Skip to main content
Springer logoLink to Springer
. 2020 Jun 13;80(6):534. doi: 10.1140/epjc/s10052-020-7834-9

Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at sNN=2.76 and 5.02TeV

A M Sirunyan 1, A Tumasyan 1, W Adam 2, F Ambrogi 2, T Bergauer 2, J Brandstetter 2, M Dragicevic 2, J Erö 2, A Escalante Del Valle 2, M Flechl 2, R Frühwirth 2, M Jeitler 2, N Krammer 2, I Krätschmer 2, D Liko 2, T Madlener 2, I Mikulec 2, N Rad 2, J Schieck 2, R Schöfbeck 2, M Spanring 2, D Spitzbart 2, W Waltenberger 2, C-E Wulz 2, M Zarucki 2, V Drugakov 3, V Mossolov 3, J Suarez Gonzalez 3, M R Darwish 4, E A De Wolf 4, D Di Croce 4, X Janssen 4, A Lelek 4, M Pieters 4, H Rejeb Sfar 4, H Van Haevermaet 4, P Van Mechelen 4, S Van Putte 4, N Van Remortel 4, F Blekman 5, E S Bols 5, S S Chhibra 5, J D’Hondt 5, J De Clercq 5, D Lontkovskyi 5, S Lowette 5, I Marchesini 5, S Moortgat 5, L Moreels 5, Q Python 5, K Skovpen 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, I Van Parijs 5, D Beghin 6, B Bilin 6, H Brun 6, B Clerbaux 6, G De Lentdecker 6, H Delannoy 6, B Dorney 6, L Favart 6, A Grebenyuk 6, A K Kalsi 6, A Popov 6, N Postiau 6, E Starling 6, L Thomas 6, C Vander Velde 6, P Vanlaer 6, D Vannerom 6, T Cornelis 7, D Dobur 7, I Khvastunov 7, M Niedziela 7, C Roskas 7, D Trocino 7, M Tytgat 7, W Verbeke 7, B Vermassen 7, M Vit 7, N Zaganidis 7, O Bondu 8, G Bruno 8, C Caputo 8, P David 8, C Delaere 8, M Delcourt 8, A Giammanco 8, V Lemaitre 8, A Magitteri 8, J Prisciandaro 8, A Saggio 8, M Vidal Marono 8, P Vischia 8, J Zobec 8, F L Alves 9, G A Alves 9, G Correia Silva 9, C Hensel 9, A Moraes 9, P Rebello Teles 9, E Belchior Batista Das Chagas 10, W Carvalho 10, J Chinellato 10, E Coelho 10, E M Da Costa 10, G G Da Silveira 10, D De Jesus Damiao 10, C De Oliveira Martins 10, S Fonseca De Souza 10, L M Huertas Guativa 10, H Malbouisson 10, J Martins 10, D Matos Figueiredo 10, M Medina Jaime 10, M Melo De Almeida 10, C Mora Herrera 10, L Mundim 10, H Nogima 10, W L Prado Da Silva 10, L J Sanchez Rosas 10, A Santoro 10, A Sznajder 10, M Thiel 10, E J Tonelli Manganote 10, F Torres Da Silva De Araujo 10, A Vilela Pereira 10, C A Bernardes 11, L Calligaris 11, T R Fernandez Perez Tomei 11, E M Gregores 11, D S Lemos 11, P G Mercadante 11, S F Novaes 11, S S Padula 11, A Aleksandrov 12, G Antchev 12, R Hadjiiska 12, P Iaydjiev 12, A Marinov 12, M Misheva 12, M Rodozov 12, M Shopova 12, G Sultanov 12, M Bonchev 13, A Dimitrov 13, T Ivanov 13, L Litov 13, B Pavlov 13, P Petkov 13, W Fang 14, X Gao 14, L Yuan 14, M Ahmad 15, G M Chen 15, H S Chen 15, M Chen 15, C H Jiang 15, D Leggat 15, H Liao 15, Z Liu 15, S M Shaheen 15, A Spiezia 15, J Tao 15, E Yazgan 15, H Zhang 15, S Zhang 15, J Zhao 15, A Agapitos 16, Y Ban 16, G Chen 16, A Levin 16, J Li 16, L Li 16, Q Li 16, Y Mao 16, S J Qian 16, D Wang 16, Q Wang 16, Z Hu 17, Y Wang 17, C Avila 18, A Cabrera 18, L F Chaparro Sierra 18, C Florez 18, C F González Hernández 18, M A Segura Delgado 18, J Mejia Guisao 19, J D Ruiz Alvarez 19, C A Salazar González 19, N Vanegas Arbelaez 19, D Giljanović 20, N Godinovic 20, D Lelas 20, I Puljak 20, T Sculac 20, Z Antunovic 21, M Kovac 21, V Brigljevic 22, S Ceci 22, D Ferencek 22, K Kadija 22, B Mesic 22, M Roguljic 22, A Starodumov 22, T Susa 22, M W Ather 23, A Attikis 23, E Erodotou 23, A Ioannou 23, M Kolosova 23, S Konstantinou 23, G Mavromanolakis 23, J Mousa 23, C Nicolaou 23, F Ptochos 23, P A Razis 23, H Rykaczewski 23, D Tsiakkouri 23, M Finger 24, M Finger Jr 24, A Kveton 24, J Tomsa 24, E Ayala 25, E Carrera Jarrin 26, Y Assran 27, S Elgammal 27, S Bhowmik 28, A Carvalho Antunes De Oliveira 28, R K Dewanjee 28, K Ehataht 28, M Kadastik 28, M Raidal 28, C Veelken 28, P Eerola 29, L Forthomme 29, H Kirschenmann 29, K Osterberg 29, M Voutilainen 29, F Garcia 30, J Havukainen 30, J K Heikkilä 30, T Järvinen 30, V Karimäki 30, M S Kim 30, R Kinnunen 30, T Lampén 30, K Lassila-Perini 30, S Laurila 30, S Lehti 30, T Lindén 30, P Luukka 30, T Mäenpää 30, H Siikonen 30, E Tuominen 30, J Tuominiemi 30, T Tuuva 31, M Besancon 32, F Couderc 32, M Dejardin 32, D Denegri 32, B Fabbro 32, J L Faure 32, F Ferri 32, S Ganjour 32, A Givernaud 32, P Gras 32, G Hamel de Monchenault 32, P Jarry 32, C Leloup 32, E Locci 32, J Malcles 32, J Rander 32, A Rosowsky 32, M Ö Sahin 32, A Savoy-Navarro 32, M Titov 32, S Ahuja 33, C Amendola 33, F Beaudette 33, P Busson 33, C Charlot 33, B Diab 33, G Falmagne 33, R Granier de Cassagnac 33, I Kucher 33, A Lobanov 33, C Martin Perez 33, M Nguyen 33, C Ochando 33, P Paganini 33, J Rembser 33, R Salerno 33, J B Sauvan 33, Y Sirois 33, A Zabi 33, A Zghiche 33, J-L Agram 34, J Andrea 34, D Bloch 34, G Bourgatte 34, J-M Brom 34, E C Chabert 34, C Collard 34, E Conte 34, J-C Fontaine 34, D Gelé 34, U Goerlach 34, M Jansová 34, A-C Le Bihan 34, N Tonon 34, P Van Hove 34, S Gadrat 35, S Beauceron 36, C Bernet 36, G Boudoul 36, C Camen 36, N Chanon 36, R Chierici 36, D Contardo 36, P Depasse 36, H El Mamouni 36, J Fay 36, S Gascon 36, M Gouzevitch 36, B Ille 36, S Jain 36, F Lagarde 36, I B Laktineh 36, H Lattaud 36, A Lesauvage 36, M Lethuillier 36, L Mirabito 36, S Perries 36, V Sordini 36, L Torterotot 36, G Touquet 36, M Vander Donckt 36, S Viret 36, A Khvedelidze 37, Z Tsamalaidze 38, C Autermann 39, L Feld 39, M K Kiesel 39, K Klein 39, M Lipinski 39, D Meuser 39, A Pauls 39, M Preuten 39, M P Rauch 39, C Schomakers 39, J Schulz 39, M Teroerde 39, B Wittmer 39, A Albert 40, M Erdmann 40, S Erdweg 40, T Esch 40, B Fischer 40, R Fischer 40, S Ghosh 40, T Hebbeker 40, K Hoepfner 40, H Keller 40, L Mastrolorenzo 40, M Merschmeyer 40, A Meyer 40, P Millet 40, G Mocellin 40, S Mondal 40, S Mukherjee 40, D Noll 40, A Novak 40, T Pook 40, A Pozdnyakov 40, T Quast 40, M Radziej 40, Y Rath 40, H Reithler 40, M Rieger 40, J Roemer 40, A Schmidt 40, S C Schuler 40, A Sharma 40, S Thüer 40, S Wiedenbeck 40, S Zaleski 40, G Flügge 41, W Haj Ahmad 41, O Hlushchenko 41, T Kress 41, T Müller 41, A Nehrkorn 41, A Nowack 41, C Pistone 41, O Pooth 41, D Roy 41, H Sert 41, A Stahl 41, M Aldaya Martin 42, P Asmuss 42, I Babounikau 42, H Bakhshiansohi 42, K Beernaert 42, O Behnke 42, U Behrens 42, A Bermúdez Martínez 42, D Bertsche 42, A A Bin Anuar 42, K Borras 42, V Botta 42, A Campbell 42, A Cardini 42, P Connor 42, S Consuegra Rodríguez 42, C Contreras-Campana 42, V Danilov 42, A De Wit 42, M M Defranchis 42, C Diez Pardos 42, D Domínguez Damiani 42, G Eckerlin 42, D Eckstein 42, T Eichhorn 42, A Elwood 42, E Eren 42, E Gallo 42, A Geiser 42, J M Grados Luyando 42, A Grohsjean 42, M Guthoff 42, M Haranko 42, A Harb 42, A Jafari 42, N Z Jomhari 42, H Jung 42, A Kasem 42, M Kasemann 42, H Kaveh 42, J Keaveney 42, C Kleinwort 42, J Knolle 42, D Krücker 42, W Lange 42, T Lenz 42, J Leonard 42, J Lidrych 42, K Lipka 42, W Lohmann 42, R Mankel 42, I-A Melzer-Pellmann 42, A B Meyer 42, M Meyer 42, M Missiroli 42, G Mittag 42, J Mnich 42, A Mussgiller 42, V Myronenko 42, D Pérez Adán 42, S K Pflitsch 42, D Pitzl 42, A Raspereza 42, A Saibel 42, M Savitskyi 42, V Scheurer 42, P Schütze 42, C Schwanenberger 42, R Shevchenko 42, A Singh 42, H Tholen 42, O Turkot 42, A Vagnerini 42, M Van De Klundert 42, G P Van Onsem 42, R Walsh 42, Y Wen 42, K Wichmann 42, C Wissing 42, O Zenaiev 42, R Zlebcik 42, R Aggleton 43, S Bein 43, L Benato 43, A Benecke 43, V Blobel 43, T Dreyer 43, A Ebrahimi 43, A Fröhlich 43, C Garbers 43, E Garutti 43, D Gonzalez 43, P Gunnellini 43, J Haller 43, A Hinzmann 43, A Karavdina 43, G Kasieczka 43, R Klanner 43, R Kogler 43, N Kovalchuk 43, S Kurz 43, V Kutzner 43, J Lange 43, T Lange 43, A Malara 43, J Multhaup 43, C E N Niemeyer 43, A Perieanu 43, A Reimers 43, O Rieger 43, C Scharf 43, P Schleper 43, S Schumann 43, J Schwandt 43, J Sonneveld 43, H Stadie 43, G Steinbrück 43, F M Stober 43, M Stöver 43, B Vormwald 43, I Zoi 43, M Akbiyik 44, C Barth 44, M Baselga 44, S Baur 44, T Berger 44, E Butz 44, R Caspart 44, T Chwalek 44, W De Boer 44, A Dierlamm 44, K El Morabit 44, N Faltermann 44, M Giffels 44, P Goldenzweig 44, A Gottmann 44, M A Harrendorf 44, F Hartmann 44, U Husemann 44, S Kudella 44, S Mitra 44, M U Mozer 44, D Müller 44, Th Müller 44, M Musich 44, A Nürnberg 44, G Quast 44, K Rabbertz 44, M Schröder 44, I Shvetsov 44, H J Simonis 44, R Ulrich 44, M Wassmer 44, M Weber 44, C Wöhrmann 44, R Wolf 44, G Anagnostou 45, P Asenov 45, G Daskalakis 45, T Geralis 45, A Kyriakis 45, D Loukas 45, G Paspalaki 45, M Diamantopoulou 46, G Karathanasis 46, P Kontaxakis 46, A Manousakis-katsikakis 46, A Panagiotou 46, I Papavergou 46, N Saoulidou 46, A Stakia 46, K Theofilatos 46, K Vellidis 46, E Vourliotis 46, G Bakas 47, K Kousouris 47, I Papakrivopoulos 47, G Tsipolitis 47, I Evangelou 48, C Foudas 48, P Gianneios 48, P Katsoulis 48, P Kokkas 48, S Mallios 