) and limited cell numbers in clinical samples. Thus, a quantitative method is necessary for monitoring the TCR repertoire in PLWH. We characterized the TCR V-J pairing profile of naïve and memory CD4+ T cells in healthy donors, HIV-infected antiretroviral therapy (ART)-naïve patients and long-term (over 5 years) ART-experienced patients by performing TCR sequencing. We developed a V-J index with 18 parameters which were subdivided into five categories (expression coverage, cumulative percentage of the top tenth percentile, diversity, intra-individual similarity and inter-individual similarity). In ART-naïve patients, 14 of the 18 parameters were significantly altered. Long-term ART recovered ten parameters. The four unrecovered parameters were related to inter-individual similarity. Therefore, these findings indicate that long-term ART could only partially recover TCR V-J pairs and introduce newly impacted V-J pairs. Moreover, these results provide new insights into the V-J pairing of the TCR and into the disturbance of TCR repertoire in HIV infection.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s11427-020-1718-2 and is accessible for authorized users.
Keywords: acquired immune deficiency syndrome, human immunodeficiency virus, antiretroviral therapy, T cell receptor, V-J pairing
Electronic supplementary material
Acknowledgements
This work was supported by the National Natural Science Foundation of China (81371804, 81772123 and 81672000), the Thirteen-fifth Key Project (2018ZX10715-005), Beijing Municipal Science and Technology Commission (Z191100006619045) and Beijing Hospital authority (DFL20191801 and DFL20191802). We thank the patients and healthy donors for their involvement in our study. We thank Xue Song at Beijing Genecast Biotechnology Co. for data analysis. We also thank Mr. Gang Wan at Beijing Ditan Hospital, Capital Medical University for valuable advice on statistics.
Compliance and ethics The author(s) declare that they have no conflict of interest.
Contributor Information
Chen Chen, Email: chenchen1@ccmu.edu.cn.
Hongxin Zhao, Email: Drzhao66@ccmu.edu.cn.
Hui Zeng, Email: zenghui@ccmu.edu.cn.
References
- Alcover A, Alarcón B, Di Bartolo V. Cell biology of T cell receptor expression and regulation. Annu Rev Immunol. 2018;36:103–125. doi: 10.1146/annurev-immunol-042617-053429. [DOI] [PubMed] [Google Scholar]
- Anglemyer A, Rutherford GW, Easterbrook PJ, Horvath T, Vitória M, Jan M, Doherty MC. Early initiation of antiretroviral therapy in HIV-infected adults and adolescents. AIDS. 2014;28:S105–S118. doi: 10.1097/QAD.0000000000000232. [DOI] [PubMed] [Google Scholar]
- Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human αβ T cell receptor diversity. Science. 1999;286:958–961. doi: 10.1126/science.286.5441.958. [DOI] [PubMed] [Google Scholar]
- Baum PD, Young JJ, Schmidt D, Zhang Q, Hoh R, Busch M, Martin J, Deeks S, McCune JM. Blood T-cell receptor diversity decreases during the course of HIV infection, but the potential for a diverse repertoire persists. Blood. 2012;119:3469–3477. doi: 10.1182/blood-2011-11-395384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billam P, Bonaparte KL, Liu J, Ruckwardt TJ, Chen M, Ryder A B, Wang R, Dash P, Thomas PG, Graham BS. T cell receptor clonotype influences epitope hierarchy in the CD8+ T cell response to respiratory syncytial virus infection. J Biol Chem. 2011;286:4829–4841. doi: 10.1074/jbc.M110.191437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosch RJ, Wang R, Vaida F, Lederman MM, Albrecht MA. Changes in the slope of the CD4 cell count increase after initiation of potent antiretroviral treatment. J Acquir Immune Defic Syndr. 2006;43:433–435. [PubMed] [Google Scholar]
- Bowerman NA, Falta MT, Mack DG, Wehrmann F, Crawford F, Mroz MM, Maier LA, Kappler JW, Fontenot AP. Identification of multiple public TCR repertoires in chronic beryllium disease. J Immunol. 2014;192:4571–4580. doi: 10.4049/jimmunol.1400007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Call ME, Pyrdol J, Wucherpfennig KW. Stoichiometry of the T-cell receptor—CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J. 2004;23:2348–2357. doi: 10.1038/sj.emboj.7600245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW. The structure of the ζζ transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell. 2006;127:355–368. doi: 10.1016/j.cell.2006.08.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Currier, J.R., and Robinson, M.A. (2001). Spectratype/immunoscope analysis of the expressed TCR repertoire. Curr Protoc Immunol 38. [DOI] [PubMed]
- Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen THO, Kedzierska K, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature. 2017;547:89–93. doi: 10.1038/nature22383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deeken JF, Tjen-A-Looi A, Rudek MA, Okuliar C, Young M, Little RF, Dezube BJ. The rising challenge of non-AIDS-defining cancers in HIV-infected patients. Clin Infect Dis. 2012;55:1228–1235. doi: 10.1093/cid/cis613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doitsh G, Galloway NLK, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Muñoz-Arias I, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505:509–514. doi: 10.1038/nature12940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dominguez-Molina B, Leon A, Rodriguez C, Benito JM, Lopez-Galindez C, Garcia F, Del Romero J, Gutierrez F, Viciana P, Alcami J, et al. Analysis of non-AIDS-defining events in HIV controllers. Clin Infect Dis. 2016;62:1304–1309. doi: 10.1093/cid/ciw120. [DOI] [PubMed] [Google Scholar]
- Dupic T, Marcou Q, Walczak AM, Mora T. Genesis of the αβ T-cell receptor. PLoS Comput Biol. 2019;15:e1006874. doi: 10.1371/journal.pcbi.1006874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eason DD, Cannon JP, Haire RN, Rast JP, Ostrov DA, Litman GW. Mechanisms of antigen receptor evolution. Semin Immunol. 2004;16:215–226. doi: 10.1016/j.smim.2004.08.001. [DOI] [PubMed] [Google Scholar]
- Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, Deligny C, Maki G, Gluckman E, Toubert A, et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol. 2017;10:21. doi: 10.1186/s13045-016-0388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han A, Krams SM, Pettus C, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547:94–98. doi: 10.1038/nature22976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goronzy JJ, Weyand CM. Successful and maladaptive T cell aging. Immunity. 2017;46:364–378. doi: 10.1016/j.immuni.2017.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heather JM, Best K, Oakes T, Gray ER, Roe JK, Thomas N, Friedman N, Noursadeghi M, Chain B. Dynamic perturbations of the T-cell receptor repertoire in chronic HIV infection and following antiretroviral therapy. Front Immunol. 2015;6:644. doi: 10.3389/fimmu.2015.00644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang Q, Zhao T, Zheng W, Zhou J, Wang H, Dong H, Chen Y, Tang X, Liu C, Ye L, et al. Patient-shared TCRβ-CDR3 clonotypes correlate with favorable prognosis in chronic hepatitis B. Eur J Immunol. 2018;48:1539–1549. doi: 10.1002/eji.201747327. [DOI] [PubMed] [Google Scholar]
- Kreslavsky T, Gleimer M, von Boehmer H. αβ versus γδ lineage choice at the first TCR-controlled checkpoint. Curr Opin Immunol. 2010;22:185–192. doi: 10.1016/j.coi.2009.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z, Liu G, Tong Y, Zhang M, Xu Y, Qin L, Wang Z, Chen X, He J. Comprehensive analysis of the T-cell receptor beta chain gene in rhesus monkey by high throughput sequencing. Sci Rep. 2015;5:10092. doi: 10.1038/srep10092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu P, Liu D, Yang X, Gao J, Chen Y, Xiao X, Liu F, Zou J, Wu J, Ma J, et al. Characterization of human αβTCR repertoire and discovery of D-D fusion in TCRβ chains. Protein Cell. 2014;5:603–615. doi: 10.1007/s13238-014-0060-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallis RJ, Bai K, Arthanari H, Hussey RE, Handley M, Li Z, Chingozha L, Duke-Cohan JS, Lu H, Wang JH, et al. Pre-TCR ligand binding impacts thymocyte development before αβTCR expression. Proc Natl Acad Sci USA. 2015;112:8373–8378. doi: 10.1073/pnas.1504971112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald BD, Bunker JJ, Erickson SA, Oh-Hora M, Bendelac A. Crossreactive αβ T cell receptors are the predominant targets of thymocyte negative selection. Immunity. 2015;43:859–869. doi: 10.1016/j.immuni.2015.09.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeel DG. TCR diversity—A universal cancer immunotherapy biomarker? J Immunother Cancer. 