48, K Manitara 48, N Manthos 48, I Papadopoulos 48, J Strologas 48, F A Triantis 48, D Tsitsonis 48, M Bartók 49, R Chudasama 49, M Csanad 49, P Major 49, K Mandal 49, A Mehta 49, M I Nagy 49, G Pasztor 49, O Surányi 49, G I Veres 49, G Bencze 50, C Hajdu 50, D Horvath 50, F Sikler 50, T Vámi 50, V Veszpremi 50, G Vesztergombi 50, N Beni 51, S Czellar 51, J Karancsi 51, A Makovec 51, J Molnar 51, Z Szillasi 51, P Raics 52, D Teyssier 52, Z L Trocsanyi 52, B Ujvari 52, T Csorgo 53, W J Metzger 53, F Nemes 53, T Novak 53, S Choudhury 54, J R Komaragiri 54, P C Tiwari 54, S Bahinipati 55, C Kar 55, G Kole 55, P Mal 55, V K Muraleedharan Nair Bindhu 55, A Nayak 55, D K Sahoo 55, S K Swain 55, S Bansal 56, S B Beri 56, V Bhatnagar 56, S Chauhan 56, R Chawla 56, N Dhingra 56, R Gupta 56, A Kaur 56, M Kaur 56, S Kaur 56, P Kumari 56, M Lohan 56, M Meena 56, K Sandeep 56, S Sharma 56, J B Singh 56, A K Virdi 56, G Walia 56, A Bhardwaj 57, B C Choudhary 57, R B Garg 57, M Gola 57, S Keshri 57, A Kumar 57, S Malhotra 57, M Naimuddin 57, P Priyanka 57, K Ranjan 57, A Shah 57, R Sharma 57, R Bhardwaj 58, M Bharti 58, R Bhattacharya 58, S Bhattacharya 58, U Bhawandeep 58, D Bhowmik 58, S Dey 58, S Dutta 58, S Ghosh 58, M Maity 58, K Mondal 58, S Nandan 58, A Purohit 58, P K Rout 58, G Saha 58, S Sarkar 58, T Sarkar 58, M Sharan 58, B Singh 58, S Thakur 58, P K Behera 59, P Kalbhor 59, A Muhammad 59, P R Pujahari 59, A Sharma 59, A K Sikdar 59, D Dutta 60, V Jha 60, V Kumar 60, D K Mishra 60, P K Netrakanti 60, L M Pant 60, P Shukla 60, T Aziz 61, M A Bhat 61, S Dugad 61, G B Mohanty 61, N Sur 61, R K Verma 61, S Banerjee 62, S Bhattacharya 62, S Chatterjee 62, P Das 62, M Guchait 62, S Karmakar 62, S Kumar 62, G Majumder 62, K Mazumdar 62, N Sahoo 62, S Sawant 62, S Chauhan 63, S Dube 63, V Hegde 63, B Kansal 63, A Kapoor 63, K Kothekar 63, S Pandey 63, A Rane 63, A Rastogi 63, S Sharma 63, S Chenarani 64, E Eskandari Tadavani 64, S M Etesami 64, M Khakzad 64, M Mohammadi Najafabadi 64, M Naseri 64, F Rezaei Hosseinabadi 64, M Felcini 65, M Grunewald 65, M Abbrescia 66, R Aly 66, C Calabria 66, A Colaleo 66, D Creanza 66, L Cristella 66, N De Filippis 66, M De Palma 66, A Di Florio 66, L Fiore 66, A Gelmi 66, G Iaselli 66, M Ince 66, S Lezki 66, G Maggi 66, M Maggi 66, G Miniello 66, S My 66, S Nuzzo 66, A Pompili 66, G Pugliese 66, R Radogna 66, A Ranieri 66, G Selvaggi 66, L Silvestris 66, R Venditti 66, P Verwilligen 66, G Abbiendi 67, C Battilana 67, D Bonacorsi 67, L Borgonovi 67, S Braibant-Giacomelli 67, R Campanini 67, P Capiluppi 67, A Castro 67, F R Cavallo 67, C Ciocca 67, G Codispoti 67, M Cuffiani 67, G M Dallavalle 67, F Fabbri 67, A Fanfani 67, E Fontanesi 67, P Giacomelli 67, C Grandi 67, L Guiducci 67, F Iemmi 67, S Lo Meo 67, S Marcellini 67, G Masetti 67, F L Navarria 67, A Perrotta 67, F Primavera 67, A M Rossi 67, T Rovelli 67, G P Siroli 67, N Tosi 67, S Albergo 68, S Costa 68, A Di Mattia 68, R Potenza 68, A Tricomi 68, C Tuve 68, G Barbagli 69, R Ceccarelli 69, K Chatterjee 69, V Ciulli 69, C Civinini 69, R D’Alessandro 69, E Focardi 69, G Latino 69, P Lenzi 69, M Meschini 69, S Paoletti 69, G Sguazzoni 69, D Strom 69, L Viliani 69, L Benussi 70, S Bianco 70, D Piccolo 70, M Bozzo 71, F Ferro 71, R Mulargia 71, E Robutti 71, S Tosi 71, A Benaglia 72, A Beschi 72, F Brivio 72, V Ciriolo 72, S Di Guida 72, M E Dinardo 72, P Dini 72, S Gennai 72, A Ghezzi 72, P Govoni 72, L Guzzi 72, M Malberti 72, S Malvezzi 72, D Menasce 72, F Monti 72, L Moroni 72, G Ortona 72, M Paganoni 72, D Pedrini 72, S Ragazzi 72, T Tabarelli de Fatis 72, D Zuolo 72, S Buontempo 73, N Cavallo 73, A De Iorio 73, A Di Crescenzo 73, F Fabozzi 73, F Fienga 73, G Galati 73, A O M Iorio 73, L Lista 73, S Meola 73, P Paolucci 73, B Rossi 73, C Sciacca 73, E Voevodina 73, P Azzi 74, N Bacchetta 74, D DBisello 74, A Boletti 74, A Bragagnolo 74, R Carlin 74, P Checchia 74, P De Castro Manzano 74, T Dorigo 74, U Dosselli 74, F Gasparini 74, U Gasparini 74, A Gozzelino 74, S Y Hoh 74, P Lujan 74, M Margoni 74, A T Meneguzzo 74, J Pazzini 74, M Presilla 74, P Ronchese 74, R Rossin 74, F Simonetto 74, A Tiko 74, M Tosi 74, M Zanetti 74, P Zotto 74, G Zumerle 74, A Braghieri 75, P Montagna 75, S P Ratti 75, V Re 75, M Ressegotti 75, C Riccardi 75, P Salvini 75, I Vai 75, P Vitulo 75, M Biasini 76, G M Bilei 76, D Ciangottini 76, L Fanò 76, P Lariccia 76, R Leonardi 76, G Mantovani 76, V Mariani 76, M Menichelli 76, A Rossi 76, A Santocchia 76, D Spiga 76, K Androsov 77, P Azzurri 77, G Bagliesi 77, V Bertacchi 77, L Bianchini 77, T Boccali 77, R Castaldi 77, M A Ciocci 77, R Dell’Orso 77, G Fedi 77, L Giannini 77, A Giassi 77, M T Grippo 77, F Ligabue 77, E Manca 77, G Mandorli 77, A Messineo 77, F Palla 77, A Rizzi 77, G Rolandi 77, S Roy Chowdhury 77, A Scribano 77, P Spagnolo 77, R Tenchini 77, G Tonelli 77, N Turini 77, A Venturi 77, P G Verdini 77, F Cavallari 78, M Cipriani 78, D Del Re 78, E Di Marco 78, M Diemoz 78, E Longo 78, B Marzocchi 78, P Meridiani 78, G Organtini 78, F Pandolfi 78, R Paramatti 78, C Quaranta 78, S Rahatlou 78, C Rovelli 78, F Santanastasio 78, L Soffi 78, N Amapane 79, R Arcidiacono 79, S Argiro 79, M Arneodo 79, N Bartosik 79, R Bellan 79, C Biino 79, A Cappati 79, N Cartiglia 79, S Cometti 79, M Costa 79, R Covarelli 79, N Demaria 79, B Kiani 79, C Mariotti 79, S Maselli 79, E Migliore 79, V Monaco 79, E Monteil 79, M Monteno 79, M M Obertino 79, L Pacher 79, N Pastrone 79, M Pelliccioni 79, G L Pinna Angioni 79, A Romero 79, M Ruspa 79, R Sacchi 79, R Salvatico 79, V Sola 79, A Solano 79, D Soldi 79, A Staiano 79, S Belforte 80, V Candelise 80, M Casarsa 80, F Cossutti 80, A Da Rold 80, G Della Ricca 80, F Vazzoler 80, A Zanetti 80, B Kim 81, D H Kim 81, G N Kim 81, J Lee 81, S W Lee 81, C S Moon 81, Y D Oh 81, S I Pak 81, S Sekmen 81, D C Son 81, Y C Yang 81, H Kim 82, D H Moon 82, G Oh 82, B Francois 83, T J Kim 83, J Park 83, S Cho 84, S Choi 84, Y Go 84, D Gyun 84, S Ha 84, B Hong 84, K Lee 84, K S Lee 84, J Lim 84, J Park 84, S K Park 84, Y Roh 84, J Yoo 84, J Goh 85, H S Kim 86, J Almond 87, J H Bhyun 87, J Choi 87, S Jeon 87, J Kim 87, J S Kim 87, H Lee 87, K Lee 87, S Lee 87, K Nam 87, M Oh 87, S B Oh 87, B C Radburn-Smith 87, U K Yang 87, H D Yoo 87, I Yoon 87, G B Yu 87, D Jeon 88, H Kim 88, J H Kim 88, J S H Lee 88, I C Park 88, I Watson 88, Y Choi 89, C Hwang 89, Y Jeong 89, J Lee 89, Y Lee 89, I Yu 89, V Veckalns 90, V Dudenas 91, A Juodagalvis 91, G Tamulaitis 91, J Vaitkus 91, Z A Ibrahim 92, F Mohamad Idris 92, W A T Wan Abdullah 92, M N Yusli 92, Z Zolkapli 92, J F Benitez 93, A Castaneda Hernandez 93, J A Murillo Quijada 93, L Valencia Palomo 93, H Castilla-Valdez 94, E De La Cruz-Burelo 94, I Heredia-De La Cruz 94, R Lopez-Fernandez 94, A Sanchez-Hernandez 94, S Carrillo Moreno 95, C Oropeza Barrera 95, M Ramirez-Garcia 95, F Vazquez Valencia 95, J Eysermans 96, I Pedraza 96, H A Salazar Ibarguen 96, C Uribe Estrada 96, A Morelos Pineda 97, N Raicevic 98, D Krofcheck 99, S Bheesette 100, P H Butler 100, A Ahmad 101, M Ahmad 101, Q Hassan 101, H R Hoorani 101, W A Khan 101, M A Shah 101, M Shoaib 101, M Waqas 101, V Avati 102, L Grzanka 102, M Malawski 102, H Bialkowska 103, M Bluj 103, B Boimska 103, M Górski 103, M Kazana 103, M Szleper 103, P Zalewski 103, K Bunkowski 104, A Byszuk 104, K Doroba 104, A Kalinowski 104, M Konecki 104, J Krolikowski 104, M Misiura 104, M Olszewski 104, A Pyskir 104, M Walczak 104, M Araujo 105, P Bargassa 105, D Bastos 105, A Di Francesco 105, P Faccioli 105, B Galinhas 105, M Gallinaro 105, J Hollar 105, N Leonardo 105, J Seixas 105, K Shchelina 105, G Strong 105, O Toldaiev 105, J Varela 105, S Afanasiev 106, P Bunin 106, M Gavrilenko 106, I Golutvin 106, I Gorbunov 106, A Kamenev 106, V Karjavine 106, A Lanev 106, A Malakhov 106, V Matveev 106, P Moisenz 106, V Palichik 106, V Perelygin 106, M Savina 106, S Shmatov 106, S Shulha 106, N Skatchkov 106, V Smirnov 106, N Voytishin 106, A Zarubin 106, L Chtchipounov 107, V Golovtcov 107, Y Ivanov 107, V Kim 107, E Kuznetsova 107, P Levchenko 107, V Murzin 107, V Oreshkin 107, I Smirnov 107, D Sosnov 107, V Sulimov 107, L Uvarov 107, A Vorobyev 107, Yu Andreev 108, A Dermenev 108, S Gninenko 108, N Golubev 108, A Karneyeu 108, M Kirsanov 108, N Krasnikov 108, A Pashenkov 108, D Tlisov 108, A Toropin 108, V Epshteyn 109, V Gavrilov 109, N Lychkovskaya 109, A Nikitenko 109, V Popov 109, I Pozdnyakov 109, G Safronov 109, A Spiridonov 109, A Stepennov 109, M Toms 109, E Vlasov 109, A Zhokin 109, T Aushev 110, O Bychkova 111, R Chistov 111, M Danilov 111, S Polikarpov 111, E Tarkovskii 111, V Andreev 112, M Azarkin 112, I Dremin 112, M Kirakosyan 112, A Terkulov 112, A Belyaev 113, E Boos 113, A Ershov 113, A Gribushin 113, A Kaminskiy 113, O Kodolova 113, V Korotkikh 113, I Lokhtin 113, S Obraztsov 113, S Petrushanko 113, V Savrin 113, A Snigirev 113, I Vardanyan 113, A Barnyakov 114, V Blinov 114, T Dimova 114, L Kardapoltsev 114, Y Skovpen 114, I Azhgirey 115, I Bayshev 115, S Bitioukov 115, V Kachanov 115, D Konstantinov 115, P Mandrik 115, V Petrov 115, R Ryutin 115, S Slabospitskii 115, A Sobol 115, S Troshin 115, N Tyurin 115, A Uzunian 115, A Volkov 115, A Babaev 116, A Iuzhakov 116, V Okhotnikov 116, V Borchsh 117, V Ivanchenko 117, E Tcherniaev 117, P Adzic 118, P Cirkovic 118, D Devetak 118, M Dordevic 118, P Milenovic 118, J Milosevic 118, M Stojanovic 118, M Aguilar-Benitez 119, J Alcaraz Maestre 119, A lvarez Fernández 119, I Bachiller 119, M Barrio Luna 119, J A Brochero Cifuentes 119, C A Carrillo Montoya 119, M Cepeda 119, M Cerrada 119, N Colino 119, B De La Cruz 119, A Delgado Peris 119, C Fernandez Bedoya 119, J P Fernández Ramos 119, J Flix 119, M C Fouz 119, O Gonzalez Lopez 119, S Goy Lopez 119, J M Hernandez 119, M I Josa 119, D Moran 119, A Navarro Tobar 119, A Pérez-Calero Yzquierdo 119, J Puerta Pelayo 119, I Redondo 119, L Romero 119, S Sánchez Navas 119, M S Soares 119, A Triossi 119, C Willmott 119, C Albajar 120, J F de Trocóniz 120, B Alvarez Gonzalez 121, J Cuevas 121, C Erice 121, J Fernandez Menendez 121, S Folgueras 121, I Gonzalez Caballero 121, J R González Fernández 121, E Palencia Cortezon 121, V Rodríguez Bouza 121, S Sanchez Cruz 121, I J Cabrillo 122, A Calderon 122, B Chazin Quero 122, J Duarte Campderros 122, M Fernandez 122, P J Fernández Manteca 122, A García Alonso 122, G Gomez 122, C Martinez Rivero 122, P Martinez Ruiz del Arbol 122, F Matorras 122, J Piedra Gomez 122, C Prieels 122, T Rodrigo 122, A Ruiz-Jimeno 122, L Russo 122, L Scodellaro 122, N Trevisani 122, I Vila 122, J M Vizan Garcia 122, K Malagalage 123, W G D Dharmaratna 124, N Wickramage 124, D Abbaneo 125, B Akgun 125, E Auffray 125, G Auzinger 125, J Baechler 125, P Baillon 125, A H Ball 125, D Barney 125, J Bendavid 125, M Bianco 125, A Bocci 125, P Bortignon 125, E Bossini 125, C Botta 125, E Brondolin 125, T Camporesi 125, A Caratelli 125, G Cerminara 125, E Chapon 125, G Cucciati 125, D d’Enterria 125, A Dabrowski 125, N Daci 125, V Daponte 125, A David 125, O Davignon 125, A De Roeck 125, N Deelen 125, M Deile 125, M Dobson 125, M Dünser 125, N Dupont 125, A Elliott-Peisert 125, F Fallavollita 125, D Fasanella 125, S Fiorendi 125, G Franzoni 125, J Fulcher 125, W Funk 125, S Giani 125, D Gigi 125, A Gilbert 125, K Gill 125, F Glege 125, M Gruchala 125, M Guilbaud 125, D Gulhan 125, J Hegeman 125, C Heidegger 125, Y Iiyama 125, V Innocente 125, P Janot 125, O Karacheban 125, J Kaspar 125, J Kieseler 125, M Krammer 125, C Lange 125, P Lecoq 125, C Lourenço 125, L Malgeri 125, M Mannelli 125, A Massironi 125, F Meijers 125, J A Merlin 125, S Mersi 125, E Meschi 125, F Moortgat 125, M Mulders 125, J Ngadiuba 125, S Nourbakhsh 125, S Orfanelli 125, L Orsini 125, F Pantaleo 125, L Pape 125, E Perez 125, M Peruzzi 125, A Petrilli 125, G Petrucciani 125, A Pfeiffer 125, M Pierini 125, F M Pitters 125, D Rabady 125, A Racz 125, M Rovere 125, H Sakulin 125, C Schäfer 125, C Schwick 125, M Selvaggi 125, A Sharma 125, P Silva 125, W Snoeys 125, P Sphicas 125, J Steggemann 125, S Summers 125, V R Tavolaro 125, D Treille 125, A Tsirou 125, A Vartak 125, M Verzetti 125, W D Zeuner 125, L Caminada 126, K Deiters 126, W Erdmann 126, R Horisberger 126, Q Ingram 126, H C Kaestli 126, D Kotlinski 126, U Langenegger 126, T Rohe 126, S A Wiederkehr 126, M Backhaus 127, P Berger 127, N Chernyavskaya 127, G Dissertori 127, M Dittmar 127, M Donegà 127, C Dorfer 127, T A Gómez Espinosa 127, C Grab 127, D Hits 127, T Klijnsma 127, W Lustermann 127, R A Manzoni 127, M Marionneau 127, M T Meinhard 127, F Micheli 127, P Musella 127, F Nessi-Tedaldi 127, F Pauss 127, G Perrin 127, L Perrozzi 127, S Pigazzini 127, M G Ratti 127, M Reichmann 127, C Reissel 127, T Reitenspiess 127, D Ruini 127, D A Sanz Becerra 127, M Schönenberger 127, L Shchutska 127, M L Vesterbacka Olsson 127, R Wallny 127, D H Zhu 127, T K Aarrestad 128, C Amsler 128, D Brzhechko 128, M F Canelli 128, A De Cosa 128, R Del Burgo 128, S Donato 128, B Kilminster 128, S Leontsinis 128, V M Mikuni 128, I Neutelings 128, G Rauco 128, P Robmann 128, D Salerno 128, K Schweiger 128, C Seitz 128, Y Takahashi 128, S Wertz 128, A Zucchetta 128, T H Doan 129, C M Kuo 129, W Lin 129, A Roy 129, S S Yu 129, P Chang 130, Y Chao 130, K F Chen 130, P H Chen 130, W-S Hou 130, Y y Li 130, R-S Lu 130, E Paganis 130, A Psallidas 130, A Steen 130, B Asavapibhop 131, C Asawatangtrakuldee 131, N Srimanobhas 131, N Suwonjandee 131, A Bat 132, F Boran 132, A Celik 132, S Cerci 132, S Damarseckin 132, Z S Demiroglu 132, F Dolek 132, C Dozen 132, I Dumanoglu 132, G Gokbulut 132, E G Guler 132, Y Guler 132, I Hos 132, C Isik 132, E E Kangal 132, O Kara 132, A K Topaksu 132, U Kiminsu 132, M Oglakci 132, G Onengut 132, K Ozdemir 132, S Ozturk 132, A E Simsek 132, D Sunar Cerci 132, U G Tok 132, S Turkcapar 132, I S Zorbakir 132, C Zorbilmez 132, B Isildak 133, G Karapinar 133, M Yalvac 133, I O Atakisi 134, E Gülmez 134, M Kaya 134, O Kaya 134, B Kaynak 134, Ö Özçelik 134, S Tekten 134, E A Yetkin 134, A Cakir 135, K Cankocak 135, Y Komurcu 135, S Sen 135, S Ozkorucuklu 136, B Grynyov 137, L Levchuk 138, F Ball 139, E Bhal 139, S Bologna 139, J J Brooke 139, D Burns 139, E Clement 139, D Cussans 139, H Flacher 139, J Goldstein 139, G P Heath 139, H F Heath 139, L Kreczko 139, S Paramesvaran 139, B Penning 139, T Sakuma 139, S Seif El Nasr-Storey 139, D Smith 139, V J Smith 139, J Taylor 139, A Titterton 139, K W Bell 140, A Belyaev 140, C Brew 140, R M Brown 140, D Cieri 140, D J A Cockerill 140, J A Coughlan 140, K Harder 140, S Harper 140, J Linacre 140, K Manolopoulos 140, D M Newbold 140, E Olaiya 140, D Petyt 140, T Reis 140, T Schuh 140, C H Shepherd-Themistocleous 140, A Thea 140, I R Tomalin 140, T Williams 140, W J Womersley 140, R Bainbridge 141, P Bloch 141, J Borg 141, S Breeze 141, O Buchmuller 141, A Bundock 141, G S Chahal 141, D Colling 141, P Dauncey 141, G Davies 141, M Della Negra 141, R Di Maria 141, P Everaerts 141, G Hall 141, G Iles 141, T James 141, M Komm 141, C Laner 141, L Lyons 141, A-M Magnan 141, S Malik 141, A Martelli 141, V Milosevic 141, J Nash 141, V Palladino 141, M Pesaresi 141, D M Raymond 141, A Richards 141, A Rose 141, E Scott 141, C Seez 141, A Shtipliyski 141, M Stoye 141, T Strebler 141, A Tapper 141, K Uchida 141, T Virdee 141, N Wardle 141, D Winterbottom 141, J Wright 141, A G Zecchinelli 141, S C Zenz 141, J E Cole 142, P R Hobson 142, A Khan 142, P Kyberd 142, C K Mackay 142, A Morton 142, I D Reid 142, L Teodorescu 142, S Zahid 142, K Call 143, J Dittmann 143, K Hatakeyama 143, C Madrid 143, B McMaster 143, N Pastika 143, C Smith 143, R Bartek 144, A Dominguez 144, R Uniyal 144, A Buccilli 145, S I Cooper 145, C Henderson 145, P Rumerio 145, C West 145, D Arcaro 146, Z Demiragli 146, D Gastler 146, S Girgis 146, D Pinna 146, C Richardson 146, J Rohlf 146, D Sperka 146, I Suarez 146, L Sulak 146, D Zou 146, G Benelli 147, B Burkle 147, X Coubez 147, D Cutts 147, Y t Duh 147, M Hadley 147, J Hakala 147, U Heintz 147, J M Hogan 147, K H M Kwok 147, E Laird 147, G Landsberg 147, J Lee 147, Z Mao 147, M Narain 147, S Sagir 147, R Syarif 147, E Usai 147, D Yu 147, W Zhang 147, R Band 148, C Brainerd 148, R Breedon 148, M Calderon De La Barca Sanchez 148, M Chertok 148, J Conway 148, R Conway 148, P T Cox 148, R Erbacher 148, C Flores 148, G Funk 148, F Jensen 148, W Ko 148, O Kukral 148, R Lander 148, M Mulhearn 148, D Pellett 148, J Pilot 148, M Shi 148, D Taylor 148, K Tos 148, M Tripathi 148, Z Wang 148, F Zhang 148, M Bachtis 149, C Bravo 149, R Cousins 149, A Dasgupta 149, A Florent 149, J Hauser 149, M Ignatenko 149, N Mccoll 149, W A Nash 149, S Regnard 149, D Saltzberg 149, C Schnaible 149, B Stone 149, V Valuev 149, K Burt 150, Y Chen 150, R Clare 150, J W Gary 150, S M A Ghiasi Shirazi 150, G Hanson 150, G Karapostoli 150, E Kennedy 150, O R Long 150, M Olmedo Negrete 150, M I Paneva 150, W Si 150, L Wang 150, H Wei 150, S Wimpenny 150, B R Yates 150, Y Zhang 150, J G Branson 151, P Chang 151, S Cittolin 151, M Derdzinski 151, R Gerosa 151, D Gilbert 151, B Hashemi 151, D Klein 151, V Krutelyov 151, J Letts 151, M Masciovecchio 151, S May 151, S Padhi 151, M Pieri 151, V Sharma 151, M Tadel 151, F Würthwein 151, A Yagil 151, G Zevi Della Porta 151, N Amin 152, R Bhandari 152, C Campagnari 152, M Citron 152, V Dutta 152, M Franco Sevilla 152, L Gouskos 152, J Incandela 152, B Marsh 152, H Mei 152, A Ovcharova 152, H Qu 152, J Richman 152, U Sarica 152, D Stuart 152, S Wang 152, D Anderson 153, A Bornheim 153, O Cerri 153, I