2016;4:69. doi: 10.1186/s40425-016-0175-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Memon SA, Sportès C, Flomerfelt FA, Gress RE, Hakim FT. Quantitative analysis of T cell receptor diversity in clinical samples of human peripheral blood. J Immunol Methods. 2012;375:84–92. doi: 10.1016/j.jim.2011.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Migalska M, Sebastian A, Radwan J. Profiling of the TCRβ repertoire in non-model species using high-throughput sequencing. Sci Rep. 2018;8:11613. doi: 10.1038/s41598-018-30037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyasaka A, Yoshida Y, Wang T, Takikawa Y. Nextgeneration sequencing analysis of the human T-cell and B-cell receptor repertoire diversity before and after hepatitis B vaccination. Hum Vaccin Immunother. 2019;15:2738–2753. doi: 10.1080/21645515.2019.1600987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mocroft A, Reiss P, Gasiorowski J, Ledergerber B, Kowalska J, Chiesi A, Gatell J, Rakhmanova A, Johnson M, Kirk O, et al. Serious fatal and nonfatal non-AIDS-defining illnesses in Europe. J Acquir Immune Defic Syndr. 2010;55:262–270. doi: 10.1097/QAI.0b013e3181e9be6b. [DOI] [PubMed] [Google Scholar]
- Ochsenreither S, Fusi A, Geikowski A, Stather D, Busse A, Stroux A, Letsch A, Keilholz U. Wilms’ tumor protein 1 (WT1) peptide vaccination in AML patients: predominant TCR CDR3β sequence associated with remission in one patient is detectable in other vaccinated patients. Cancer Immunol Immunother. 2012;61:313–322. doi: 10.1007/s00262-011-1099-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozawa T, Tajiri K, Kishi H, Muraguchi A. Comprehensive analysis of the functional TCR repertoire at the single-cell level. Biochem Biophys Res Commun. 2008;367:820–825. doi: 10.1016/j.bbrc.2008.01.011. [DOI] [PubMed] [Google Scholar]
- Pantazis N, Papastamopoulos V, Paparizos V, Metallidis S, Adamis G, Antoniadou A, Psichogiou M, Chini M, Sambatakou H, Sipsas NV, et al. Long-term evolution of CD4+ cell count in patients under combined antiretroviral therapy. AIDS. 2019;33:1645–1655. doi: 10.1097/QAD.0000000000002248. [DOI] [PubMed] [Google Scholar]
- Rachlis A, Fanning MM. Zidovudine toxicity. Drug Saf. 1993;8:312–320. doi: 10.2165/00002018-199308040-00005. [DOI] [PubMed] [Google Scholar]
- Rainwater-Lovett K, Nkamba H, Mubiana-Mbewe M, Moore CB, Margolick J, Moss WJ. Changes in cellular immune activation and memory T-cell subsets in HIV-infected Zambian children receiving HAART. J Acquir Immune Defic Syndr. 2014;67:455–462. doi: 10.1097/QAI.0000000000000342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol. 2006;6:883–894. doi: 10.1038/nri1977. [DOI] [PubMed] [Google Scholar]
- Turner SJ, La Gruta NL, Kedzierska K, Thomas PG, Doherty P C. Functional implications of T cell receptor diversity. Curr Opin Immunol. 2009;21:286–290. doi: 10.1016/j.coi.2009.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ugolini M, Gerhard J, Burkert S, Jensen KJ, Georg P, Ebner F, Volkers SM, Thada S, Dietert K, Bauer L, et al. Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nat Immunol. 2018;19:386–396. doi: 10.1038/s41590-018-0068-4. [DOI] [PubMed] [Google Scholar]
- Venturi V, Price DA, Douek DC, Davenport MP. The molecular basis for public T-cell responses? Nat Rev Immunol. 2008;8:231–238. doi: 10.1038/nri2260. [DOI] [PubMed] [Google Scholar]
- Wandeler G, Johnson LF, Egger M. Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe. Curr Opin HIV AIDS. 2016;11:492–500. doi: 10.1097/COH.0000000000000298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wettstein PJ, Borson ND, Kay NE. A novel method for analysis of human T cell repertoires by real-time PCR. J Immunol Methods. 2014;412:24–34. doi: 10.1016/j.jim.2014.06.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang X, Liu D, Lv N, Zhao F, Liu F, Zou J, Chen Y, Xiao X, Wu J, Liu P, et al. TCRklass: A new K-string-based algorithm for human and mouse TCR repertoire characterization. J Immunol. 2015;194:446–454. doi: 10.4049/jimmunol.1400711. [DOI] [PubMed] [Google Scholar]
- Zhao Y, Nguyen P, Ma J, Wu T, Jones LL, Pei D, Cheng C, Geiger TL. Preferential use of public TCR during autoimmune encephalomyelitis. J Immunol. 2016;196:4905–4914. doi: 10.4049/jimmunol.1501029. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.