Dutta 153, J M Lawhorn 153, N Lu 153, J Mao 153, H B Newman 153, T Q Nguyen 153, J Pata 153, M Spiropulu 153, J R Vlimant 153, S Xie 153, Z Zhang 153, R Y Zhu 153, M B Andrews 154, T Ferguson 154, T Mudholkar 154, M Paulini 154, M Sun 154, I Vorobiev 154, M Weinberg 154, J P Cumalat 155, W T Ford 155, A Johnson 155, E MacDonald 155, T Mulholland 155, R Patel 155, A Perloff 155, K Stenson 155, K A Ulmer 155, S R Wagner 155, J Alexander 156, J Chaves 156, Y Cheng 156, J Chu 156, A Datta 156, A Frankenthal 156, K Mcdermott 156, J R Patterson 156, D Quach 156, A Rinkevicius 156, A Ryd 156, S M Tan 156, Z Tao 156, J Thom 156, P Wittich 156, M Zientek 156, S Abdullin 157, M Albrow 157, M Alyari 157, G Apollinari 157, A Apresyan 157, A Apyan 157, S Banerjee 157, L A T Bauerdick 157, A Beretvas 157, J Berryhill 157, P C Bhat 157, K Burkett 157, J N Butler 157, A Canepa 157, G B Cerati 157, H W K Cheung 157, F Chlebana 157, M Cremonesi 157, J Duarte 157, V D Elvira 157, J Freeman 157, Z Gecse 157, E Gottschalk 157, L Gray 157, D Green 157, S Grünendahl 157, O Gutsche 157, A R Hall 157, J Hanlon 157, R M Harris 157, S Hasegawa 157, R Heller 157, J Hirschauer 157, B Jayatilaka 157, S Jindariani 157, M Johnson 157, U Joshi 157, B Klima 157, M J Kortelainen 157, B Kreis 157, S Lammel 157, J Lewis 157, D Lincoln 157, R Lipton 157, M Liu 157, T Liu 157, J Lykken 157, K Maeshima 157, J M Marraffino 157, D Mason 157, P McBride 157, P Merkel 157, S Mrenna 157, S Nahn 157, V O’Dell 157, V Papadimitriou 157, K Pedro 157, C Pena 157, G Rakness 157, F Ravera 157, L Ristori 157, B Schneider 157, E Sexton-Kennedy 157, N Smith 157, A Soha 157, W J Spalding 157, L Spiegel 157, S Stoynev 157, J Strait 157, N Strobbe 157, L Taylor 157, S Tkaczyk 157, N V Tran 157, L Uplegger 157, E W Vaandering 157, C Vernieri 157, M Verzocchi 157, R Vidal 157, M Wang 157, H A Weber 157, D Acosta 158, P Avery 158, D Bourilkov 158, A Brinkerhoff 158, L Cadamuro 158, A Carnes 158, V Cherepanov 158, D Curry 158, F Errico 158, R D Field 158, S V Gleyzer 158, B M Joshi 158, M Kim 158, J Konigsberg 158, A Korytov 158, K H Lo 158, P Ma 158, K Matchev 158, N Menendez 158, G Mitselmakher 158, D Rosenzweig 158, K Shi 158, J Wang 158, S Wang 158, X Zuo 158, Y R Joshi 159, T Adams 160, A Askew 160, S Hagopian 160, V Hagopian 160, K F Johnson 160, R Khurana 160, T Kolberg 160, G Martinez 160, T Perry 160, H Prosper 160, C Schiber 160, R Yohay 160, J Zhang 160, M M Baarmand 161, V Bhopatkar 161, M Hohlmann 161, D Noonan 161, M Rahmani 161, M Saunders 161, F Yumiceva 161, M R Adams 162, L Apanasevich 162, D Berry 162, R R Betts 162, R Cavanaugh 162, X Chen 162, S Dittmer 162, O Evdokimov 162, C E Gerber 162, D A Hangal 162, D J Hofman 162, K Jung 162, C Mills 162, T Roy 162, M B Tonjes 162, N Varelas 162, J Viinikainen 162, H Wang 162, X Wang 162, Z Wu 162, M Alhusseini 163, B Bilki 163, W Clarida 163, K Dilsiz 163, S Durgut 163, R P Gandrajula 163, M Haytmyradov 163, V Khristenko 163, O K Köseyan 163, J-P Merlo 163, A Mestvirishvili 163, A Moeller 163, J Nachtman 163, H Ogul 163, Y Onel 163, F Ozok 163, A Penzo 163, C Snyder 163, E Tiras 163, J Wetzel 163, B Blumenfeld 164, A Cocoros 164, N Eminizer 164, D Fehling 164, L Feng 164, A V Gritsan 164, W T Hung 164, P Maksimovic 164, J Roskes 164, M Swartz 164, M Xiao 164, C Baldenegro Barrera 165, P Baringer 165, A Bean 165, S Boren 165, J Bowen 165, A Bylinkin 165, T Isidori 165, S Khalil 165, J King 165, G Krintiras 165, A Kropivnitskaya 165, C Lindsey 165, D Majumder 165, W Mcbrayer 165, N Minafra 165, M Murray 165, C Rogan 165, C Royon 165, S Sanders 165, E Schmitz 165, J D Tapia Takaki 165, Q Wang 165, J Williams 165, G Wilson 165, S Duric 166, A Ivanov 166, K Kaadze 166, D Kim 166, Y Maravin 166, D R Mendis 166, T Mitchell 166, A Modak 166, A Mohammadi 166, F Rebassoo 167, D Wright 167, A Baden 168, O Baron 168, A Belloni 168, S C Eno 168, Y Feng 168, N J Hadley 168, S Jabeen 168, G Y Jeng 168, R G Kellogg 168, J Kunkle 168, A C Mignerey 168, S Nabili 168, F Ricci-Tam 168, M Seidel 168, Y H Shin 168, A Skuja 168, S C Tonwar 168, K Wong 168, D Abercrombie 169, B Allen 169, A Baty 169, R Bi 169, S Brandt 169, W Busza 169, I A Cali 169, M D’Alfonso 169, G Gomez Ceballos 169, M Goncharov 169, P Harris 169, D Hsu 169, M Hu 169, M Klute 169, D Kovalskyi 169, Y-J Lee 169, P D Luckey 169, B Maier 169, A C Marini 169, C Mcginn 169, C Mironov 169, S Narayanan 169, X Niu 169, C Paus 169, D Rankin 169, C Roland 169, G Roland 169, Z Shi 169, G S F Stephans 169, K Sumorok 169, K Tatar 169, D Velicanu 169, J Wang 169, T W Wang 169, B Wyslouch 169, A C Benvenuti 170, R M Chatterjee 170, A Evans 170, S Guts 170, P Hansen 170, J Hiltbrand 170, Sh Jain 170, Y Kubota 170, Z Lesko 170, J Mans 170, R Rusack 170, M A Wadud 170, J G Acosta 171, S Oliveros 171, K Bloom 172, D R Claes 172, C Fangmeier 172, L Finco 172, F Golf 172, R Gonzalez Suarez 172, R Kamalieddin 172, I Kravchenko 172, J E Siado 172, G R Snow 172, B Stieger 172, W Tabb 172, G Agarwal 173, C Harrington 173, I Iashvili 173, A Kharchilava 173, C McLean 173, D Nguyen 173, A Parker 173, J Pekkanen 173, S Rappoccio 173, B Roozbahani 173, G Alverson 174, E Barberis 174, C Freer 174, Y Haddad 174, A Hortiangtham 174, G Madigan 174, D M Morse 174, T Orimoto 174, L Skinnari 174, A Tishelman-Charny 174, T Wamorkar 174, B Wang 174, A Wisecarver 174, D Wood 174, S Bhattacharya 175, J Bueghly 175, T Gunter 175, K A Hahn 175, N Odell 175, M H Schmitt 175, K Sung 175, M Trovato 175, M Velasco 175, R Bucci 176, N Dev 176, R Goldouzian 176, M Hildreth 176, K Hurtado Anampa 176, C Jessop 176, D J Karmgard 176, K Lannon 176, W Li 176, N Loukas 176, N Marinelli 176, I Mcalister 176, F Meng 176, C Mueller 176, Y Musienko 176, M Planer 176, R Ruchti 176, P Siddireddy 176, G Smith 176, S Taroni 176, M Wayne 176, A Wightman 176, M Wolf 176, A Woodard 176, J Alimena 177, B Bylsma 177, L S Durkin 177, S Flowers 177, B Francis 177, C Hill 177, W Ji 177, A Lefeld 177, T Y Ling 177, B L Winer 177, S Cooperstein 178, G Dezoort 178, P Elmer 178, J Hardenbrook 178, N Haubrich 178, S Higginbotham 178, A Kalogeropoulos 178, S Kwan 178, D Lange 178, M T Lucchini 178, J Luo 178, D Marlow 178, K Mei 178, I Ojalvo 178, J Olsen 178, C Palmer 178, P Piroué 178, J Salfeld-Nebgen 178, D Stickland 178, C Tully 178, Z Wang 178, S Malik 179, S Norberg 179, A Barker 180, V E Barnes 180, S Das 180, L Gutay 180, M Jones 180, A W Jung 180, A Khatiwada 180, B Mahakud 180, D H Miller 180, G Negro 180, N Neumeister 180, C C Peng 180, S Piperov 180, H Qiu 180, J F Schulte 180, J Sun 180, F Wang 180, R Xiao 180, W Xie 180, T Cheng 181, J Dolen 181, N Parashar 181, K M Ecklund 182, S Freed 182, F J M Geurts 182, M Kilpatrick 182, A Kumar 182, W Li 182, B P Padley 182, R Redjimi 182, J Roberts 182, J Rorie 182, W Shi 182, A G Stahl Leiton 182, Z Tu 182, A Zhang 182, A Bodek 183, P de Barbaro 183, R Demina 183, J L Dulemba 183, C Fallon 183, T Ferbel 183, M Galanti 183, A Garcia-Bellido 183, J Han 183, O Hindrichs 183, A Khukhunaishvili 183, E Ranken 183, P Tan 183, R Taus 183, B Chiarito 184, J P Chou 184, A Gandrakota 184, Y Gershtein 184, E Halkiadakis 184, A Hart 184, M Heindl 184, E Hughes 184, S Kaplan 184, S Kyriacou 184, I Laflotte 184, A Lath 184, R Montalvo 184, K Nash 184, M Osherson 184, H Saka 184, S Salur 184, S Schnetzer 184, D Sheffield 184, S Somalwar 184, R Stone 184, S Thomas 184, P Thomassen 184, H Acharya 185, A G Delannoy 185, G Riley 185, S Spanier 185, O Bouhali 186, A Celik 186, M Dalchenko 186, M De Mattia 186, A Delgado 186, S Dildick 186, R Eusebi 186, J Gilmore 186, T Huang 186, T Kamon 186, S Luo 186, D Marley 186, R Mueller 186, D Overton 186, L Perniè 186, D Rathjens 186, A Safonov 186, N Akchurin 187, J Damgov 187, F De Guio 187, S Kunori 187, K Lamichhane 187, S W Lee 187, T Mengke 187, S Muthumuni 187, T Peltola 187, S Undleeb 187, I Volobouev 187, Z Wang 187, A Whitbeck 187, S Greene 188, A Gurrola 188, R Janjam 188, W Johns 188, C Maguire 188, A Melo 188, H Ni 188, K Padeken 188, F Romeo 188, P Sheldon 188, S Tuo 188, J Velkovska 188, M Verweij 188, M W Arenton 189, P Barria 189, B Cox 189, G Cummings 189, R Hirosky 189, M Joyce 189, A Ledovskoy 189, C Neu 189, B Tannenwald 189, Y Wang 189, E Wolfe 189, F Xia 189, R Harr 190, P E Karchin 190, N Poudyal 190, J Sturdy 190, P Thapa 190, T Bose 190, J Buchanan 191, C Caillol 191, D Carlsmith 191, S Dasu 191, I De Bruyn 191, L Dodd 191, F Fiori 191, C Galloni 191, B Gomber 191, H He 191, M Herndon 191, A Hervé 191, U Hussain 191, P Klabbers 191, A Lanaro 191, A Loeliger 191, K Long 191, R Loveless 191, J Madhusudanan Sreekala 191, T Ruggles 191, A Savin 191, V Sharma 191, W H Smith 191, D Teague 191, S Trembath-reichert 191, N Woods 191; CMS Collaboration192
PMCID: PMC7307424  PMID: 32589167

Abstract

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective anisotropic flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies sNN=2.76 and 5.02TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

Introduction

The azimuthal anisotropy of particle production in a heavy ion collision can be characterized by the Fourier expansion of the particle azimuthal angle distribution [1],

dNdϕ=N2πn=-+Vne-inϕ, 1

where Vn=vnexp(inΨn) is the nth complex anisotropic flow coefficient [2]. The vn and Ψn are the magnitude and phase (also known as the nth order symmetry plane angle) of Vn, respectively. Anisotropic flow plays a major role in probing the properties of the produced medium in heavy ion collisions at the BNL RHIC [36] and CERN LHC [79]. Studies of flow harmonics higher than the second order [1012], flow fluctuations [1316], the correlation between the magnitude and phase of different harmonics [1724], and the transverse momentum (pT) and pseudorapidity (η) dependence of symmetry plane angles [25, 26], have led to a broader and deeper understanding of the initial conditions [3, 27] and the properties of the produced hot and dense matter. There are significant correlations between the symmetry plane angles of different orders [20], which indicate that higher-order mixed harmonics can be studied with respect to multiple lower-order symmetry plane angles.

In hydrodynamical models describing the quark-gluon plasma (QGP) created in relativistic heavy ion collisions, anisotropic flow arises from the evolution of the medium in the presence of an anisotropy in the initial-state energy density, as characterized by the eccentricities ϵn [10]. The magnitudes of the second- and third-order harmonic final state coefficients, v2 and v3, are to a good approximation linearly proportional to the initial-state anisotropies, ϵ2 and ϵ3, respectively [10, 17]. In contrast, V4 and higher harmonics can arise from initial-state anisotropies in the same-order harmonic (linear response) or can be induced by lower-order harmonics (nonlinear response) [1, 28, 29]. More specifically, these harmonics can be decomposed into linear and nonlinear response contributions as follows [1, 28]:

V4=V4L+χ422V22,V5=V5L+χ523V2V3,V6=V6L+χ624V2V4L+χ633V32+χ6222V23,V7=V7L+χ725V2V5L+χ734V3V4L+χ7223V22V3, 2

where VnL denotes the part of Vn that is not induced by lower-order harmonics [2931], and the χ are the nonlinear response coefficients. Each nonlinear response coefficient has its associated mixed harmonic, which is Vn measured with respect to the lower-order symmetry plane angle or angles. The strength of each nonlinear response coefficient determines the magnitude of its associated mixed harmonic. The V1 terms are neglected in the decomposition in Eq. (2) because the correlation between Vn and V1Vn-1 was shown to be negligible after correcting V1 for global momentum conservation [28]. This analysis focuses on the terms that only involve the two largest anisotropic flow coefficients V2 and V3 on the right-hand side of Eq. (2). The procedures used to extract both mixed-harmonic and nonlinear response coefficients are given in Sect. 4.

It is difficult to use measured v2 and v3 coefficients to evaluate hydrodynamic theories because these flow observables have a strong dependence on the initial anisotropies, which cannot be experimentally determined or tightly constrained. In contrast, most of the nonlinear response coefficients are not strongly sensitive to the initial anisotropies, which largely cancel in the dimensionless ratios used to determine these coefficients [1, 28, 31, 32]. As a result, their experimental values can serve as unique and robust probes of hydrodynamic behavior of the QGP [31].

Most previous flow measurements focused on Vn (overall flow), i.e., vn with respect to Ψn, which does not separate the linear and nonlinear parts of Eq. (2). Direct measurements of the mixed higher-order flow harmonics, v4 and v6 with respect to Ψ2, already exist at both RHIC [33] and LHC [11] energies, but were performed using the event plane method [34]. This method has been criticized for yielding an ambiguous measure lying somewhere between the event-averaged mean value vn and the root-mean-square value vn2 of the vn distribution, depending on the resolution of the method [13, 16, 35]. This ambiguity can be removed by using the scalar-product method [35, 36], which always measures the root-mean-square values of vn. The difference between the two methods is typically a few percent for v2, 10% for v3, and much larger for mixed harmonics [35].

This paper presents the mixed higher-order flow harmonics and nonlinear response coefficients for n=4, 5, 6, and 7 using the scalar-product method. These variables are measured in PbPb collisions at nucleon-nucleon center-of-mass energies sNN=2.76 and 5.02TeV, as functions of collision centrality and charged particle pT in the region |η|<0.8. To compare the mixed flow harmonics with the overall flow coefficients, the higher-order flow harmonics with respect to the same-order symmetry plane, measured using the scalar-product method, are also presented.

The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter, providing a nearly constant magnetic field of 3.8T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. In this analysis, the tracker and the forward hadron (HF) calorimeter subsystems are of particular importance. The HF uses steel as an absorber and quartz fibers as the sensitive material. The two halves of the HF are located 11.2m from the center of the interaction region, one on each end, and together they provide coverage in the range 3.0<|η|<5.2. These calorimeters are azimuthally subdivided into 20 modular wedges and further segmented to form 0.175×0.175 (Δη×Δϕ) “towers”, where the angle ϕ is in radians. The silicon tracker measures charged particles within the range |η|<2.5. It consists of 1440 silicon pixel and 15,148 silicon strip detector modules. For nonisolated particles of 1<pT<10GeV/c and |η|<1.4, the track resolutions are typically 1.5% in pT and 25–90 (45–150)μm in the transverse (longitudinal) impact parameter [37]. The Beam Pick-up Timing for the eXperiments (BPTX) devices are located around the beam pipe at a distance of 175m from the interaction region on both sides, and are designed to provide precise information on the LHC bunch structure and timing of the incoming beams. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [38]. The Monte Carlo simulation of the particle propagation and detector response is based on the Geant4 [39] program.

Event and track selections

This analysis is performed using minimum bias PbPb data collected with the CMS detector at sNN= 5.02 and 2.76TeV in 2015 and 2011, corresponding to integrated luminosities of 13μb-1 and 3.9μb-1, respectively. The minimum bias trigger [40] used in this analysis requires coincident signals in the HF calorimeters at both ends of the CMS detector with total energy deposits above a predefined energy threshold of approximately 1GeV and the presence of both colliding bunches in the interaction region as determined using the BPTX. By requiring colliding bunches, events due to noise (e.g., cosmic rays and beam backgrounds) are largely suppressed. In the offline analysis, events are required to have at least one reconstructed primary vertex, which is chosen as the reconstructed vertex with the largest number of associated tracks. The primary vertex is formed by two or more associated tracks and is required to have a distance of less than 15cm along the beam axis from the center of the nominal interaction region and less than 0.15cm from the beam position in the transverse plane. An additional selection of hadronic collisions is applied by requiring at least three towers, each with total energy above 3GeV in each of the two HF calorimeters. The average number of collisions per bunch crossing is less than 0.001 for the events used in this analysis, with a pileup fraction less than 0.05%, which has a negligible effect on the results. Events are classified using a centrality variable that is related to the degree of geometric overlap between the two colliding nuclei. Events with complete (no) overlap are denoted as centrality 0 (100)%, where the number is the fraction of events in a given class with respect to the total number of inelastic hadronic collisions. The centrality is determined offline via the sum of the HF energies in each event. Very central events (centrality approaching 0%) are characterized by a large energy deposit in the HF calorimeters. The results reported in this paper are presented up to 60% in centrality. The minimum bias trigger and event selections are fully efficient in this centrality range.

Track reconstruction [37, 41] is performed in two iterations to ease the computational load for high-multiplicity central PbPb collisions. The first iteration reconstructs tracks from signals (“hits”) in the silicon pixel and strip detectors compatible with a trajectory of pT>0.9GeV/c. The significance of the separation along the beam axis (z) between the track and the primary vertex, dz/σ(dz), and the significance of the impact parameter relative to the primary vertex transverse to the beam, d0/σ(d0), must be less than 2. In addition, the relative uncertainty of the pT measurement, σ(pT)/ pT, must be less than 5%, and tracks are required to have at least 11 out of the possible 14 hits along their trajectories in the pixel and strip trackers. To reduce the number of misidentified tracks, the chi-squared per degree of freedom, χ2/dof, associated with fitting the track trajectory through the different pixel and strip layers, must be less than 0.15 times the total number of layers having hits along the trajectory of the track. The second iteration reconstructs tracks compatible with a trajectory of pT>0.2GeV/c using solely the pixel detector. These tracks are required to have dz/σ(dz)<6 and a fit χ2/dof value less than 9 times the number of layers with hits along the trajectory of the track. In the final analysis, first iteration tracks with pT>1.0GeV/c are combined with pixel-detector-only tracks that have 0.2<pT<2.4GeV/c. After removing duplicates [7], the merged track collection has a combined geometric acceptance and efficiency exceeding 60% for pT 1.0GeV/c and |η|<0.8, as determined using the hydjet event generator [42]. When the track pT is below 1GeV/c, the acceptance and efficiency steadily drops, reaching approximately 40% at pT0.3GeV/c, which is the lower limit for pT in this analysis.

Analysis technique

The analysis technique follows the method described in Refs. [1, 28] using detector information from both HF and the tracker. The notation Vn=vnexp(inΨn)=einϕ in Eq. (1) will be replaced by the measured complex flow vector Qn with real and imaginary parts defined as

Re(Qn)=1wjjMwjcosnϕj-1wjjMwjcosnϕj, 3
Im(Qn)=1wjjMwjsinnϕj-1wjjMwjsinnϕj, 4

where M represents the number of tracks or HF towers used for calculating the Q vector, ϕj is the azimuthal angle of the jth track or HF tower, and wj is a weighting factor equal to transverse energy for HF Q vectors. To correct for the tracking inefficiency, wj=1/εj is the inverse of the tracking efficiency εj(pT,η) of the jth track. Unlike the averages over particles in a single event in the definitions of Qn, the angle brackets in Eqs. (3) and (4) denote an average over all the events within a given centrality range. Subtraction of the event-averaged quantity removes biases due to the detector acceptance.

The mixed higher-order harmonics in each pT range are extracted using the scalar-product method as shown in Eqs. (5)–(9) [1], which describe the various harmonics measured with respect to symmetry plane angles of different orders. Equations (5)–(9) show v4 with respect to the second-order, v5 with respect to the second- and third-order, v6 with respect to the second-order, v6 with respect to the third-order, and v7 with respect to the second- and third-order symmetry plane angles, respectively.

v4{Ψ22}ReQ4Q2AQ2BReQ2AQ2AQ2BQ2B 5
v5{Ψ23}ReQ5Q2AQ3BReQ2AQ3AQ2BQ3B 6
v6{Ψ222}ReQ6Q2AQ2BQ2BReQ2AQ2AQ2AQ2BQ2BQ2B 7
v6{Ψ33}ReQ6Q3AQ3BReQ3AQ3AQ3BQ3B 8
v7{Ψ223}ReQ7Q2AQ2BQ3BReQ2AQ2AQ3AQ2BQ2BQ3B 9

Here, QnA and QnB are vectors from two different parts of the detector, specifically the positive and negative sides of HF, Qn is the vector from charged particles in each pT range within |η|<0.8, and angle brackets denote the average (weighted by the number of particles) over all events within a given centrality range. The minimum η gap between tracks used to find the charged-particle Q vector and towers used for the HF Q vectors is 2.2 units of η.

With the assumption that the linear and nonlinear terms in Eq. (2) are uncorrelated, the nonlinear response coefficients in each pT range can be expressed as [1, 28],

χ422=ReQ4Q2AQ2BReQ2Q2Q2AQ2B, 10
χ523=ReQ5Q2AQ3BReQ2Q3Q2AQ3B, 11
χ6222=ReQ6Q2AQ2BQ2BReQ2Q2Q2Q2AQ2BQ2B, 12
χ633=ReQ6Q3AQ3BReQ3Q3Q3AQ3B, 13
χ7223=ReQ7Q2AQ2BQ3BReQ2Q2Q3Q2AQ2BQ3B, 14

where the charged-particle Qn vector enters both the numerator and the denominator.

Systematic uncertainties

Six sources of systematic uncertainties are considered in this analysis. The systematic uncertainty due to vertex position selection is estimated by comparing the results with events from vertex position ranges |vz|<3 cm to 3<|vz|<15 cm. For both mixed harmonic and nonlinear response coefficients, this uncertainty is estimated to be 1–3%, with no dependence on pT or centrality. Systematic uncertainty due to track quality requirements are examined by varying the track selections for dz/σ(dz) and d0/σ(d0) from 1.5 to 5, the pixel track dz/σ(dz) from 5 to 10, and the fit χ2/dof value from 7 to 18 times the number of layers with hits. The uncertainty is estimated to be 1–4% depending on pT and centrality for both mixed harmonic and nonlinear response coefficients.

The charged-particle tracking efficiency depends on the efficiency of detecting different types of charged particles and the species composition of the set of particles. Two event generators (hydjet [42] and epos lhc [43]) with different particle composition are used to study the tracking efficiency, and the systematic uncertainty is obtained by comparing the results using efficiencies from the two generators mentioned above. The systematic uncertainty from this source is 3% for the mixed harmonics and less than 1% for the nonlinear response coefficients, with no dependence on pT or centrality.

The sensitivity of the results to the centrality calibration is evaluated by varying the trigger and event selection efficiency by ±2%. The resulting uncertainty is estimated to be less than 1%. The minimum η gap between the correlated charged particles and the Q vectors in the HF region is changed from 2.2 to 3.2 units of η (achieved by changing the η ranges of the HF Q vectors) to estimate the uncertainty due to short-range correlations from resonance decays and jets. This study results in a systematic uncertainty of 1–8%, depending on both pT and centrality. This η gap uncertainty also includes a possible physics effect from the η-dependent fluctuations of symmetry plane angles [26, 44], although a recent study from the ALICE experiment indicates that this effect is small for correlations between symmetry plane angles of different order [45].

When the same set of HF towers are used for different Q vectors in the equations of mixed harmonic and nonlinear response coefficients, the product of these Q vectors contains self-correlations. An algorithm for removing the duplicated terms when multiplying two or more Q vectors, the same as the approach of Ref. [46], is used. The algorithm only works perfectly when the detector has fine granularity and there is no merging of HF towers. Therefore, the difference before and after correcting for this effect is taken as the systematic uncertainty, yielding values which depend on centrality but are always less than 3%.

The different systematic sources described above are added in quadrature to obtain the overall systematic uncertainty, which is about 10% at low pT and decreases to around 5% for pT larger than 1GeV/c. As a function of centrality, the overall systematic uncertainty ranges from 3 to 9% for different coefficients, with larger uncertainties for central events.

Results

The measurements in this paper are presented using tracks in the range of |η|<0.8. Figure 1 shows the mixed higher-order flow harmonics, v4{Ψ22}, v5{Ψ23}, v6{Ψ222}, v6{Ψ33}, and v7{Ψ223} from the scalar-product method at sNN=2.76 and 5.02TeV as a function of pT in the 0–20% (upper row) and 20–60% (lower row) centrality ranges.

Fig. 1.

Fig. 1

Mixed higher-order flow harmonics, v4{Ψ22}, v5{Ψ23}, v6{Ψ222}, v6{Ψ33}, and v7{Ψ223} from the scalar-product method at sNN=2.76 and 5.02TeV as a function of pT in the 0–20% (upper row) and 20–60% (lower row) centrality ranges. Statistical (bars) and systematic (shaded boxes) uncertainties are shown

It is observed that the shapes of the mixed higher-order flow harmonics as a function of pT are qualitatively similar to the published overall flow harmonics with respect to Ψn [7, 11], first increasing at low pT, reaching a maximum at about 3–4GeV/c, then decreasing at higher pT. This may indicate that, for each pT region, the underlying physics processes that generate the flow harmonics are the same for the nonlinear and the linear parts. Similar to previous observation that the overall flow shows a weak energy dependence from RHIC to LHC energies [7, 8], the mixed harmonics are also found to be consistent between the two collision energies within the uncertainties, except for v4{Ψ22} and v5{Ψ23} at pT larger than 3GeV/c in the mid-central collisions, with 5.02TeV results slightly above 2.76TeV results.

A direct comparison of the mixed higher-order flow harmonics and overall flow at 5.02TeV is presented in Fig. 2 as a function of pT in the two centrality ranges. Hydrodynamic models predict that the contribution of the nonlinear response to the overall flow increases towards peripheral collisions for v4 and v5 [17, 29, 47]. From a comparison of the relative contribution in the two centrality ranges, the present results are consistent with these predictions, as well as an estimate by the ATLAS Collaboration using a two-component fit of the correlation between flow harmonics [21], and a recent study of the nonlinear mode by the ALICE Collaboration [45]. By comparing different harmonics, the contribution of the nonlinear response for v5 is larger than those for the other harmonics in the centrality range 20–60%.

Fig. 2.

Fig. 2

Comparison of mixed higher-order flow harmonics, v4{Ψ22}, v5{Ψ23}, v6{Ψ222}, v6{Ψ33} and v7{Ψ223} with the corresponding overall flow, v4{Ψ4}, v5{Ψ5}, v6{Ψ6}, v6{Ψ6} and v7{Ψ7}, respectively, at sNN=5.02TeV as a function pT in the 0–20% (upper row) and 20–60% (lower row) centrality ranges. Statistical (bars) and systematic (shaded boxes) uncertainties are shown

The nonlinear response coefficients, χ422, χ523, χ6222, χ633, and χ7223 are presented in Fig. 3 as a function of pT in the two centrality ranges. It is observed that the odd harmonic coefficients χ523 and χ7223 are larger than those for the even harmonics for pT less than 3GeV/c in the two explored centrality ranges. The values for the even harmonics first decrease slightly as pT increases, reach a minimum at pT about 2GeV/c, and then slowly increase until appearing to plateau for pT above 4GeV/c. The results are compared with viscous hydrodynamic predictions [30] at sNN=2.76TeV with η/s=0.08 (where η/s is the shear viscosity to entropy density ratio of the hydrodynamic medium, and here η denotes shear viscosity rather than pseudorapidity) and Glauber initial conditions in two centrality ranges (5–10% and 35–40%) which roughly match those of the data (0–20% and 20–60%). In the model, as pT increases from 0.3 to 1GeV/c, the predicted coefficients increase for n=4 and 5, but decrease and then increase for n=6 and 7, with a much stronger pT dependence than the data. The strong pT dependence, attributed to the large variance of the flow angles Ψn at small pT [30], is not observed in data for n=4 and 5.

Fig. 3.

Fig. 3

Nonlinear response coefficients, χ422, χ523, χ6222, χ633, and χ7223 from the scalar-product method at sNN=2.76 and 5.02TeV as a function of pT in the 0–20% (upper row) and 20–60% (lower row) centrality ranges. Statistical (bars) and systematic (shaded boxes) uncertainties are shown. The results are compared with hydrodynamic predictions [30] at sNN=2.76TeV with η/s=0.08 and Glauber initial conditions in the 5–10% (blue lines) and 35–40% (dashed green lines) centrality ranges

Figure 4 shows the mixed higher-order flow harmonics, v4{Ψ22}, v5{Ψ23}, v6{Ψ222}, v6{Ψ33}, and v7{Ψ223} from the scalar-product method, as a function of centrality in the pT range from 0.3 to 3.0GeV/c. Hydrodynamic predictions with a deformed symmetric Gaussian density profile as the initial conditions for v5{Ψ23} and v7{Ψ223} [1] at sNN=2.76TeV are compared with the data. The model qualitatively describes v5{Ψ23} in the 0–40% centrality range but underestimates the result for more peripheral collisions. For v7{Ψ223}, the predicted values are much smaller than the data, especially for centrality from 35 to 50%.

Fig. 4.

Fig. 4

Mixed higher-order flow harmonics, v4{Ψ22}, v5{Ψ23}, v6{Ψ222}, v6{Ψ33}, and v7{Ψ223} from the scalar-product method at sNN=2.76 and 5.02TeV, as a function of centrality. Statistical (bars) and systematic (shaded boxes) uncertainties are shown. Hydrodynamic predictions [1] with η/s=0.08 (blue lines) at 2.76TeV are shown in (b) and (e)

The nonlinear response coefficients, χ422, χ523, χ6222, χ633, and χ7223 are presented in Figs. 5 and 6, as a function of centrality in the pT range from 0.3 to 3.0GeV/c. The results are compared with predictions at sNN=2.76TeV from the microscopic transport model AMPT [48, 49], a macroscopic hydrodynamic model using a deformed symmetric Gaussian density profile as the initial conditions with η/s=0.08 [1], and from another hydrodynamic calculation (iEBE-VISHNU) with both Glauber and Kharzeev–Levin–Nardi (KLN) gluon saturation initial conditions using the same η/s [28]. The model with Gaussian profile initial conditions gives a better description of the nonlinear response coefficients compared to other calculations, but it underestimates the values of v7{Ψ223} for centrality above 30%, as shown in Fig. 4. In Fig. 6, the same results are compared with the predictions from hydrodynamics + hadronic cascade hybrid approach with the IP-Glasma initial conditions using η/s=0.095 [50] at sNN=5.02TeV and from iEBE-VISHNU hydrodynamics with the KLN initial conditions using η/s=0, 0.08 and 0.2 [28] at sNN=2.76TeV. All the calculations describe the χ422 well, but none of them are successful for χ523 and χ7223. The model calculations of χ7223 are quite different for various initial conditions and η/s, which suggests that the first-time measurement of χ7223 presented in this paper could provide strong constraints on models.

Fig. 5.

Fig. 5

Nonlinear response coefficients, χ422, χ523, χ6222, χ633, and χ7223 from the scalar-product method at sNN=2.76 and 5.02TeV, as a function of centrality. Statistical (bars) and systematic (shaded boxes) uncertainties are shown. The results are compared with predictions at sNN=2.76TeV from AMPT [48] as well as hydrodynamics with a deformed symmetric Gaussian density profile as the initial conditions using η/s=0.08 from Ref. [1], and from iEBE-VISHNU hydrodynamics with both Glauber and the KLN initial conditions using the same η/s [28]

Fig. 6.

Fig. 6

The same results as in Fig. 5 but compared with predictions from a hydrodynamics + hadronic cascade hybrid approach with the IP-Glasma initial conditions using η/s=0.095 [50] at sNN=5.02TeV and from iEBE-VISHNU hydrodynamics with the KLN initial conditions using η/s=0, 0.08 (the same curve as in Fig. 5) and 0.2 [28] at sNN=2.76TeV

Summary

The mixed higher-order flow harmonics and nonlinear response coefficients of charged particles have been studied as functions of transverse momentum pT and centrality in PbPb collisions at sNN=2.76 and 5.02TeV using the CMS detector. The measurements use the scalar-product method, covering a pT range from 0.3 to 8.0GeV/c, pseudorapidity |η|<0.8, and a centrality range of 0–60%. The mixed higher-order flow harmonics, v4{Ψ22}, v5{Ψ23}, v6{Ψ222}, v6{Ψ33}, and v7{Ψ223} all have a qualitatively similar pT dependence, first increasing at low pT, reaching a maximum at about 3–4GeV/c, and then decreasing at higher pT. As a comparison, the overall vn harmonics (n=4–7) with respect to their own symmetry planes are measured in the same pT, η, and centrality ranges. The relative contribution of the nonlinear part for v5 is larger than for other harmonics in the centrality range 20–60%. In addition, the nonlinear response coefficients of the odd harmonics are observed to be larger than those of even harmonics for pT less than 3GeV/c. At pT less than 1GeV/c, a viscous hydrodynamic calculation with Glauber initial conditions and shear viscosity to entropy density ratio η/s=0.08 predicts a much stronger pT dependence for the nonlinear response coefficients. The coefficients, including the first-time measurement of χ7223, as a function of centrality, are compared with AMPT and hydrodynamic predictions using different η/s and initial conditions. Compared to the data, none of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients. Therefore, these results can constrain both initial conditions and transport properties of the produced medium.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science–EOS”–be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 3.2989.2017 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Nvidia Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as written in its document “CMS data preservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2).]

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  • 1.Yan L, Ollitrault J-Y. ν4,ν5,ν6,ν7: nonlinear hydrodynamic response versus LHC data. Phys. Lett. B. 2015;744:82. doi: 10.1016/j.physletb.2015.03.040. [DOI] [Google Scholar]
  • 2.Voloshin S, Zhang Y. Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Z. Phys. C. 1996;70:665. doi: 10.1007/s002880050141. [DOI] [Google Scholar]
  • 3.PHENIX Collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). 10.1016/j.nuclphysa.2005.03.086. arXiv:nucl-ex/0410003
  • 4.STAR Collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005). 10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009
  • 5.PHOBOS Collaboration, The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28 (2005). 10.1016/j.nuclphysa.2005.03.084. arXiv:nucl-ex/0410022
  • 6.BRAHMS Collaboration, Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005). 10.1016/j.nuclphysa.2005.02.130. arXiv:nucl-ex/0410020
  • 7.CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at sNN=2.76TeV. Phys. Rev. C 87, 014902 (2013). 10.1103/PhysRevC.87.014902. arXiv:1204.1409
  • 8.ALICE Collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV. Phys. Rev. Lett. 105, 252302 (2010). 10.1103/PhysRevLett.105.252302. arXiv:1011.3914 [DOI] [PubMed]
  • 9.ATLAS Collaboration, Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at sNN=2.76TeV with the ATLAS detector. Phys. Lett. B 707, 330 (2012). 10.1016/j.physletb.2011.12.056. arXiv:1108.6018
  • 10.B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010). 10.1103/PhysRevC.81.054905. arXiv:1003.0194. [Erratum: 10.1103/PhysRevC.82.039903]
  • 11.CMS Collaboration, Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at sNN=2.76TeV. Phys. Rev. C 89 044906 (2014). 10.1103/PhysRevC.89.044906. arXiv:1310.8651
  • 12.ALICE Collaboration, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sNN=2.76TeV. Phys. Rev. Lett. 107, 032301 (2011). 10.1103/PhysRevLett.107.032301. arXiv:1105.3865 [DOI] [PubMed]
  • 13.Alver B, et al. Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions. Phys. Rev. C. 2008;77:014906. doi: 10.1103/PhysRevC.77.014906. [DOI] [Google Scholar]
  • 14.STAR Collaboration, Elliptic flow fluctuations in Au+Au collisions at sNN=200GeV. J. Phys. G 35, 104102 (2008). 10.1088/0954-3899/35/10/104102. arXiv:0808.0356
  • 15.PHOBOS Collaboration, Non-flow correlations and elliptic flow fluctuations in gold-gold collisions at sNN=200GeV. Phys. Rev. C 81, 034915 (2010). 10.1103/PhysRevC.81.034915. arXiv:1002.0534
  • 16.Ollitrault J-Y, Poskanzer AM, Voloshin SA. Effect of flow fluctuations and nonflow on elliptic flow methods. Phys. Rev. C. 2009;80:014904. doi: 10.1103/PhysRevC.80.014904. [DOI] [Google Scholar]
  • 17.Qiu Z, Heinz UW. Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev. C. 2011;84:024911. doi: 10.1103/PhysRevC.84.024911. [DOI] [Google Scholar]
  • 18.PHENIX Collaboration, Measurements of higher-order flow harmonics in Au+Au collisions at sNN=200GeV. Phys. Rev. Lett. 107, 252301 (2011). 10.1103/PhysRevLett.107.252301. arXiv:1105.3928 [DOI] [PubMed]
  • 19.Niemi H, Denicol GS, Holopainen H, Huovinen P. Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions. Phys. Rev. C. 2013;87:054901. doi: 10.1103/PhysRevC.87.054901. [DOI] [Google Scholar]
  • 20.ATLAS Collaboration, Measurement of event-plane correlations in sNN=2.76TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 90, 024905 (2014). 10.1103/PhysRevC.90.024905. arXiv:1403.0489
  • 21.ATLAS Collaboration, Measurement of the correlation between flow harmonics of different order in lead-lead collisions at sNN=2.76TeV with the ATLAS detector. Phys. Rev. C 92, 034903 (2015). 10.1103/PhysRevC.92.034903. arXiv:1504.01289
  • 22.ALICE Collaboration, Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at sNN=2.76TeV. Phys. Rev. Lett. 117, 182301 (2016). 10.1103/PhysRevLett.117.182301. arXiv:1604.07663 [DOI] [PubMed]
  • 23.CMS Collaboration, Observation of correlated azimuthal anisotropy Fourier harmonics in pp and p+Pb collisions at the LHC. Phys. Rev. Lett. 120, 092301 (2018). 10.1103/PhysRevLett.120.092301. arXiv:1709.09189 [DOI] [PubMed]
  • 24.STAR Collaboration, Correlation measurements between flow harmonics in Au+Au collisions at RHIC. Phys. Lett. B 783, 459 (2018). 10.1016/j.physletb.2018.05.076. arXiv:1803.03876
  • 25.Heinz U, Qiu Z, Shen C. Fluctuating flow angles and anisotropic flow measurements. Phys. Rev. C. 2013;87:034913. doi: 10.1103/PhysRevC.87.034913. [DOI] [Google Scholar]
  • 26.CMS Collaboration, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions. Phys. Rev. C 92, 034911 (2015). 10.1103/PhysRevC.92.034911. arXiv:1503.01692
  • 27.Busza W, Rajagopal K, van der Schee W. Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 2018;68:339. doi: 10.1146/annurev-nucl-101917-020852. [DOI] [Google Scholar]
  • 28.Qian J, Heinz UW, Liu J. Mode-coupling effects in anisotropic flow in heavy-ion collisions. Phys. Rev. C. 2016;93:064901. doi: 10.1103/PhysRevC.93.064901. [DOI] [Google Scholar]
  • 29.Teaney D, Yan L. Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics. Phys. Rev. C. 2012;86:044908. doi: 10.1103/PhysRevC.86.044908. [DOI] [Google Scholar]
  • 30.Qian J, Heinz U, He R, Huo L. Differential flow correlations in relativistic heavy-ion collisions. Phys. Rev. C. 2017;95:054908. doi: 10.1103/PhysRevC.95.054908. [DOI] [Google Scholar]
  • 31.Giacalone G, Yan L, Ollitrault J-Y. Nonlinear coupling of flow harmonics: hexagonal flow and beyond. Phys. Rev. C. 2018;97:054905. doi: 10.1103/PhysRevC.97.054905. [DOI] [Google Scholar]
  • 32.W. Zhao, H.-j. Xu, H. Song, Collective flow in 2.76 A TeV and 5.02 A TeV Pb+Pb collisions. Eur. Phys. J. C 77, 645 (2017). 10.1140/epjc/s10052-017-5186-x. arXiv:1703.10792
  • 33.STAR Collaboration, Azimuthal anisotropy at RHIC: The first and fourth harmonics. Phys. Rev. Lett. 92, 062301 (2004). 10.1103/PhysRevLett.92.062301. arXiv:nucl-ex/0310029 [DOI] [PubMed]
  • 34.Poskanzer AM, Voloshin SA. Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C. 1998;58:1671. doi: 10.1103/PhysRevC.58.1671. [DOI] [Google Scholar]
  • 35.Luzum M, Ollitrault J-Y. Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions. Phys. Rev. C. 2013;87:044907. doi: 10.1103/PhysRevC.87.044907. [DOI] [Google Scholar]
  • 36.STAR Collaboration, Elliptic flow from two and four particle correlations in Au+Au collisions at sNN=130GeV. Phys. Rev. C 66, 034904 (2002). 10.1103/PhysRevC.66.034904. arXiv:nucl-ex/0206001
  • 37.CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014). 10.1088/1748-0221/9/10/P10009. arXiv:1405.6569
  • 38.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004
  • 39.GEANT4 Collaboration, Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8
  • 40.CMS Collaboration, The CMS trigger system, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366
  • 41.CMS Collaboration, Charged-particle nuclear modification factors in PbPb and pPb collisions at sNN=5.02TeV. JHEP 04, 039 (2017). 10.1007/JHEP04(2017)039. arXiv:1611.01664
  • 42.Lokhtin IP, Snigirev AM. A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC. Eur. Phys. J. C. 2006;45:211. doi: 10.1140/epjc/s2005-02426-3. [DOI] [Google Scholar]
  • 43.Pierog T, et al. EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C. 2015;92:034906. doi: 10.1103/PhysRevC.92.034906. [DOI] [Google Scholar]
  • 44.Pang L-G, et al. Longitudinal decorrelation of anisotropic flows in heavy-ion collisions at the CERN Large Hadron Collider. Phys. Rev. C. 2015;91:044904. doi: 10.1103/PhysRevC.91.044904. [DOI] [Google Scholar]
  • 45.ALICE Collaboration, Linear and non-linear flow modes in Pb-Pb collisions at sNN=2.76TeV. Phys. Lett. B 773, 68 (2017). 10.1016/j.physletb.2017.07.060. arXiv:1705.04377
  • 46.Bilandzic A, et al. Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations. Phys. Rev. C. 2014;89:064904. doi: 10.1103/PhysRevC.89.064904. [DOI] [Google Scholar]
  • 47.Gardim FG, Grassi F, Luzum M, Ollitrault J-Y. Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions. Phys. Rev. C. 2012;85:024908. doi: 10.1103/PhysRevC.85.024908. [DOI] [Google Scholar]
  • 48.Yan L, Pal S, Ollitrault J-Y. Nonlinear hydrodynamic response confronts LHC data. Nucl. Phys. A. 2016;956:340. doi: 10.1016/j.nuclphysa.2016.01.010. [DOI] [Google Scholar]
  • 49.Lin Z-W, et al. A multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C. 2005;72:064901. doi: 10.1103/PhysRevC.72.064901. [DOI] [Google Scholar]
  • 50.S. McDonald et al., Hydrodynamic predictions for Pb+Pb collisions at 5.02 TeV. Phys. Rev. C 95, 064913 (2017). 10.1103/PhysRevC.95.064913. arXiv:1609.02958

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as written in its document “CMS data preservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2).]


Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES