Skip to main content
Scientific Data logoLink to Scientific Data
. 2020 Jun 26;7:204. doi: 10.1038/s41597-020-0516-5

Large-scale metabolic interaction network of the mouse and human gut microbiota

Roktaek Lim 1, Josephine Jill T Cabatbat 2,3, Thomas L P Martin 1, Haneul Kim 4, Seunghyeon Kim 1,5,6, Jaeyun Sung 7,8,9,10, Cheol-Min Ghim 2,4, Pan-Jun Kim 1,11,12,13,
PMCID: PMC7320173  PMID: 32591517

Abstract

The role of our gut microbiota in health and disease is largely attributed to the collective metabolic activities of the inhabitant microbes. A system-level framework of the microbial community structure, mediated through metabolite transport, would provide important insights into the complex microbe-microbe and host-microbe chemical interactions. This framework, if adaptable to both mouse and human systems, would be useful for mechanistic interpretations of the vast amounts of experimental data from gut microbiomes in murine animal models, whether humanized or not. Here, we constructed a literature-curated, interspecies network of the mammalian gut microbiota for mouse and human hosts, called NJC19. This network is an extensive data resource, encompassing 838 microbial species (766 bacteria, 53 archaea, and 19 eukaryotes) and 6 host cell types, interacting through 8,224 small-molecule transport and macromolecule degradation events. Moreover, we compiled 912 negative associations between organisms and metabolic compounds that are not transportable or degradable by those organisms. Our network may facilitate experimental and computational endeavors for the mechanistic investigations of host-associated microbial communities.

Subject terms: Biochemical networks, Microbial ecology, Literature mining, Microbiome


Measurement(s) metabolic process • transport • macromolecule catabolic process • gut microbiome measurement
Technology Type(s) digital curation • Phylogenetic Analysis
Factor Type(s) Species of microorganisms • Type of host cells
Sample Characteristic - Organism Homo sapiens • Mus musculus • Bacteria • Archaea • Eukaryota

Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12336164

Background & Summary

The mammalian intestinal tract is colonized by various microorganisms, called the gut microbiota or microbiome13. Recent advances in metagenomics have revealed that alterations in the human gut microbiota are implicated in a number of disorders, such as obesity, inflammatory bowel disease, colorectal cancer, and diabetes47. At the center of the gut microbiota functions are the various interactions between microbes and their interplay with the host environment2,6,8. Microbes degrade diet-derived and host-derived chemical substances, and release the degradation products to other members of the community. The microbial transport of nutrients and metabolic byproducts gives rise to competition for resources and cooperative relationships via metabolic cross-feeding2,8. The metabolites secreted by the microbes are absorbed by host tissues, and translate into beneficial or detrimental mediators of host physiology6,9. As a result, such microbe-microbe and microbe-host interactions form a complex ecological network in the gut environment10.

In the microbiome research, one common practice for reconstructing metabolite-mediated microbial networks is to combine the entire biochemical reactions inferred from annotated metagenomes11,12. This method, by its nature, does not delineate biochemical reactions to the species from which they originate, making it difficult to elucidate interspecies interactions. On the other hand, there exist previous works on the modeling of diverse interspecies interactions explicitly mediated by metabolites that are transported (imported or exported) by individual microbial species13,14. Yet, these works are based on error-prone, automated identification protocols for transportable metabolites, which are possibly inaccurate to some degrees. There are ongoing computational efforts towards biologically realistic microbial interactions, by using manually curated, constraint-based metabolic models or relatively simple kinetic models15,16. Nevertheless, most of these models are far from the scale of diversity seen in the gut community, which typically comprises hundreds of different microbial species. Notably, this scale of microbial diversity has been recently captured by constraint-based metabolic models with semi-automatic model reconstructions17, but they still exhibit limited biological accuracies1820.

Recently, we have constructed an extensive, literature-curated interspecies metabolic interaction network of the human gut microbiota, NJS16, which represents another system-level framework for gut microbiota analysis10. This network is primarily based on biological knowledge and experimental evidence documented in the literature. The network NJS16 encompasses >4,000 small-molecule transport and macromolecule degradation events of >500 bacterial and archaeal species and 3 human cell types. Although NJS16 is useful to explore the microbial community inside the human gut, mechanistic studies in the microbiome research field have been mainly conducted on animal models, rather than on human subjects, due to the technical and regulatory limitations on human experimentation21,22. Regarding animal models, physiological, anatomical, and genetic similarities between humans and mice, as well as massively accumulated knowledge of mouse genetics, have facilitated the use of murine models, to elucidate causality and mechanisms of host-microbiota interactions4,7,23. In this regard, a phylogenetic extension of NJS16 to murine gut microbes would be useful for the system-level mechanistic exploration of gut microbiota functions using murine animal models.

Here, we present a literature-curated, interspecies metabolic interaction network of the microbiota associated with the mouse and human gut, NJC19. To our knowledge, NJC19 represents the largest ever, literature-based network data resource for the mammalian gut microbiota, as a compilation of information from 769 research and review articles and textbooks (Fig. 1). This network is an advancement from our previous network, NJS16, which is limited to the human gut microbiota10. Specifically, NJC19 greatly expands the diversity of microbial species and host cells to those relevant to the mouse gut environments, and even covers a certain range of eukaryotic microbes that were completely missing in the predecessor NJS16. Therefore, NJC19 serves as a global network template, adaptable to the gut microbiota of either a mouse, human, or humanized mouse. Moreover, not only does NJC19 incorporate metabolite transport and macromolecule degradation events of the microbiota, but it also provides literature-annotated, negative information of which metabolic compounds are not able to be transported or degraded by the organisms. Such negative information would be useful to curate computational microbial models, such as constraint-based metabolic models, which can include false-positive transport reactions from automatic genome annotations.

Fig. 1.

Fig. 1

Construction of the mammalian (mouse and human) gut microbiota interaction network NJC19. The flow chart of the network construction is presented. NJC19 is mainly built upon literature-curated, metabolic information of the mouse gut microbiota, combined with the revised version of NJS16 that represents the human gut microbiota interaction network.

We expect our network NJC19 to be a useful template for the mechanistic interpretation of various microbiome data from murine and human experiments.

Methods

Collection of mouse microbiome data and taxonomic identification for NJC19 construction

We aimed to construct a large-scale network for the mammalian gut microbiota that comprises microbial species populating the mouse and human gut. Figure 1 provides the overview of our network construction procedure. To construct the network, we started by collecting raw shotgun metagenome and 16S rRNA gene sequence data from fecal and cecal samples of laboratory and wild-caught mice from seven different studies3,2429, as detailed in Online-only Table 1. It is noteworthy that the inclusion of the data from wild-caught mice3 allows the coverage of diverse microbial communities associated with natural murine lifestyles. The species-level taxonomic profiling of the shotgun metagenome sequence data was performed using the MetaPhlAn v2.0 software, which utilizes clade-specific marker sequences to identify microbial taxa30. When using MetaPhlAn v2.0, the “sensitive-local” mapping option was selected. For the taxonomic profiling of 16S rRNA gene sequence data, we used the open-reference OTU picking workflow of QIIME v1.8.0 with Greengenes v13_8_pp reference files31, and then selected species-level microbial taxa from the results. Among all species detected from the metagenome and 16S rRNA gene sequence data, priority for the collection of metabolic information (see below) was given to species absent in our previous network, NJS1610. In the case of the metagenome sequence data, the number of the detected species was rather excessive for our further processing; therefore, among those species, we only considered the species inhabiting ≥90% of the metagenome samples (with the relative abundance ≥0.001%) in each study. We found that the genera of these selected species account for the vast majority [89.6 ± 4.3% (avg. ± s.d.)] of the total microbial abundances in the metagenome samples. In addition, we manually considered some relevant species, such as Citrobacter rodentium32 (Online-only Table 23).

Online-only Table 1.

Sources of mouse microbiome samples for microbial species identification for NJC19 construction.

- Shotgun metagenome sequence data
Reference Mouse strains Sample source No. of samples Data source
Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A. 2014;111:E2703–10. wild-caught mice stool 26 Kindly provided by the authors' group
Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature. 2014;514:638–41. (B6.129X1-Fut2tm1Sdo/J) mice backcrossed greater than 7 generations to BALB/c stool 12 GSE60874
Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14:571–81. C57BL/6 (TLR5−/− and wild-type) cecum 10 mgp6393
Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE et al. Microbial shifts in the aging mouse gut. Microbiome. 2014;2:50. C57BL/6 stool 21 mgp3907
Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 2014;8:1403–17. BALB/c T-bet-/- Rag2-/- stool 6 mgp6698
- 16S rRNA gene sequence data
Reference Mouse strains Sample source No. of samples Data source
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences. 2010;107:18933–8. C57BL/6 and ICR-derived HR intercross line stool 645 UNL Core for Applied Genomics and Ecology
Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A. 2014;111:E2703–10. wild-caught mice stool 66 ERP004395
Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–16. house mice cecum 201 ERP001970
Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature. 2014;514:638–41. (B6.129X1-Fut2tm1Sdo/J) mice backcrossed greater than 7 generations to BALB/c. stool 14 mgp10494
Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 2014;8:1403–17. BALB/c T-bet−/−, Rag2−/− stool 154 mgp6698

Online-only Table 2.

List of literature sources of metabolic information used for NJC19 construction.

Ref. # First author Year Title
1 Fontes 2010 Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates
2 Lynd 2002 Microbial cellulose utilization: fundamentals and biotechnology
3 Patel 1980 Isolation and Characterization of an Anaerobic, Cellulolytic Microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov.
4 Illeghems 2013 Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem
5 Oren 2002 Halophilic Microorganisms and their Environments (Chapter 4)
6 Lazarev 2011 Complete Genome and Proteome of Acholeplasma laidlawii
7 Kay 2001 Recurrent achromobacter piechaudii bacteremia in a patient with hematological malignancy
8 Kiredjian 1986 Alcaligenes piechaudii, a New Species from Human Clinical Specimens and the Environment
9 Reverdy 1984 Nosocomial colonization and infection by Achromobacter xylosoxidans
10 Rogosa 1969 Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., Anaerobic Gram-negative Diplococci Using Amino Acids as the Sole Energy Source for Growth
11 Chang 2010 Complete genome sequence of Acidaminococcus fermentans type strain (VR4T)
12 Eschenlauer 2002 Ammonia Production by Ruminal Microorganisms and Enumeration, Isolation, and Characterization of Bacteria Capable of Growth on Peptides and Amino Acids from the Sheep Rumen
13 Jumas-Bilak 2007 Acidaminococcus intestini sp. nov., isolated from human clinical samples
14 Clark 1995 Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species
15 Kuseel 1999 Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose
16 Zhou 2007 Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite
17 Ko 2013 The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil
18 Willems 1992 Transfer of Several Phytopathogenic Pseudomonas Species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci
19 Guettler 1999 Actinobacillus succinogenes sp. nov., a novel succinic-acid producing strain from the bovine rumen
20 Bruhlmann 1994 Pectinolytic Enzymes from Actinomycetes for the Degumming of Ramie Bast Fibers
21 Bruns 2003 Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea
22 Abbott 2002 The Genus Aeromonas: Biochemical Characteristics, Atypical Reactions, and Phenotypic Identification Schemes
23 Siebers 2005 Unusual pathways and enzymes of central carbohydrate metabolism in archaea
24 Stacy 2014 Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection
25 Todar - Todars Online Textbook of Bacteriology
26 Dagorn 2013 Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity
27 Derrien 2004 Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacteria
28 Derrien 2010 Mucin-bacterial interactions in the human oral cavity and digestive tract
29 Killer 2011 Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals
30 Tailford 2015 Mucin glycan foraging in the human gut microbiome
31 Ze 2013 Some are more equal than others: the role of "keystone" species in the degradation of recalcitrant substrates
32 Rautio 2003 Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a New Genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and Description of Alistipes finegoldii sp. nov., from Human Sources
33 Song 2006 Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin
34 Sieber 2012 Genomic insights into syntrophy: The paradigm for anaerobic metabolic cooperation
35 Ezaki 2001 Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus
36 Falony 2006 Cross-feeding between bifidobacterium longum BB536 and acetate-convertin, butyrate-producing colon bacteria during growth on oligofructose
37 Flint 2007 Interactions and competition within the microbial community of the human colon: links between diet and health
38 Louis 2009 Diversity, metabolism and microbial ecology of butyrate-producing bacteria from large intestine
39 Macfarlane 2012 Bacteria, colonic fermentation, and gastrointestinal health
40 Pryde 2002 The microbiology of butyrate formation in the human colon
41 Sato 2008 Isolation of lactate-utilizing butyrate-producing bacteria from human feces andin vivo administration ofAnaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model
42 Scott 2013 Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro
43 Belenguer 2006 Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut
44 Belenguer 2007 Impact of pH on Lactate Formation and Utilization by Human Fecal Microbial Communities
45 Charrier 2006 A novel class of coa-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria
46 Duncan 2004 Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major Fermentation Product
47 Lawson 2004 Anaerotruncus colihominis gen. nov., sp. nov., from human faeces
48 Drake 2008 Old acetogens, new light
49 Haba 2000 Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate
50 Shields 2013 Efficacy of a Marine Bacterial Nuclease against Biofilm Forming Microorganisms Isolated from Chronic Rhinosinusitis
51 Willerding 2011 Lipase Activity among Bacteria Isolated from Amazonian Soils
52 Balestrazzi 2007 Nuclease-producing bacteria in soil cultivated with herbicide resistant transgenic white poplars
53 Bentley 1982 Biosynthesis of Vitamin K (Menaquinone) in Bacteria
54 LeBlanc 2011 B-group vitamin production by lactic acid bacteria - Current knowledge and potential applications
55 Leviton 1952 Microbiological Synthesis of Vitamin B12 by Propionic Acid Bacteria
56 Martens 2002 Microbial production of vitamin B12
57 Rodionov 2003 Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes
58 Degrassi 1997 Purification and Characterization of an Acetyl Xylan Esterase from Bacillus pumilus
59 Giannella 1971 Vitamin B12 uptake by intestinal microorganisms: mechanism and relevance to syndromies of intestinal bacterial growth
60 Saxena 2003 Purification strategies for microbial lipases
61 Heinken 2013 Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut
62 Hermann 2003 Industrial production of amino acids by coryneform bacteria
63 LeBlanc 2013 Bacteria as vitamin suppliers to their host: a gut microbiota perspective
64 Meyers 1996 Lipase production by lactic acid bacteria and activity on butter oil
65 Rodionov 2009 A novel class of modular transporters for vitamins in prokaryotes
66 Shimizu 2008 Vitamins and Related Compounds: Microbial Production, in Biotechnology: Special Processes
67 Takeno 2007 Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum
68 Thompson 2012 Metabolism of sugars by genetically diverse species of oral Leptotrichia
69 Berstenhorst 2009 Vitamins and Vitamin-like Compounds: Microbial Production
70 Burke 1982 Bacillus subtilis Extracellular Nuclease Production Associated with the spoOH Sporulation Locus
71 Burkholder 1942 Synthesis of vitamins by intestinal bacteria
72 Koropatkin 2012 How glycan metabolism shapes the human gut microbiota
73 Macfarlane 2005 Colonization of Mucin by Human Intestinal Bacteria and Establishment of Biofilm Communities in a Two-Stage Continuous Culture System
74 McNulty 2011 The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins
75 Sonnenburg 2010 Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations
76 Cuskin 2015 Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism
77 Chassard 2010 The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens
78 Flint 2012 Microbial degradation of complex carbohydrates in the gut
79 Flint 2008 Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis
80 Shah 1989 Proposal To Restrict the Genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and Closely Related Species
81 Krieg 2010 Bergey's Manual of Systematic Bacteriology, Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes
82 Deguchi 1992 Nutritional Requirements in Multiple Auxotrophic Lactic Acid Bacteria: Genetic Lesions Affecting Amino Acid Biosynthetic Pathways in Lactococcus lactis, Enterococcus faecium, and Pediococcus acidilactici
83 Nishiyama 2009 Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste
84 Holdeman 1974 New Genus, Coprococcus, Twelve New Species, and Emended Descriptions of Four Previously Described Species of Bacteria from Human Feces
85 Macy 1979 The Biology of Gastrointestinal Bacteroides
86 Salyers 1977 Fermentation of Mucin and Plant Polysaccharides by Strains of Bacteroides from the Human Colon
87 Dodd 2010 Transcriptomic Analyses of Xylan Degradation by Prevotella bryantii and Insights into Energy Acquisition by Xylanolytic Bacteroidetes
88 Macfarlane 1992 Synthesis and Release of Proteases by Bacteroides fragilis
89 Macfarlane 1991 Formation of glycoprotein degrading enzymes by Bacteroides fragilis
90 Macfarlane 1986 Protein Degradation by Human Intestinal Bacteria
91 McBain 1998 Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites
92 Ridlon 2005 Bile salt biotransformations by human intestinal bacteria
93 Schink 1987 Pathway of propionate formation from ethanol in Pelobacter propionicus
94 Fukiya 2009 Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces
95 Hatamoto 2014 Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge
96 Martens 2011 Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts
97 Goodman 2009 Identifying Genetic Determinants Needed to Establish a Human Gut Symbiont in Its Habitat
98 Smith 1996 Studies on Amine Production in the Human Colon: Enumeration of Amine forming Bacteria and Physiological Effects of Carbohydrate and pH
99 Rakoff-Nahoum 2014 An Ecological Network of Polysaccharide Utilization among Human Intestinal Symbionts
100 Jenkins 1982 Differences in susceptibilities of species of the Bacteroides fragilis group to several beta-lactam antibiotics: indole production as an indicator of resistance.
101 Endo 2012 Comparison of Fructooligosaccharide Utilization by Lactobacillus and Bacteroides Species
102 Cato 1976 Reinstatement of Species Rank for Bacteroides fragilis, B. ovatus, B. distasonis, B. thetaiotaomicron, and B. vulgatus: Designation of Neotype Strains for Bacteroides fragilis (Veillon and Zuber) Castellani and Chalmers and Bacteroides thetaiotaomicron (Distaso) Castellani and Chalmers
103 Macfarlane 2003 Regulation of short-chain fatty acid production
104 Cooke 2006 Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora
105 Johnson 1986 Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. Isolated from Human Feces
106 Mahowald 2009 Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla
107 Musso 2011 Interaction between gut microbiota and host metabolism predisposing to obesity and diabetes
108 Payne 2012 Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols
109 Rey 2013 Metabolic niche of a prominent sufate-reducing human gut bacterium
110 Rey 2010 Dissecting the in vivo metabolic potential of two human gut acetogens
111 Samuel 2006 A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism
112 Samuel 2007 Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut
113 Shoaie 2013 Understanding the interactions between bacteria in the human gut through metabolic modeling
114 Smith 1998 Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolsim and dissimilation of amino acids
115 Sonnenburg 2006 A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism
116 Sonnenburg 2005 Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont
117 Ze 2012 Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon
118 Backhed 2005 Host-bacterial mutualism in the human intestine
119 Blaut 2013 Ecology and physiology of the intestinal tract
120 Chassard 2008 Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces
121 Degnan 2014 Human Gut Microbes Use Multiple Transporters to Distinguish Vitamin B12 Analogs and Compete in the Gut
122 Fischbach 2011 Eating for two: How metabolism establishes interspecies interactions in the gut
123 Gibson 2004 Dietary modulation of the human colonic microbiota: updating the concept of prebiotics
124 Kayahara 1994 Δ22-β-Muricholic acid in monoassociated rats and conventional ratsacid in monoassociated rats and conventional rats
125 Conly 1993 The absorption and bioactivity of bacterially synthesized menaquinones
126 Pokusaeva 2011 Cellodextrin Utilization by Bifidobacterium breve UCC2003
127 Pompei 2007 Folate production by bifidobacteria as a potential probiotic property p-aminobenzoic acid?
128 Ramirez-Farias 2009 Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii
129 Rossi 2011 Folate production by probiotic bacteria
130 Rossi 2005 Fermentation of Fructooligosaccharides and Inulin by Bifidobacteria: a Comparative Study of Pure and Fecal Cultures
131 Rossi 2010 Bifidobacteria: Genomics and Molecular Aspects (Chapter 6. Probiotic properties of bifidobacteria)
132 Salyers 1977 Fermentation of Mucins and Plant Polysaccharides by Anaerobic Bacteria from the Human Colon
133 Tanaka 1999 Screening of lactic acid bacteria for bile salt hydrolase activity
134 Vernazza 2005 Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium
135 Aachary 2011 Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications
136 Barrett 2012 gamma-Aminobutyric acid production by culturable bacteria from the human intestine
137 Crociani 1994 Degradation of complex carbohydrates by Bifidobacterium spp.
138 Hojo 2007 Reduction of vitamin K concentration by salivary Bifidobacterium strains and their possible nutritional competition with Porphyromonas gingivalis
139 Kaplan 2000 Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria
140 Wilson 2004 Microbial inhabitants of humans (Table 9.9)
141 Corfield 1992 Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria
142 Hoskins 1981 Mucin degradation in human colon ecosystems
143 Katayama 2005 Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins
144 Peterson 1945 Relation of bacteria to vitamins and other growth factors
145 Ruas-Madiedo 2008 Mucin degradation by bifidobacterium strains isolated from the human intestinal microbiota
146 Menard 2004 Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport
147 Pokusaeva 2010 Ribose utilization by the human commensal Bifidobacterium breve UCC2003
148 Scott 2011 Substrate-driven gene expression in Roseburia inulinivorans: Importance of inducible enzymes in the utilization of inulin
149 Degnan 1995 Arabinogalactan utilization in continuous cultures of bifidobacterium longum: Effect of co-culture with bacteroides thetaiotamicrobon
150 Kamra 2005 Rumen microbial ecosystem
151 Sela 2008 The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome
152 Vitali 2010 Impact of a synbiotic food on the gut microbial ecology and metabolic profiles
153 Wang 2008 Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine
154 Barcenilla 2000 Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut
155 Li 2008 Symbiotic gut microbes modulate human metabolic phenotypes
156 David 2013 Diet rapidly and reproducibly alters the human gut microbiome
157 Devkota 2012 Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
158 Laue 1997 Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU
159 Nava 2012 Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human
160 Silva 2008 Hydrogen as an energy source for the human pathogen Bilophila wadsworthia
161 Liu 2008 Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces
162 Nakamura 2010 Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease
163 Bernalier 1996 Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces
164 Chassard 2006 H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut
165 Jorda 1982 Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a Genus of Slow-Growing, Root Nodule Bacteria from Leguminous Plants
166 Douglas 1998 Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera
167 Perez-Brocal 2006 A small microbial genome: the end of a long symbiotic relationship?
168 Park 2007 Characterization of an Extracellular Lipase in Burkholderia sp. HY-10 Isolated from a Longicorn Beetle
169 Jaeger 1994 Bacterial lipases
170 Chistoserdova 2009 The expanding world of methylotrophic metabolism
171 Moon 2008 Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium
172 Russell 1985 Fermentation of Cellodextrins by Cellulolytic and Noncellulolytic Rumen Bacteria
173 Wallace 1997 Metabolism of nitrogen-contraining compounds
174 Wallace 1985 The Role of Different Species of Bacteria in the Hydrolysis of Protein in the Rumen
175 Wallace 1985 Synergism between different species of proteolytic rumen bacteria
176 Cotta 1986 Proteolytic Activity of the Ruminal Bacterium Butyrivibrio fibrisolvens
177 Dehority 1991 Effects of microbial synergism on fibre digestion in the rumen
178 Duncan 2002 Acetate utilization and butyryl coenzyme A(CoA):acetate-CoA transferase in butyrate-producing bacteria from human large intestine
179 Harfoot 1997 Lipid metabolism in the rumen
180 Martin 1994 Nutrient transport by ruminal bacteria
181 Kelly 2010 The Glycobiome of the Rumen Bacterium Butyrivibrio proteoclasticus B316T Highlights Adaptation to a Polysaccharide-Rich Environment
182 Brunecky 2013 Revealing natures cellulase diversity: the digestion mechanism of caldicellulosirutpor bescii
183 Iino 2008 Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a terrestrial hot spring in Japan
184 Voordeckers 2005 Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge
185 Wexler 1996 Sutterella wadsworthensis gen. nov., sp. nov., Bile-Resistant Microaerophilic CampyZobacter gracilis-Like Clinical Isolates
186 Hanfrey 2011 Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota
187 McCutcheon 2007 Parallel genomic evolution and metabolic interdependence in an ancient symbiosis
188 Wu 2006 Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters
189 Kageyama 2000 Catenibacterium mitsuokai gen. nov., sp. nov., a Gram-positive anaerobic bacterium isolated from human faeces
190 Miller 2011 Complete genome sequence of the cellulose-degrading bacterium cellulosilyticum lentocellum
191 Garrity 2005 Bergey's Manual of Systematic Bacteriology, Volume 2 : The Proteobacteria
192 Mead 1971 The Amino Acid-fermenting Clostridia
193 Milne 2011 Metabolic network reconstruction and genome-scale model of butanol-producing strain clostridium beijerinckii ncimb 8052
194 Salimi 2010 Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
195 Lee 2005 Evidence for the presence of an alternative glucose transport system in clostridium beijerinckii ncimb 8052 and the solvent-hyperproducing mutant ba101
196 Chen 1999 Effect of acetate on molecular and physiological aspects of clostridium beijerinckii ncimb 8052 solvent production and strain degeneration
197 McSweeney 1999 Isolation and Characterization of Proteolytic Ruminal Bacteria from Sheep and Goats Fed the Tannin-Containing Shrub Legume Calliandra calothyrsus
198 Elsden 1979 Amino acid utilization patterns in clostridial taxonomy
199 Nakanishi 2003 Effects of high amylose maize starch and Clostridium butyricum on metabolism in colonic microbiota and formation of azoxymethane-induced aberrant crypt foci in the rat colon
200 Seedorf 2008 The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features
201 Aklujkar 2012 The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features
202 Payot 1998 Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased nadh reoxidation as a factor limiting growth
203 McGarr 2005 Diet, anaerobic bacterial metabolism, and colon cancer
204 Stams 1994 Metabolic interactions between anaerobic bacteria in methanogenic environments
205 Stams 2003 Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria
206 Holmstrom 2004 Subdoligranulum variabile gen. nov., sp. nov. from human feces
207 Eudes 2008 Identification of genes encoding the folate and thiamine binding membrane proteins in firmicutes
208 Macfarlane 1988 Contribution of the microflora to proteolysis in the human large intestine
209 Smith 1997 Dissimilatory amino acid metabolism in human colonic bacteria
210 Starr 2006 Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus
211 Vince 1980 Ammonia production by intestinal bacteria: The effect of lactose, lactulose and glucose
212 Zukaite 2000 Acceleration of hyaluronidase production in the course of batch cultivation of Clostridium perfringens can be achieved with bacteriolytic enzymes
213 van B. Robertson 1940 Mucinase: A bacterial enzyme which hydrolyzes synovial fluid mucin and other mucins
214 Attwood 1998 Ammonia-Hyperproducing Bacteria from New Zealand Ruminants
215 Johnson 2009 Interspecies Signaling between Veillonella atypica and Streptococcus gordonii Requires the Transcription Factor CcpA
216 Taras 2002 Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces
217 Kageyama 2000 Emendation of genus Collinsella and proposal of Collinsella stercoris sp. nov. and Collinsella intestinalis sp. nov.
218 Newsholme 1994 Quantitative aspects of glucose and glutamine metabolism by intestinal cells
219 Roediger 1997 Human colonocyte detoxification
220 Thiele 2013 A community-driven global reconstruction of human metabolism
221 Turnberg 1970 Electrolyte absorption from the colon
222 Yu 2010 Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon
223 Bergen 2009 Intestinal Nitrogen Recycling and Utilization in Health and Disease
224 Chen 2010 Microbial and Bioconversion Production of D-xylitol and Its Detection and Application
225 Conly 1994 The contribution of vitamin K2(menaquinones) produced by the intestinal microflora to human nutritional requirements for vitamin K
226 Ganong 1991 Review of medical physiology. Section V. 25. Digestion & absorption
227 Hughes 2011 Protein Degradation in the Large Intestine: Relevance to Colorectal Cancer
228 Suen 2011 The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist
229 Russell 1981 Degradation of Protein by Mixed Cultures of Rumen Bacteria: Identification of Streptococcus Bovis as an Actively Proteolytic rumen bacterium
230 Holland 2006 Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities
231 Myhr 2000 Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column
232 Schmidt 1995 Interspecies Electron Transfer during Propionate and Butyrate Degradation in Mesophilic, Granular Sludge
233 Imachi 2002 Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium
234 Cord-Ruwisch 1998 Growth of Geobacter sulfurreducens with Acetate in Syntrophic Cooperation with Hydrogen-Oxidizing Anaerobic Partners
235 Klitgord 2010 Environments that induce synthetic microbial ecosystems
236 Stolyar 2007 Metabolic modeling of a mutualistic microbial community
237 Kosaka 2008 The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota
238 Lovley 1993 Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals
239 Downes 2003 Dialister invisus sp. nov., isolated from the human oral cavity
240 Pircher 2007 Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses
241 Schleifer 1984 Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus norn. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov.
242 Vos 2009 Bergey's Manual of Systematic Bacteriology, Volume 3: The Firmicutes
243 Deibel 1964 Pyruvate fermentation by Streptococcus faecalis
244 Delk 1975 Biosynthesis of Ribosylthymine in the TransferRNA of Streptococcus faecalis: A Folate-Dependent Methylation Not Involving S-Adenosylmethionine
245 Bos 2013 Volatile Metabolites of Pathogens: A Systematic Review
246 Mulligan 1977 Transport and metabolism of vitamin B6 in lactic acid bacteria
247 Ryu 2001 Characteristics and Glycerol Metabolism of Fumarate-Reducing Enterococcus faecalis RKY1
248 Wang 2009 Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49
249 Ryan 2004 Sherris Medical Microbiology (4th ed.)
250 Tang 2005 Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence
251 Sawers 2005 Formate and its role in hydrogen production in Escherichia coli
252 Clark 1989 The fermentation pathways of Escherichia coli.
253 Peekhaus 1998 What’s for Dinner?: Entner-Doudoroff Metabolism in Escherichia coli
254 Jones 2011 Anaerobic Respiration of Escherichia coli in the Mouse Intestine
255 Van der Werf 1997 Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z
256 Sirko 1995 Sulfate and Thiosulfate Transport in Escherichia coli K-12: Evidence for a Functional Overlapping of Sulfate-and Thiosulfate-Binding Proteins
257 Walker 2011 Dominant and diet-responsive groups of bacteria within the human colonic microbiota
258 Duncan 2002 Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces
259 Duncan 2003 Effects of Alternative Dietary Substrates on Competition between Human Colonic Bacteria in an Anaerobic Fermentor System
260 Chen 1989 More Monensin-Sensitive, Ammonia-Producing Bacteria from the Rumen
261 Venkataraman 2014 Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa
262 McBride 2009 Novel Features of the Polysaccharide-Digesting Gliding Bacterium Flavobacterium johnsoniae as Revealed by Genome Sequence Analysis
263 Chen 1988 Fermentation of peptides and amino acids by monensin-sensitive ruminal peptostreptococcus
264 Loesche 1968 Amino acid fermentation by Fusobacterium nucleatum
265 Yang 2013 Isolation and Characterization of Novel Denitrifying Bacterium Geobacillus sp. SG-01 Strain from Wood Chips Composted with Swine Manure
266 Heider 1999 Anaerobic bacterial metabolism of hydrocarbons
267 Nagarajan 2013 Characterization and modeling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association
268 Schleinitz 2009 Phenol Degradation in the Strictly Anaerobic Iron-Reducing Bacterium Geobacter metallireducens GS-15
269 Summers 2010 Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobe bacteria
270 Manzoni 2001 Biotransformation of D-galactitol to tagatose by acetic acid bacteria
271 Sato 2011 Novel metabolic pathways in archaea
272 Severina 1991 Glucose transport into the extremely halophilic archaebacteria
273 Albers 2004 Insights into ABC transport in archaea
274 Deplancke 2001 Microbial modulation of innate defense: goblet cells and the intestinal mucus layer
275 Gibson 1996 Fermentation of non-digestible oligosaccharides by human colonic bacteria
276 Marshall 1990 Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid
277 McNulty 2013 Mechanisms of molecular transport through the urea channel of Helicobacter pylori
278 Wilems 1997 Phenotypic and Phylogenetic Characterization of some Eubacterium-like isolates containing a novel type B wall murein from human feces: description of Holdemania filiformis gen. nov., sp. nov.
279 Urakami 1995 Characterization and Description of Hyphomicrobium denitrificans sp. nov.
280 Wrede 2012 Archaea in symbioses
281 Oppenberg 1990 Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria
282 Snell 1976 Transfer of Some Saccharolytic Moraxella Species to Kingella Henriksen and Bovre 1976, with Descriptions of Kingella indologenes sp. nov. and Kingella denitrificans sp. nov.
283 Ahrens 1997 Kinetic, Dynamic, and Pathway Studies of Glycerol Metabolism by Klebsiella pneumoniae in Anaerobic Continuous Culture: III. Enzymes and Fluxes of Glycerol Dissimilation and 1,3-Propanediol Formation
284 Hung 2011 Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium
285 Keuth 1994 Vitamin B12 production by Citrobacter freundii or Klebsiella pneumoniae during tempeh fermentation and proof of enterotoxin absence by PCR
286 Liao 2012 An Experimentally Validated Genome-Scale Metabolic Reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228
287 Begley 2005 The interaction between bacteria and bile
288 Rao 1984 Biosynthesis and Utilization of Folic Acid and Vitamin B12 by Lactic Cultures in Skim Milk
289 Rooj 2010 Metabolites produced by probiotic lactobacilli rapidly increase glucose uptake by caco-2 cells
290 Almståhl 2013 Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains
291 Veiga 1992 Sugar-Glycerol Cofermentations in Lactobacilli: the Fate of Lactate
292 González-Pajuelo 2006 Microbial Conversion of Glycerol to 1,3-Propanediol: Physiological Comparison of a Natural Producer, Clostridium butyricum VPI 3266, and an Engineered Strain, Clostridium acetobutylicum DG1(pSPD5)
293 Hugenschmidt 2010 Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate
294 Oude Elferink 2001 Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri
295 Cselovsky 1992 Production of formate, acetate, and succinate by anaerobic fermentation of Lactobacillus pentosus in the presence of citrate
296 Henderson 1979 Mechanism of Folate Transport in Lactobacillus casei: Evidence for a Component Shared with the Thiamine and Biotin Transport Systems
297 Thompson 1987 Regulation of sugar transport and metabolism in lactic acid bacteria
298 Bertelsen 2001 Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria
299 Beshkova 1998 Production of Amino Acids by Yogurt Bacteria
300 Piveteau 1995 Interactions between lactic and propionic acid bacteria
301 Taranto 2003 Lactobacillus reuteri CRL1098 Produces Cobalamin
302 Robbins 1940 Fermentation of Sugar Acids by Bacteria
303 Wegkamp 2004 Transformation of Folate-Consuming Lactobacillus gasseri into a Folate Producer
304 Klein 1998 Taxonomy and physiology of probiotic lactic acid bacteria
305 Fujisawa 1992 Taxonomic Study of the Lactobacillus acidophilus Group, with Recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and Synonymy of Lactobacillus acidophilus Group A3 (Johnson et l. 1980) with the Type Strain of Lactobacillus amylovorus (Nakamura 1981)
306 Collins 1989 Deoxyribonucleic Acid Homology Studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov.
307 Hedberg 2008 Sugar fermentation in probiotic bacteria – an in vitro study
308 Hugenschmidt 2011 Concurrent high production of natural folate and vitamin B12 using a co-culture process with lactobacillus plant arum SM39 and propionibacterium freudenreichii DF13
309 Lindgren 1990 Anaerobic L-lactate degradation by lactobacillus plantarum
310 Santos 2008 High-Level Folate Production in Fermented Foods by the B12 Producer Lactobacillus reuteri JCM1112
311 Talarico 1990 Utilization of Glycerol as a Hydrogen Acceptor by Lactobacillus reuteri: Purification of 1,3-Propanediol:NAD+ Oxidoreductaset
312 Zelante 2013 Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22
313 Rodríguez 2012 Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations.
314 Mao 2013 Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons
315 Eribe 2004 Genetic diversity of Leptotrichia and description of Leptotrichia goodfellowii sp. nov., Leptotrichia hofstadii sp. nov., Leptotrichia shahii sp. nov. and Leptotrichia wadei sp. nov
316 Kihal 2007 Carbon dioxide production by Leuconostoc mesenteroides grown in single and mixed culture with Lactococcus lactis in skimmed milk
317 Erten 1998 Metabolism of fructose as an electron acceptor by Leuconostoc mesenteroides
318 Begley 2006 Bile Salt Hydrolase Activity in Probiotics
319 Wolin 2003 Formate-Dependent Growth and Homoacetogenic Fermentation by a Bacterium from Human Feces: Description of Bryantella formatexigens gen. nov., sp. nov
320 Sakon 2008 Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces
321 Latham 1977 Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium
322 Le Chatelier 2013 Richness of human gut microbiome correlates with metabolic markers
323 Woese 2012 The Bacteria. A Treatise on Structure and Function. Vol. VIII Archaebacteria
324 Liu 2008 Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea
325 DHaeze 2002 A hyperthermophilic methanogen sequenced
326 Fischer 2005 Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin
327 Blaut 1994 Metabolism of methanogens
328 Benedict 2011 Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon methanosarcina acetivorans c2a
329 Gonnerman 2013 Genomically and biochemically accurate metabolic reconstruction of methanosarcina barkeri fusaro, iMG746
330 Cadillo-Quiroz 2009 Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland
331 Struchtemeyer 2011 Evidence for syntrophic butyratemetabolismunder sulfatereducing conditions ina hydrocarbon-contaminated aquifer
332 Chistoserdova 2011 Modularity of methylotrophy, revisited
333 Jourand 2004 Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria
334 Ward 2004 Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus
335 Sakai 2007 Degradation of Glyoxylate and Glycolate with ATP Synthesis by a Thermophilic Anaerobic Bacterium, Moorella sp. Strain HUC22-1
336 Enright 1997 Moraxella (Branhamella) catarrhalis - clinical and molecular aspects of a rediscovered pathogen
337 Grant 1981 Denitrification by Strains of Neisseria, Kingella, and Chromobacterium
338 Goker 2011 Complete genome sequence of Odoribacter splanchnicus type strain (1651/6T)
339 Kuhner 1996 Generation of a proton motive force by the anaerobic oxalate-degrading bacterium Oxalobacter formigene
340 Sakamoto 2006 Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov.
341 Sugawara 1991 Digestion and Fermentation by Human Intestinal Bacteria of Corn Fiber and Its Hemicellulose in Vitro
342 Sakamoto 2007 Parabacteroides johnsonii sp. nov., isolated from human faeces
343 Tanasupawat 1993 Characterization of Pediococcus pentosaceus and Pediococcus acidilactici Strains and Replacement of the Type Strain of P. acidilactici with the Proposed Neotype DSM 20284
344 Papagianni 2009 Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications
345 Schink 1984 Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds
346 Muller 2010 Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms
347 Ng 2013 Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
348 Theriot 2014 Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection
349 Holmes 2011 Understanding the role of gut microbiome-host metabolic signal disruption in health and disease
350 Accetto 2007 Studies on Prevotella nuclease using a system for the controlled expression of cloned genes in P. bryantii TC1-1
351 Hayashi 2007 Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces
352 Chassard 2005 Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon
353 Herbeck 1974 Nutritional Features of the Intestinal Anaerobe Ruminococcus bromii
354 Kabel 2011 Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate
355 Pittman 1964 Peptides and other nitrogen sources for growth of bacteroides ruminicola
356 Russell 1988 Enrichment and Isolation of a Ruminal Bacterium with a Very High Specific Activity of Ammonia Production
357 Strobel 1992 Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23
358 Varel 1974 Nutritional Features of Bacteroides fragilis subsp. fragilis
359 Yanagisawa 2006 Proteinase Activity of Prevotella Species Associated with Oral Purulent Infection
360 Ingram 1983 Studies of the extracellular proteolytic activity produced by Propionibacterium acnes
361 Jeter 1984 Salmonella typhimurium Synthesizes Cobalamin (Vitamin B12) De Novo Under Anaerobic Growth Conditions
362 Kosmider 2010 Propionic Acid Production by Propionibacterium freudenreichiissp. shermanii Using Crude Glycerol and Whey Lactose Industrial Wastes
363 Roth 1996 COBALAMIN (COENZYME B12): Synthesis and Biological Significance
364 Vince 1973 Ammonia production by intestinal bacteria
365 Carlier 2009 Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Sguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov.
366 Chou 2008 Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1
367 Stuer 1986 Purification of extracellular lipase from Pseudomonas aeruginosa
368 Valentini 2011 Identification of C4-Dicarboxylate Transport Systems in Pseudomonas aeruginosa PAO1
369 Sias 1979 Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate.
370 Samuelsson 1988 Heat Production by the Denitrifying Bacterium Pseudomonas fluorescens and the Dissimilatory Ammonium-Producing Bacterium Pseudomonas putrefaciens during Anaerobic Growth with Nitrate as the Electron Acceptor
371 Sharma 2001 Production, purification, characterization, and applications of lipases
372 Daum 1998 Physiological and Molecular Biological Characterization of Ammonia Oxidation of the Heterotrophic Nitrifier Pseudomonas putida
373 Downes 2009 Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum Synergistetesisolated from the human oral cavity
374 Völkl 1993 Pyrobaculum aerophilum sp. nov., a Novel Nitrate-Reducing Hyperthermophilic Archaeum
375 Amo 2002 Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air
376 Koning 2001 Cellobiose Uptake in the Hyperthermophilic Archaeon Pyrococcus furiosus Is Mediated by an Inducible, High-Afnity ABC Transporter
377 Hemachander 2001 Whole cell immobilization of Ralstonia pickettii for lipase production
378 Reichardt 2014 Phylogenetic distribution of three pathways for propionate production within the human gut microbiota
379 Doi 1991 Enhancement of Denitrifying Activity in Cells of Roseobacter denitrificans Grown Aerobically in the Light
380 Gold 2007 Global view of the clostridium thermocellum cellulosome revealed by quantitative proteomic analysis
381 Ng 1982 Differential metabolism of cellobiose and glucose by clostridum thermocellum and clostridium thermohydrosulfuricum
382 Rincon 2005 Unconventional Mode of Attachment of the Ruminococcus flavefaciens Cellulosome to the Cell Surface
383 Sparling 2006 Formate synthesis by clostridium thermocellum
384 Bryant 1960 Studies on the Nitrogen Requirements of Some Ruminal Cellulolytic Bacteria
385 Louis 2007 Understanding the effects of diet on bacterial metabolism in the large intestine
386 Shi 1997 Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1
387 Allison 1962 Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes
388 Brettar 2002 Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea
389 Sadovski 1969 Extracellular Nuclease Activity of Fish Spoilage Bacteria, Fish Pathogens, and Related Species
390 Woodward 2005 Identification and characterization of Shigella boydii 20 serovar nov., a new and emerging Shigella serotype
391 Snyder 2010 Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts
392 Arnone 1969 The extracellular nuclease of staphylococcus aureus: Structures of the native enzyme and an enzyme-inhibitor complex at 4A resolution
393 Beenken 2012 Impact of Extracellular Nuclease Production on the Biofilm Phenotype of Staphylococcus aureus under In Vitro and In Vivo Conditions
394 Willcox 2001 Streptococcus australis sp. nov., a novel oral streptococcus
395 Luppens 2008 Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm
396 Loscalzo 2011 Lipid metabolism by gut microbes and atherosclerosis
397 Whiley 1990 Streptococcus parasanguis sp. nov., an atypical viridans Streptococcus from human clinical specimens
398 Benedik 1998 Serratia marcescens and its extracellular nuclease
399 Whiley 1988 Streptococcus vestibularis sp. nov. from the Human Oral Cavity
400 Nisole 2006 Extracellular production of Streptomyces lividans acetyl xylan esterase A in Escherichia coli for rapid detection of activity
401 Albers 1999 Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein
402 Mukhopadhya 2011 A Comprehensive Evaluation of Colonic Mucosal Isolates of Sutterella wadsworthensis from Inflammatory Bowel Disease
403 Boone 1989 Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of Km for H2 or Formate Uptake
404 Sousa 2007 Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with methanobacterium formicicum
405 Stieb 1985 Anaerobic oxidation of fatty acids by clostridium byrantii sp. nov., a sporeforming, obligately syntrophic bacterium
406 Wu 1994 Anaerobic degradation of normal- and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture
407 Jackson 2002 Anaerobic microbial metabolism can proceed close to thermodynamic limits
408 Fulcinos 2005 Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation
409 Kelly 2000 Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β- subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain
410 Baalsrud 1954 Studies on Thiobacillus denitrificans
411 Paralonov 2012 Comparative genome analysis of 19 Ureaplasma urealyticum and Ureaplasma parvum strains
412 Ng 1971 Lactate metabolism by Veillonella parvula
413 Seper 2011 Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation
414 Blokesch 2008 The Extracellular Nuclease Dns and Its Role in Natural Transformation of Vibrio cholerae
415 Balch 1997 Acetobacterium, a New Genus of Hydrogen-Oxidizing, Carbon Dioxide-Reducing,Anaerobic Bacteria
416 Buschhorn 1989 Production and Utilization of Ethanol by the Homoacetogen Acetobacterium woodii
417 Peters 1998 Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat
418 Heise 1989 Sodium Dependence of Acetate Formation by the Acetogenic Bacterium Acetobacterium woodii
419 Zitomersky 2013 Characterization of Adherent Bacteroidales from Intestinal Biopsies of Children and Young Adults with Inflammatory Bowel Disease
420 Mishra 2012 Genome sequence and description of Alistipes senegalensis sp. nov.
421 Downes 2013 Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov.
422 Baena 1999 Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utiIizing bacterium
423 Allen-Vercoe 2012 Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976
424 Moore 1976 Emendation of Bacteroidaceae and Butyrivibrio and Descriptions of Desulfornonas gen. nov. and Ten New Species in the Genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus
425 Whitehead 2005 Bacteroides coprosuis sp. nov., isolated from swine-manure storage pits
426 Fenner 2005 Bacteroides massiliensis sp. nov., isolated from blood culture of a newborn
427 Song 2004 “Bacteroides nordii” sp. nov. and “Bacteroides salyersae” sp. nov. Isolated from Clinical Specimens of Human Intestinal Origin
428 Love 1986 Bacteroides tectum sp. nov. and Characteristics of Other Nonpigmented Bactevoides Isolates from Soft-Tissue Infections from Cats and Dogs
429 Benno 1983 Bacteroides pyogenes sp. nov., Bacteroides suis sp. nov., and Bacteroides helcogenes sp. nov., New Species from Abscesses and Feces of Pigs
430 Ezaki 1994 16s Ribosomal DNA Sequences of Anaerobic Cocci and Proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov.
431 Kinyon 1979 Treponema innocens, a New Species of Intestinal Bacteria, and Emended Description of the Type Strain of Treponema hyodysenteriae Harris et al.
432 Stanton 1997 Recognition of Two New Species of Intestinal Spirochetes: Serpulina intermedia sp. nov. and Serpulina murdochii sp. nov.
433 Fardeau 2000 Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water
434 Mori 2009 Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov.
435 Itoh 2003 Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines
436 Miroshnichenko 2003 Caldithrix abyssi gen. nov., sp. nov., a nitrate- reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage
437 Ogg 2011 Caloramator mitchellensis sp. nov., a thermoanaerobe isolated from the geothermal waters of the Great Artesian Basin of Australia, and emended description of the genus Caloramator
438 Ogg 2009 Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia
439 Vandamme 2010 Reclassification of Bacteroides ureolyticus as Campylobacter ureolyticus comb. nov., and emended description of the genus Campylobacter
440 Askew 2009 Transcriptional Regulation of Carbohydrate Metabolism in the human pathogen candida albicans
441 Williamson 1986 Biotypes of Candida albicans using the API 20C system
442 Sullivan 1995 Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals
443 Wong 1993 D-Arabitol Metabolism in Candida albicans: Studies of the Biosynthetic Pathway and the Gene That Encodes NAD-Dependent D-Arabitol Dehydrogenase
444 Granstrom 2002 Metabolic flux analysis of candida tropicalis growing on xylose in an Oxygen-limited chemostat
445 Rehman 2010 Cadmium biosorption by yeats, Candida tropical is CBL-1, isolated from industrial wastewater
446 Sulman 2013 Isolation and Characterization of Cellulose Degrading Candida tropicalis W2 from Environmental Samples
447 West 2009 Xylitol production by Candida species grown on a grass hydrolysate
448 Lohmeier-Vogel 1989 31P Nuclear Magnetic Resonance Study of the Effect of Azide on Xylose Fermentation by Candida tropicalis
449 Jiang 2007 Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis
450 Sudha 2010 Comparative study for the production, characterisation and antimicrobial studies of Sophorolipids using Candida tropicalis
451 Nakamura 1968 Transglucosyl-Amylase of Candida tropicalis
452 Brenner 1989 Capnocytophaga canimorsussp.nov.(FormerlyCDC GroupDF-2), a Cause of Septicemia following Dog Bite, and C. cynodegmi sp. nov., a Cause of Localized Wound Infection following Dog Bite
453 Lawson 2006 Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus- shaped bacterium from porpoise and grey seal
454 Finegold 2003 Cetobacterium somerae sp. nov. from Human Feces and Emended Description of the Genus Cetobacterium
455 Jung 2010 Clostridium arbusti sp. nov., an anaerobic bacterium isolated from pear orchard soil
456 Abrini 1994 Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide
457 Chamkha 2001 Isolation of Clostridium bifermentans from Oil Mill Wastewaters Converting Cinnamic Acid to 3-phenylpropionic Acid and Emendation of the Species
458 Dai 2011 Amino acid metabolism in intestinal bacteria: links between gut ecology and host health
459 Hauschild 1974 Clostridium celatum sp.nov., Isolated from Normal Human Feces
460 Warren 2006 Clostridium aldenense sp. nov. and Clostridium citroniae sp. nov. Isolated from Human Clinical Infections
461 Kaneuchi 1976 Taxonomic Study of Bacteroides dostridiiformis subsp. clostridiiformis (Burri and Ankersmit) Holdeman and Moore and of Related Organisms: Proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbiosum (Stevens) comb. nov.
462 Greetham 2003 Clostridium colicanis sp. nov., from canine faeces
463 Smith 1962 Clostridium innocuum, sp. n., a spore-forming anaerobe isolated from human infections
464 Dabrock 1992 Parameters Affecting Solvent Production by Clostridium pasteurianum
465 Keis 2001 Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov.
466 Partansky 1935 Anaerobic Bacteria Capable of the Fermentation of Sulfite Waste Liquor
467 Madden 1983 Isolation and Characterization of Clostridium stercorarium sp. nov., Cellulolytic Thermophile
468 Fardeau 2001 Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov.
469 Hethener 1992 Clostridium termitidis sp. nov., a Cellulolytic Bacterium from the Gut of the Wood-feeding Termite, Nasutitermes lujae
470 Jonsson 1990 Enumeration and Confirmation of Clostridium tyrobutyricum in Silages Using Neutral Red, D-Cycloserine, and Lactate Dehydrogenase Activity
471 Kunzelmann 2002 Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease
472 Rabus 1993 Complete Oxidation of Toluene under Strictly Anoxic ConditionsbyaNew Sulfate-ReducingBacterium
473 Trinkerl 1990 Desulfovibrio termitidis sp. nov., a Carbohydrate-Degrading Sulfate-Reducing Bacterium from the Hindgut of a Termite
474 Sorokin 2008 Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes.
475 L'Haridon 1998 Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent
476 Hofstad 2000 Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3)
477 Lawson 2002 Dysgonomonas mossii sp. nov., from Human Sources*
478 Doran 1978 Eimeria tenella: vitamin requirements for development in primary cultures of chicken kidney cells.
479 Smith 1986 Monosaccharide Transport by Eimeria tenella Sporozoites
480 Kampfer 2011 Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae
481 Kim 2005 Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov.
482 Holmes 1982 Flavobacteriurn breve sp. nov., norn. rev.
483 Saha 2006 Emticicia oligotrophica gen. nov., sp. nov., a new member of the family ‘Flexibacteraceae’, phylum Bacteroidetes
484 Mda 2006 Enterococcus caccae sp. nov., isolated from human stools
485 Svec 2001 Enterococcus haemoperoxidus sp. nov. and Enterococcus moraviensis sp. nov., isolated from water
486 Law-Brown 2003 Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the Red-billed Woodhoopoe, Phoeniculus purpureus
487 Vancanneyt 2001 Enterococcus villorum sp. nov., an enteroadherent bacterium associated with diarrhoea in piglets
488 Holdeman 1971 Clostridium ramosum (Vuillemin)comb.nov.:Emended Description and Proposed-NeotypeStrain
489 Holdeman 1980 Descriptions of Eubacterium timidum sp. nov., Eubacterium brachy sp. nov., and Eubacterium nodatum sp. nov. Isolated from Human Periodontitis
490 Margaret 1986 Eubacterium yurii subsp. yurii sp. nov. and Eubacterium yurii subsp. margaretiae subsp. nov.: Test Tube.Brush Bacteria from Subgingival Dental Plaque
491 Cato 1985 Fusobacterium alocis sp. nov. and Fusobacterium sulci sp. nov. from the Human Gingival Sulcus
492 Siqueira 2003 Detection of Filifactor alocis in endodontic infections associated with different forms of periradicular diseases
493 Wakabayashi 1989 Flavobacterium branchiophila sp. nov. a Causative Agent of Bacterial Gill Disease of Freshwater Fishes
494 Bernardet 1986 Cutting a Gordian Knot: Emended Classification and Description of the Genus Flavobacterium, Emended Description of the Family Flavobacteriaceae, and Proposal of Flavobacterium hydatis norn. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978)
495 Lewin 1969 A Classification of Flexibacteria
496 Hosoya 2007 Reclassification of Flexibacter aggregans (Lewin 1969) Leadbetter 1974 as a later heterotypic synonym of Flexithrix dorotheae Lewin 1970
497 Shinjo 1981 Proposal of Two Subspecies of Fusobacterium necrophorum (Flugge) Moore and Holdeman: Fusobacterium necrophorum subsp. necrophorum subsp. nov., nom. rev. (ex Flugge 1886), and Fusobacterium necrophorum subsp. funduliforme subsp. nov., nom. rev. (ex Hall6 1898)
498 Collins 1998 Gemella bergeriae sp. nov., Isolated from Human Clinical Specimens
499 Kilpper-Balz 1988 Transfer of Streptococcus morbillorum to the Genus Gemella as Gemella morbillorum comb. nov.
500 Collins 1998 Description of Gemella sanguinis sp. nov., Isolated from Human Clinical Specimens
501 Oren 1984 Halobacteroides halobius gen. nov., sp. nov., a Moderately Halophilic Anaerobic Bacterium from the Bottom Sediments ofthe Dead Sea
502 Peel 1997 Helcococcus kunzii as Sole Isolate from an Infected Sebaceous Cyst
503 Harper 2002 Helicobacter cetorum sp. nov., a Urease-Positive Helicobacter Species Isolated from Dolphins and Whales
504 Fox 2007 Isolation and Characterization of a Novel Helicobacter Species, “Helicobacter macacae,” from Rhesus Monkeys with and without Chronic Idiopathic Colitis”
505 Flores 2012 Hippea jasoniae sp. nov. and Hippea alviniae sp. nov., thermoacidophilic members of the class Deltaproteobacteria isolated from deep-sea hydrothermal vent deposits
506 Eggerth 1935 The Gram-positive Non-spore-bearing Anaerobic Bacilli of Human Feces
507 Iino 2010 Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria
508 Moore 1994 Oribaculum catoniae gen. nov., sp. nov.; Catonella morbi gen. nov., sp. nov.; Hallella seregens gen. nov., sp. nov.; Johnsonella ignava gen. nov., sp. nov.; and Dialister pneumosintes gen. nov., comb. nov., nom. rev., Anaerobic Gram-Negative Bacilli from the Human Gingival Crevice
509 Whitford 2001 Lachnobacterium bovis gen. nov., sp. nov., a novel bacterium isolated from the rumen and faeces of cattle
510 Morita 2010 Lactobacillus equicursoris sp. nov., isolated from the faeces of a thoroughbred racehorse
511 Endo 2010 Lactobacillus florum sp. nov., a fructophilic species isolated from flowers
512 Cousin 2012 Lactobacillus gigeriorum sp. nov., isolated from chicken crop
513 Cousin 2013 Lactobacillus pasteurii sp. nov. and Lactobacillus hominis sp. nov.
514 Chen 201 Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia)
515 Zou 2013 Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage
516 Rodas 2006 Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses
517 Hellemond 1997 Leishmania infantum promastigotes have a poor capacity for anaerobic functioning and depend mainly on respiration for their energy generation
518 Vieira 1995 Amino acid uptake and intracellular accumulation in Leishmannia major promastigotes are largely determined by an H+-pump generated membrane potential
519 Ellenberger 1987 Biochemistry and Regulation of Folate and Methotrexate transport in Leishmania major
520 Naderer 2010 Evidence that Intracellular stages of Leishmania major utilize amino sugars as a major carbon source
521 Darling 1989 Carbon dioxide abolishes the reverse Pasteur effect in Leishmania major promastigotes
522 Chevrot 2008 Megamonas rupellensis sp. nov., an anaerobe isolated from the caecum of a duck
523 Podosokorskaya 2013 Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae
524 Bellack 2011 Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts
525 Takai 2004 Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge
526 Burrgraf 1990 Methanococcus igneus sp. nov., a Novel Hyperthermophilic Methanogen from a Shallow Submarine Hydrothermal System
527 Leach 1973 Further Studies on Classification of Bovine Strains of Mycoplasmatales, with Proposals for New Species, Acholeplasma modicum and Mycoplasma alkalescens
528 Tully 1972 Synonymy of Mycoplasma arginini and Mycoplasma leonis
529 DaMassa 1994 Mycoplasma auris sp. nov., Mycoplasma cottewii sp. nov., and Mycoplasma yeatsii sp. nov., New Sterol-Requiring Mollicutes from the External Ear Canals of Goats
530 Jordan 1981 Isolation and Characterization of Mycoplasma columbium and Mycoplasma columborale, Two New Species from Pigeons
531 Rosendal 1973 Mycoplasma cynos, a New Canine Mycoplasma Species
532 Jordan 1982 Characterization and Taxonomic Description of Five Mycoplasma Serovars (Serotypes) of Avian Origin and Their Elevation to Species Rank and Further Evaluation of the Taxonomic Status of Mycoplasrna synoviae
533 Madden 1974 Mycoplasma moatsii, a New Species Isolated from Recently Imported Grivit Monkeys (Cercopithecus aethiops)
534 Tully 1974 Characterization of Some Caprine Mycoplasmas, with Proposals for New Species, Mycoplasma capricolum and M ycoplasma putvefaciens
535 Paek 2015 Myroides injenensis sp. nov., a new member isolated from human urine
536 Vancanneyt 1996 Reclassification of Flavobacterium odoraturn (Stutzer 1929) Strains to a New Genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov.
537 Kurtzman 2011 The Yeasts: A Taxonomic Study
538 Brew 1990 The rapid nitrosation of 2,3‐diaminonaphthalene by gastric isolates of Neisseria subflava
539 Nagai 2010 Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces
540 Iino 2007 Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam
541 Takayuki 1983 Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the Genus Peptostreptococcus and Proposal of Peptostreptococcus tetradius sp. nov.
542 Jung 2014 Peptoniphilus rhinitidis sp. nov., isolated from specimens of chronic rhinosinusitis
543 Downie 2006 Transport of nucleosides across the Plasmodium falciparum parasite plasma membrane has characteristics of PfENT1
544 Sherman 1979 Biochemistry of Plasmodium (Malarial Parasites)
545 Vander-Jagt 1990 D-Lactate production in erythrocytes infected with Plasmodium falciparum
546 Lwoff 1951 Biochemistry and Physiology of Protozoa
547 Lewis-Hughes 1984 In Vitro culture of plasmodium yoelii blood stages
548 Gosink 1998 Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the C'ophaga- Flavobacterium-Bacteroides group and reclassificationof 'Flectobacillusglomeratus as Polaribacter glomeratus comb. nov.
549 Chen 2005 Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater
550 Dobson 1993 Direct Sequencing of the Polymerase Chain Reaction- Amplified 16s rRNA Gene of Flavobacten'um gondwanense sp. nov. and Flavobacten'um salegens sp. nov., Two New Species from a Hypersaline Antarctic Lake
551 Duncan 2006 Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces
552 Chandel 2011 Bioconversion of pentose sugars into ethanol: A review and future directions
553 Senac 1990 Intermediary Metabolite Concentrations in Xylulose- and Glucose- Fermenting Saccharomyces cerevisiae Cells
554 Kradolfer 1982 Tryptophan degradation in Saccharomyces cerevisiae: Characterization of two aromatic aminotransferases
555 Brayant 1956 The characteristics of strains of Selenomonas isolated from bovine rumen contents
556 Whitcomb 1997 Spiroplasma chrysopicola sp. nov., Spiroplasma gladiatoris sp. nov., Spiroplasma helicoides sp. nov., and Spiroplasma tabanidicola sp. nov., from Tabanid (Diptera: Tabanidae) Flies
557 Williamson 1996 Spiroplasma diminutum sp. nov., from Culex annulus Mosquitoes Collected in Taiwan
558 Clark 1985 Spiroplasrna melliferum, a New Species from the Honeybee (Apis mellifera)
559 Whitcomb 1996 Spiroplasma syrphidicola sp. nov., from a Syrphid Fly (Diptera: Syrphidae)
560 Abalain-Colloc 1988 Spiroplasma taiwanense sp. nov. from Culex tritaeniorhynchus Mosquitoes Collected in Taiwan
561 Chesneau 1993 Staphylococcus pasteuri sp. nov., Isolated from Human, Animal, and Food Specimens
562 Whiley 1991 Emended Descriptions and Recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as Distinct Species
563 Poyart 2002 Taxonomic dissection of the Streptococcus bovis group by analysis of manganese- dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype II.2 as Streptococcus pasteurianus sp. nov.
564 Schlegel 2003 Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov.
565 Zbinden 2012 Streptococcus tigurinus sp. nov., isolated from blood of patients with endocarditis, meningitis and spondylodiscitis
566 Janssen 1999 Succinispira mobilis gen. nov., sp. nov., a succinate-decarboxylatinganaerobic bacterium
567 Chamkha 2001 Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description
568 Chen 2013 Tetrapisispora taiwanensis sp. nov. and Tetrapisispora pingtungensis sp. nov., two ascosporogenous yeast species isolated from soil
569 Ueda-Nishimura 1999 A new yeast genus, Tetrapisisporagen. nov.: Tetrapisisporairiornotensis sp. nov., Tetrapisisporananseiensis sp. nov. and Tetrapisisporaarboricolasp. nov., frornthe Nansei Islands, and reclassification of Kluyveromyces phaffii (van der Walt) van der Walt as Tetrapisispora phaffii comb. nov.
570 Van der Walt 1963 Fabospora phaffii sp.n.
571 Lee 1993 Taxonomic Distinction of Saccharolytic Thermophilic Anaerobes: Description of Thermoanaerobacteriumxylanolyticumgen. nov.,sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp~. nov.;Reclassificationof Thermoanaerobiumbrockii,Clostridium thermosulfurogenes, and Clostridium thermohydrosulfiricum ElO0-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacteriumthermosulfurigenescomb. nov.,and Thermoanaerobacter thermohydrosulfuricus comb. nov., Respectively; and Transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus
572 Moussard 2004 Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge
573 Hamilton-Brehm 2013 Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park
574 Mori 2003 A novel lineage of sulfate-reducing microorganisms: Themodesulfobiaceae farm. no., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring
575 Chung 2000 Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland
576 Bjornsdottir 2009 Thermus islandicus sp. nov., a mixotrophic sulfur-oxidizing bacterium isolated from the Torfajokull geothermal area
577 Williams 1996 Thermus oshimai sp. nov., Isolated from Hot Springs in Portugal, Iceland, and the Azores, and Comment on the Concept of a Limited Geographical Distribution of Themus Species
578 Stanton 1980 Treponema bryantii sp. nov., a Rumen Spirochete that Interacts with Cellulolytic Bacteria
579 Graber 2004 Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the First Spirochetes Isolated from Termite Guts
580 Cwyk 1979 Treponema succinifaciens sp. nov., an Anaerobic spirochete from the swine intestine
581 Heyworth 1984 Pyrimidine metabolism in Trichomonas vaginalis
582 Beach 1990 Fatty acid and sterol metabolism of cultured Trichomonas vaginalis and Tritichomonas foetus
583 Petrin 1998 Clinical and Microbiological Aspects of Trichomonas vaginalis
584 Mack 1980 End products of carbohydrate metabolism in Trichomonas vaginalis
585 Muller 2012 Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes
586 Linstead 1983 The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis
587 Tsukahara 1961 Respiratory metabolism of trichomonad vaginalis
588 Heyworth 1982 Purine metabolism in Trichomonas vaginalis
589 Yarlett 1988 Polyamine biosynthesis and inhibition in Trichomonas vaginalis
590 Kleydman 2004 Production of ammonia by Tritrichomonas foetus and Trichomonas vaginalis
591 Chapman 1999 Hydrogen peroxide is a product of oxygen consumption by Trichomonas vaginalis
592 Ninomiya 1952 The metabolism of Trichomonas vaginalis, with comparative aspects of Trichomonads
593 Lehker 1999 Trichomonad invasion of the mucous layer requires adhesions, mucinases, and motility
594 Ginger 2007 Comparative genomics of trypanosome metabolism
595 Rogerson 1980 Catabolic metabolic in Trypanosoma cruzi
596 Bringaud 2006 Energy metabolism of typanosomatids: Adaptation to available carbon sources
597 Silber 2002 Active Transport of L-Proline in Trypanosoma cruzi
598 Taylor 2008 Validation of spermidine synthase as a drug target in African trypanosomes
599 Oliveira 2000 Inositol metabolism in Trypanosoma cruzi: Potential target for chemotherapy against chagas disease
600 Silber 2005 Amino Acid Metabolic Routes in Trypanosoma cruzi: Possible Therapeutic Targets Against Chagas’ Disease
601 Bosshard 2002 Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium
602 Chung 2009 Varibaculum cambriense Infections in Hong Kong, China, 2006
603 Denariaz 1989 A Halophilic Denitrifier, Bacillus halodenitrificans sp. nov.
604 Yoon 2004 Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.
605 Sharpe 1972 Some Slime-Forming Heterofermentative Species of the Genus Lactobacillus
606 Choi 2002 Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi
607 Tohno 2014 Aerococcus vaginalis sp. nov., isolated from the vaginal mucosa of a beef cow, and emended descriptions of Aerococcus suis, Aerococcus viridans, Aerococcus urinaeequi, Aerococcus urinaehominis, Aerococcus urinae, Aerococcus christensenii and Aerococcus sanguinicola
608 Deibel 1960 Comparative study of Gaffkya homari, Aerococcus viridans, tetrad-forming cocci from meat curing brines, and the genus Pediococcus
609 Sakamoto 2009 Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces
610 Sakamoto 2014 Butyricimonas faecihominis sp. nov. and Butyricimonas paravirosa sp. nov., isolated from human faeces, and emended description of the genus Butyricimonas
611 Cooke 1927 A type of urea-splitting bacterium found in the human intestinal tract
612 Collins 1987 Transfer of Brevibacterium ammoniagenes (Cooke and Keith) to the Genus Corynebacterium as Corynebacterium ammoniagenes comb. nov.
613 Wilkins 1974 Eubacterium plexicaudatum sp. nov., an Anaerobic Bacterium with a sub polar tuft of flagella, isolated from a mouse cecum
614 Dent 1982 Lactobacillus animalis sp. nov., a New Species ofLactobacillus from the Alimentary Canal of Animals
615 Wood 1992 Genera of Lactic Acid Bacteria
616 Schleifer 1983 Elevation of Staphylococcus sciuri subsp. lentus (Kloos et al.) to Species Status: Staphylococcus lentus (Kloos et al.) comb. nov.
617 Cook 1994 Emendation of the Description of Acidaminococcus fermentans, a trans-Aconitate- and Citrate-Oxidizing Bacterium
618 Miller 1970 Nutritional Requirements for Growth of Aerococcus viridans
619 Bergaust 2008 Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability; Agrobacterium tumefaciens C58 Uses ActR and FnrN To Control nirK and nor Expression
620 Weelink 2008 Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing b-proteobacterium; Isolation and Characterization of Alicycliphilus denitrificans Strain BC, Which Grows on Benzene with Chlorate as the Electron Acceptor
621 Schwiertz 2002 Anaerostipes caccae gen. nov., sp. nov., a New Saccharolytic, Acetate-utilising, Butyrate-producing Bacterium from Human Faeces
622 Karlsson 2011 Prospects for systems biology and modeling of the gut microbiome
623 Sirotek 2004 Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae
624 Christophersen 2013 Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein
625 Gibson 1993 Sulphate reducing bacteria and hydrogen metabolism in the human large intestine
626 Tannock 1977 Characteristics of Bacteroides Isolates from the Cecum of Conventional Mice
627 Reilly 1980 The carbon dioxide requirements of anaerobic bacteria
628 Balamurugan 2008 Real-time polymerase chain reaction quantification ofspecific butyrate-producing bacteria,Desulfovibrio andEnterococcus faecalis in the feces of patients withcolorectal cancer
629 Vandamme 1994 New Perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter norn. rev.
630 Holmes 1986 Weeksella zoohelcum sp. nov. (Formerly Group IIj), from Human Clinical Specimens
631 Goodfellow 2012 Bergey's Manual of Systematic Bacteriology, Volume 5: The Actinobacteria
632 Stanton 1991 Reclassification of Treponema hyodysenteriae and Treponema innocens in a New Genus, Serpula gen. nov., as Serpula hyodysenteriae comb. nov. and Serpula innocens comb. nov.
633 Donohoe 2011 The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
634 Fardeau 2004 Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies
635 Colina 1996 Evidence for Degradation of Gastrointestinal Mucin by Candida albicans Secretory Aspartyl Proteinase
636 Leadbetter 1979 Capnocytophaga:New Genus of Gram-Negative Gliding Bacteria I. General Characteristics, Taxonomic Considerations and Significance
637 Pfennig 1968 Chlorobium phaeobacteroides nov. spec. und C. phaeovibrioides nov. spec.
638 Bergstein 1979 Uptake and metabolism of organic compounds by Chlorobium phaeobacteroides isolated from Lake Kinneret
639 Hofman 1985 Ecological significance of acetate assimilation by Chlorobium phaeobacteroides
640 Weber 2006 Anaerobic Nitrate-Dependent Iron(II) Bio-Oxidation by a Novel Lithoautotrophic Betaproteobacterium, Strain 2002
641 Srivastava 2003 Understanding Bacteria (Table 6.2 Type of fermentative pathway in different bacteria)
642 Fuchs 1957 The Nutritional Requirements of Clostridium perfringens
643 Steer 2001 Clostridium hathewayi sp. nov., from Human Faeces
644 Hall 1927 Bacillus sordellii, a cause of malignant edema in man
645 Ramachandran 2008 Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or a-cellulose
646 Salminen 2004 Lactic Acid Bacteria: Microbiological and Functional Aspects, Third Edition
647 Mackie 1991 Lipid metabolism in anaerobic ecosystems
648 Widdel 1977 A New Anaerobic, Sporing, Acetate-Oxidizing, Sulfate-Reducing Bacterium, Desulfotomaculum (emend.)acetoxidans
649 Junier 2010 The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1
650 Gibson 1988 Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut
651 Sakaguchi 2002 Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles
652 Zellner 1989 Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester
653 Wolfe 2005 The acetate switch
654 Mackie 1979 Changes in Lactate-Producing and Lactate-Utilizing Bacteria in Relation to pH in the Rumen of Sheep During Stepwise Adaptation to a High-Concentrate Diet
655 Duncan 2002 Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov.
656 Scheifinger 1973 Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium
657 Collins 1994 The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations.
658 Van Trappen 2004 Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes
659 Zhilina 1992 Ecology, Physiology and Taxonomy Studies on a New Taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov.
660 Collins 1993 Phylogenetic Analysis of Some Aerococcus-Like Organisms from Clinical Sources: Description of Helcococcus kunzii gen. nov., sp. nov.
661 Vandamme 1991 Revision of Campylobacter, Helicobacter, and Wolinella Taxonomy: Emendation of Generic Descriptions and Proposal of Arcobacter gen. nov.
662 De Maesschalck 2014 Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae
663 Hedberg 2012 Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium saburreum (Prevot 1966) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov.
664 Gummalla 1999 Tryptophan Catabolism by Lactobacillus casei and Lactobacillus helveticus Cheese Flavor Adjuncts
665 Ishii 1999 Identification of Compounds Causing Symbiotic Growth of Lactobacillus paracasei subsp. tolerans and Kluyveromyces marxianus var. lactis in Chigo, Inner Mongolia, China
666 Teusink 2005 In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: comparing predictions of nutrient requirements with those from growth experiments.
667 Golbach 2007 Adaptation of Lactobacillus rhamnosus riboflavin assay to microtiter plates
668 Rogosa 1953 Species differentiation of oral lactobacilli from man including description of Lactobacillus salivarius nov spec and lactobacillus Cellobiosus nov spec.
669 Embley 1989 Lactobacillus vaginalis sp. nov. from the Human Vagina
670 Flahaut 2013 Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation
671 Liu 2011 Molecular Detection of Human Bacterial Pathogens
672 Haroun 1982 Reclassification of Bacteroides hypermegas (Harrison and Hansen) in a New Genus Megamonas, as Megamonas hypermegas comb. nov.
673 Bailey 1982 Reclassification of ‘Streptococcus pluton’ (White)in a new genus Melissococcus, as Melissococcus pluton nom. rev.; comb. nov.
674 Garrity 2001 Bergey's Manual of Systematic Bacteriology: Volume One : The Archaea and the Deeply Branching and Phototrophic Bacteria
675 Bordbar 2010 Insight into human alveolar macrophage and m. tuberculosis interactions via metabolic reconstructions
676 Pastink 2009 Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria.
677 Lee 2013 Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle
678 Larocque 2014 A curated C. difficile strain 630 metabolic network: prediction of essential targets and inhibitors
679 Stanton 1983 Roseburia cecicola gen. nov., sp. nov., a Motile, Obligately Anaerobic Bacterium from a Mouse Cecum
680 Gradel 1972 Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria.
681 Yoon 2013 Shewanella spp. Use Acetate as an Electron Donor for Denitrification but Not Ferric Iron or Fumarate Reduction
682 Ahmed 1988 Nutritional requirements of shigellae for growth in a minimal medium.
683 Slobodkin 1999 Thermoanaerobater siderophilus sp. nov., a novel dissimilarity Fe(III)-reducing, anaerobic, thermophilic bacterium
684 Alain 2010 Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate- reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent
685 Jeanthon 2002 Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium
686 Nobre 1996 Transfer of Thermus ruber (Loginova et al. 1984), Themus silvans (Tenreiro et al. 1999, and Themus chliarophilus (Tenreiro et al. 1995) to Meiothemzus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., Respectively, and Emendation of the Genus Thermus
687 Kane 1978 Early Detection and Identification of Trichophyton verrucosum
688 Hall 2003 Characterization of some actinomyces-like isolates from human clinical sources: description of Varibaculum cambriensis gen nov, sp nov.
689 Rogosa 1964 THE GENUS VEILLONELLA II. Nutritional Studies
690 Boyer 2013 Bile Formation and Secretion
691 Alnouti 2008 Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS.
692 Birchenough 2015 New developments in goblet cell mucus secretion and function
693 Nakano 1997 Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth.
694 Bezkorovainy 1989 Biochemistry and Physiology of Bifidobacteria
695 Duerden 1989 A comparison of Bacteroides ureolyticus isolates ftom different clinical sources
696 Sarantinopoulos 2001 Citrate metabolism by Enterococcus faecalis FAIR-E 229
697 Kim 2005 Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallina um isolated from submerged soil
698 Jacobson 1997 Cellulase activity of Leishmania major in the sandfly vector and in culture.
699 Scherer 1981 Effect of trace elements and vitamins on the growth of Methanosarcina barkeri
700 Boden 2012 Emended description of the genus Methylophaga Janvier et al. 1985
701 Bowman 1993 Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs
702 Cato 1983 Synonymy of Strains of “Lactobacillus acidophilus” Group A2 (Johnson et 81. 1980) with the Type Strain of Lactobacillus crispatus (Brygoo and Aladame 1953) Moore and Holdeman 1970
703 Chervaux 2000 Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium.
704 Helanto 2006 Characterization of genes involved in fructose utilization by Lactobacillus fermentum
705 Francl 2010 The PTS transporters of Lactobacillus gasseri ATCC 33323
706 Su 2011 Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity
707 De Clerck 2004 Polyphasic characterization of Bacillus coagulans strains, illustrating heterogeneity within this species, and emended description of the species.
708 Creczynski-Pasa 2004 Energetic metabolism of Chromobacterium violaceum
709 Takai 2006 Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas
710 Kopke 2013 Clostridium difficile is an autotrophic bacterial pathogen.
711 Christiansen 1996 Desulfitobacterium hafniense sp. nov., an Anaerobic, Reductively Dechlorinating Bacterium
712 Pfennig 1976 Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium.
713 Atherly 2014 Genotypic and Phenotypic comparison of Bacteroides ovatus, B. thetaiotaomicron, and B. xylanisolvens isolates obtained from cow, goat, human, and pig feces
714 Akagi 1967 Electron carries for the phosphoroclastic reaction of Desulfovibrio desulfuricans.
715 Lewis 2012 Host sialoglycans and bacterial sialidases: a mucosal perspective
716 Reddy 1983 Wheat straw hemicelluloses: Composition and fermentation by human colon bacteroides
717 Postgate 1966 Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria.
718 Warren 2005 Biochemical differentiation and comparison of Desulfovibrio species and other phenotypically similar genera.
719 Halpern 1961 Utilization of L-glutamic and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli.
720 Hebert 2000 Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062.
721 Horn 2005 Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera
722 Kalyuzhnaya 2006 Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae
723 Helaszek 1991 Cellobiose uptake and metabolism by Ruminococcus flavefaciens.
724 Tong 2003 Streptococcus oligofermentans sp. nov., a novel oral isolate from caries-free humans
725 Feio 2004 Desulfovibrio alaskensis sp. nov., a sulphate- reducing bacterium from a soured oil reservoir
726 Niamsup 2003 Lactobacillus thermotolerans sp. nov., a novel thermotolerant species isolated from chicken faeces
727 Le Gall 1963 A New Species of Desulfovibrio
728 Collins 2000 An unusual Streptococcus from human urine, Streptococcus urinalis sp. nov.
729 Giebel 1990 Isolation of Mycoplasma moatsii from the Intestine of Wild Norway Rats (Rattus norvegicus)
730 Baele 2003 Lactobacillus ingluviei sp. nov., isolated from the intestinal tract of pigeons
731 Chander 2012 Phenotypic and molecular characterization of a novel strongly hemolytic Brachyspira species, provisionally designated “Brachyspira hampsonii ”
732 Schlegel 2000 Streptococcus infantarius sp. nov., Streptococcus infantarius subsp. infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov., isolated from humans and food
733 Kloos 1976 Characterization of Staphylococcus sciuri sp.nov. and its subspecies
734 Robert 2007 Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community
735 Chassard 2007 Characterization of the xylan-degrading microbial community from human faeces
736 Salyers 1979 Energy sources of major intestinal fermentative anaerobes
737 Attwood 1996 Clostridium proteoclasticum sp. nov., a Novel Proteolytic Bacterium from the Bovine Rumen
738 Gylswyk 1986 Description and Designation of a Neotype Strain of Eubacterium cellulosolvens (Cillobacterium cellulosolvens Bryant, Small, Bouma and Robinson) Holdeman and Moore
739 Lopez-Siles 2011 Cultured Representatives of Two Major Phylogroups of Human Colonic Faecalibacterium prausnitzii Can Utilize Pectin, Uronic Acids, and Host-Derived Substrates for Growth
740 Wallnofer 1967 Pathway of Propionate Formation in Bacteroides ruminicola
741 Zanoni 1987 Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom, rev.
742 Paterek 1988 Methanohalophilus mahii gen. nov. sp. nov. a Methylotrophic Halophilic Methanogen
743 Dedysh 2005 Methylocella Species Are Facultatively Methanotrophic
744 Cho 2003 Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the a-Proteobacteria
745 Nicholson 2012 Host-Gut Microbiota Metabolic Interactions
746 Seetharam 1982 Absorption and Transport of Cobalamin (Vitamin B12)
747 Mekhjian 1979 Colonic Absorption of Unconjugated Bile Acids
748 Davila 2013 Re-print of “Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host”
749 Pal 2005 Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov.
750 Houghton 2015 Thermorudis pharmacophila sp. nov., a novel member of the class Thermomicrobia isolated from geothermal soil, and emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus
751 Shiratori 2009 Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge
752 Madden 1982 Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium papyrosolvens sp. nov.
753 Warnick 2002 Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil
754 Motamedi 1998 Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Aspo hard rock laboratory, Sweden
755 Khelaifia 2011 Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea
756 Youn 2009 Characterization of the Dicarboxylate Transporter DctA in Corynebacterium glutamicum
757 Pokusaeva 2011 Carbohydrate metabolism in Bifidobacteria
758 Shah 1988 Proposal for Reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a New Genus, Porphyromonas
759 Marshall 1967 Growth of Bacillus coagulans in Chemically Defined Media
760 Holländer 1975 Energy metabolism of some representatives of the Haemophilus group
761 Jensen 1986 Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: Two Pectinolytic Bacteria from the Human Intestinal Tract
762 Kindberg 1987 Menaquinone production and utilization in germ-free rats after inoculation with specific organisms
763 Song 2004 Clostridium bartlettii sp. nov., isolatedfrom human faeces
764 Marquet 2009 Lactate has the potential to promote hydrogen sulphide formation in the human colon
765 Loubinoux 2002 Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov.
766 Scott 2013 Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro
767 Shetty 2018 Reclassification of Eubacterium hallii as Anaerobutyricum hallii gen. nov., comb. nov., and description of Anaerobutyricum soehngenii sp. nov., a butyrate and propionate-producing bacterium from infant faeces
768 Cambell 1966 Desulfovibrio africanus sp. n., a New Dissimilatory Sulfate-reducing Bacterium
769 Abildgaard 2006 Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water

Collection and integration of metabolic information for NJC19 construction

Using the repertoire of the aforementioned microbial species, metabolic information primarily collected for NJC19 construction was direct experimental evidence of the import and export of small-molecule metabolites (e.g., sugars, vitamins, organic acids, and gases) and the degradation of macromolecules (e.g., starch, cellulose, hemicellulose, and mucin), reported in literature. For the small-molecule metabolites, we mostly considered primary metabolites, i.e., nutrients and metabolic byproducts associated with microbial growth or reproduction. In addition, literature sources that report the mRNA or protein expression for metabolite-specific enzymes or transporters were considered. When encountering the information of which chemical compounds are not able to be transported or degraded by a given organism, we recorded this negative information as well, as part of our collected data. Despite technically not being a part of the gut microbiota, some host cells directly affect or are affected by microbial metabolism, and thus were considered to be a functional extension of the microbial community. In a similar fashion to our previous network NJS16 for the human case, the specific mouse tissue cells that we considered were the intestinal absorptive cell, the mucin-secreting goblet cell, and the bile acid-secreting hepatocyte. Although the hepatocyte is not part of intestinal tissue, its secreted bile acids are utilized by microbes in the gut. In the case of the mouse intestinal absorptive cell, the information from a manually-curated, genome-scale metabolic model (iSS1393) was adopted33. All annotated metabolite transport or macromolecule degradation processes for different strains of the same species were consolidated for that species as its collective feature. Because degradation of a given macromolecule is often performed by multiple species in the gut, we considered the corresponding degradation products to be indirect export products of all species participating in that macromolecule degradation. In this work, we differentiated two macromolecules, xylan and mannan, from a “hemicellulose” macromolecule in NJS16, for more specific representation of their degradation products.

In parallel, we carefully re-examined the existing components of NJS1610,34, and removed the incorrectly-placed components and added new links found from literature, according to more specific and accurate information. The revised NJS16 was finally connected to the above mouse gut microbiota interaction network through the common chemical compounds shared by the both networks, to form the mouse and human gut microbiota interaction network, NJC19 (Fig. 1 and Table 1). NJC19 is provided in both human- and machine-readable forms, through Online-only Tables 15(XLSX files) and JavaScript Object Notation (JSON) files deposited in the Dryad Digital Repository35, respectively. In addition, the Cytoscape Session (cys) file of NJC19 is provided for interactive network visualization35.

Table 1.

Datasets used for the construction and validation of NJC19.

Source Processing Data
Mouse fecal and cecal microbiome data (Online-only Table 1). Application of taxonomic analysis tools to the microbiome data (Methods). Output flies of the taxonomic analysis tools, which include the lists of identified microbial taxa and their relative abundances35.
Lists of identified microbial taxa and their relative abundances from mouse fecal and cecal microbiome data35. Selection of microbial species in metagenome samples based on the frequency of the species occurrence across the samples (Methods). List of selected microbial species in the metagenome samples35.
Literature (Online-only Table 2) and NJS1634. Manual collection of metabolic information from literature, and revision of NJS16 (Methods). Interaction network of microbial species/host cells mediated by metabolic compounds, NJC19 (Online-only Tables 35 and the corresponding JSON files35).
Mouse microbiome and metabolome data4,37,38. Extraction of taxonomic compositions and metabolite levels (see Technical Validation and Fig. 3 legend). Taxonomic compositions35, and microbial producer and metabolite levels for NJC19 validation (Fig. 3).

Online-only Table 4.

List of small-molecule metabolites and macromolecules in NJC19.

Compound name KEGG compound identifier
D-Glucose (Glucose) C00031
Sucrose C00089
D-Fructose (Fructose) C00095
Glycerol C00116
D-Ribose (Ribose) C00121
D-Galactose C00124
N-Acetyl-D-Glucosamine (N-Acetylglucosamine) C00140
D-Mannose (Mannose) C00159
D-Xylose (Xylose) C00181
Cellobiose C00185
D-Glucuronic acid (D-Glucuronate) C00191
Maltose C00208
D-Arabinose (L-Arabinose, Arabinose, L-Arabinopyranose, L-Arabinofuranose) C00216, C00259
Lactose C00243
L-Sorbose (Sorbose) C00247
Isomaltose C00252
D-Gluconate (D-Gluconic acid, Gluconate) C00257
D-Glycerate (Glycerate, [R]-Glycerate, Glyceric acid) C00258
N-Acetylneuraminic acid (N-acetylneuraminate, Neu5Ac, Sialic acid) C00270
D-Xylulose (Xylulose, L-Xylulose) C00310, C00312
D-Glucosamine (Glucosamine) C00329
D-Galacturonate C00333
Xylitol C00379
D-Mannitol (Mannitol) C00392
Ribitol (Adonitol) C00474
D-Lyxose (L-Lyxose) C00476, C01508
Raffinose C00492
Erythritol C00503
L-Rhamnose (Rhamnose, D-Rhamnose) C00507, C01684
L-Arabitol (L-Arabinitol, D-Arabitol) C00532, C01904
D-Tagaturonate C00558
N-Acetyl-D-mannosamine C00645
Dextrin (Maltotriose, Maltodextrin, Maltohexaose, Maltotetraose, Maltooligosaccharide) C00721, C01835, C01935, C01936, C02052
L-Idonate C00770
D-Sorbitol (D-Glucitol, Sorbitol, Glucitol, L-Sorbitol, Sorbitol) C00794, C01722
D-Tagatose C00795
D-Fructuronate C00905
L-Fucose C01019
N-Acetylgalactosamine (N-Acetyl-D-galactosamine) C01074
Trehalose C01083
Stachyose C01613
Galactitol (Dulcitol) C01697
Palatinose (Isomaltulose) C01742
Cellotetraose (Cellohexaose, Cellopentaose, Cellotriose) C02013, C06217, C06218, C06219
D-Galactosamine (Galactosamine) C02262
Melibiose C05402
D-Psicose C06468
L-iduronate C06472
D-Turanose C19636
FOS (Fructooligosaccharide) -
XOS (Xylooligosaccharide) -
L-Glutamate (L-Glutamic acid, Glutamate, D-Glutamate) C00025, C00217
L-Glycine (Glycine) C00037
L-Alanine (D-Alanine, Alanine) C00041, C00133
L-Lysine (Lysine, D-Lysine) C00047, C00739
L-Aspartate (Aspartate, D-Aspartate) C00049, C00402
L-Arginine (Arginine) C00062
L-Glutamine (D-Glutamine, Glutamine) C00064, C00819
L-Serine (Serine, D-Serine) C00065, C00740
L-Methionine (D-Methionine) C00073, C00855
L-Ornithine (Ornithine) C00077
L-Tryptophan (Tryptophan) C00078
L-Phenylalanine (Phenylalanine, D-Phenylalanine) C00079, C02265
L-Tyrosine (Tyrosine) C00082
L-Cysteine (Cysteine, D-Cysteine) C00097, C00793
beta-alanine (3-Aminopropionate) C00099
L-Leucine (Leucine) C00123
L-Histidine (Histidine) C00135
L-Proline (Proline, D-Proline) C00148, C00763
L-Asparagine (Asparagine) C00152
L-Valine (Valine, D-Valine) C00183, C06417
L-Threonine (Threonine) C00188
L-Homoserine C00263
L-Carnitine (D-Carnitine) C00318, C15025
L-Isoleucine (Isoleucine) C00407
L-Selenocysteine C05688
Uracil C00106
Adenine C00147
Thymine C00178
Adenosine C00212
Thymidine C00214
Guanine C00242
Inosine C00294
Uridine C00299
Cytosine C00380
Xanthine C00385
Guanosine C00387
Cytidine C00475
Ascorbic acid (Vitamin C, L-Ascorbate, Ascorbate) C00072
Choline C00114
Biotin (Vitamin B7) C00120
Adenosylcobalamin (Vitamin B12, Cobamide coenzyme, Cob[II]alamin, Vitamin B12r, Cob[I]alamin, Vitamin B12s, Aquacobalamin, Cobalamin [III]) C00194
Pyridoxal (Vitamin B6, Pyridoxine, Pyridoxamine, Vitamin B6) C00250, C00314, C00534
Niacin (Vitamin B3, Nicotinic acid, Nicotinate, Nicotinamide, Vitamin B3) C00153, C00253
Riboflavin (Vitamin B2) C00255
Thiamine (Vitamin B1, Thiamin) C00378
Retinol (Vitamin A) C00473
Folic acid (Folate, Vitamin B9) C00504
Retinoate C00777
Menaquinone (Vitamin K2) C00828
Pantothenic acid (Vitamin B5, Pantothenate) C00864
Phylloquinone (Vitamin K1) C02059
alpha-Tocopherol (Vitamin E, alpha-Tocotrienol) C02477, C14155, C14153
Arachidonate C00219
Cholecalciferol (Vitamin D3, Vitamin D2) C05443, C05441
Palmitate (Palmitic acid, Hexadecanoic acid, Hexadecanoate) C00249
1,2-diacylglycerol (1-acylglycerol, Monoacylglycerol, Monoglyceride, Monoacylglycerol, Diacylglycerol) C00641, C01885, C00165
Oleic acid ([9Z]-Octadecenoic acid) C00712
Lipoic acid (Lipoate) C00725
Stearic acid (Stearate, Octadecanoate) C01530
Decanoic acid (Decanoate) C01571
Caproate (Hexanoate) C01585
Linoleic acid (Omega-6 fatty acid) C01595
Pelargonic acid (Pelargonate, Nonanoic acid) C01601
Octanoate (Caprylic acid) C06423
Myristic acid (Tetradecanoic acid, Tetradecanoate) C06424
Arachidate (Arachidic acid) C06425
alpha-Linolenic acid (Omega-3 fatty acid, eicosapentaenoic acid) C06427, C12083
Acetate C00033
Propanoate (Propionate) C00163
Butyrate C00246
Valerate (Pentanoic acid, Pentanoate) C00803
Isobutyrate (2-Methylpropanoic acid) C02632
Isovalerate (3-Methylbutanoic acid) C08262
Methanol C00132
Inositol (myo-Inositol, Inositol 1-phosphate, Myo-inositol phosphate) C00137, C01177
Phenol C00146
Acetoin (3-hydroxybutanone, acetyl methyl carbinol, [R]-Acetoin) C00466, C00810
Ethanol C00469
Benzyl alcohol C00556
1,2-propanediol (Propene diol, Propylene glycol, [R]-1,2-propanediol, [R]-propane-1,2-diol, [S]-1,2-propanediol, [S]-propane-1,2-diol) C00583, C02912, C02917
1,2-Ethanediol (Ethylene glycol) C01380
Isopropanol (2-Propanol) C01845
1,3-Propanediol C02457
[R,R]-2,3-Butanediol ([R,R]-Butanediol, [S,S]-2,3-Butanediol, [S,S]-Butanediol) C03044, C03046
Propanol (n-propanol, 1-Propanol) C05979
Isobutyl alcohol (isobutanol, 2-Methyl-1-propanol) C14710
Butanol C06142
Pentanol C16834
Formaldehyde C00067
Acetaldehyde C00084
Benzaldehyde C00261
Propanal C00479
Putrescine C00134
Ethanolamine (Phosphatidylethanolamine) C00189, C00350
Methylamine (Monomethylamine) C00218
Spermidine C00315
Histamine C00388
Tryptamine C00398
Tyramine C00483
Dimethylamine C00543
Trimethylamine C00565
Spermine C00750
Trimethylamine N-oxide (Trimethylamine-N-oxide) C01104
Cadaverine C01672
Phenylethylamine C02455
Butylamine C18706
Urea C00086
Acetone C00207
Indole C00463
Toluene C01455
p-Cresol (4-methylphenol, 4-cresol) C01468
Anthranilate (o-amino-benzoic acid) C00108
Benzoate C00180
4-Aminobenzoate (para-aminobenzoic acid, PABA, p-Aminobenzoate) C00568
Indole-3-acetate (Indoleacetate) C00954
Ferulate C01494
Hippurate C01586
3-phenylpropionic acid (Phenylpropanoate, 3-phenylpropionate) C05629
Vanillate C06672
Phenylacetate C07086
Pyruvate C00022
alpha-ketoglutarate (2-oxoglutarate) C00026
Oxaloacetate C00036
Succinate C00042
Glyoxylate (Glyoxylic acid, Glyoxalate) C00048
Formate C00058
2-Oxobutyrate (Alpha-ketobutyrate, 2-Oxobutanoate) C00109
L-Malate ([S]-Malate, L-Malic acid, Malate, D-Malate, [R]-Malate) C00149, C00497
Fumarate C00122
Citrate C00158
Glycolate C00160
L-Lactate ([S]-Lactate, Lactate, D-Lactate, [R]-Lactate) C00186, C00256
Oxalate C00209
Taurine C00245
Orotic acid (Orotate) C00295
4-Aminobutyrate (GABA) C00334
Malonate C00383
cis-Aconitate (trans-Aconitate, trans-Aconitic acid) C00417, C02341
5-Aminovalerate C00431
Glutarate C00489
Itaconate C00490
Shikimate C00493
meso-Tartrate (meso-Tartaric acid, Tartrate, L-tartrate, L-Tartaric acid) C00552, C00898
Cholic acid (Cholate) C00695
Betaine (Glycine betaine) C00719
Crotonate (2-Butenoate, 2-Butenoic acid, Crotonic acid, 3-Methylacrylic acid) C01771
Glycocholate C01921
2-Aminobutyric acid (2-Aminobutyrate) C02261, C02356
Chenodeoxycholic acid (Chenodeoxycholate) C02528
Taurolithocholate C02592
Pimelate C02656
Lithocholic acid C03990
Deoxycholic acid C04483
Taurocholate C05122
Isethionate C05123
Taurodeoxycholate C05463
Glycodeoxycholate C05464
Taurochenodeoxycholate C05465
Glycochenodeoxycholate C05466
Adipate C06104
Glycolithocholate C15557
2-methylbutyrate (2-methylbutanoic acid) C18319
H2O2 C00027
Zn2+ (Zinc) C00038
Sulfate (Sulfuric acid, Sulfite) C00059, C00094
Cu2+ (Copper) C00070
Ca2+ (Calcium) C00076
K+ (Potassium) C00238
Nitrate (NO3-) C00244
Bicarbonate (HCO3-, H2CO3, Carbonic acid, Carbonate) C00288
Mg2+ (Magnesium) C00305
Thiosulfate C00320
Dimethyl sulfide (Methyl sulfide) C00580
Cl− (Chloride) C00698
I− (Iodide) C00708
Na+ (Sodium) C01330
Selenite C05684
Fe3+ (Ferric ion, Fe2+, Ferrous ion) C14819, C14818
Sulfur (Elemental sulfur) C00087
CO2 C00011
NH3 (Ammonia, NH4+, Ammonium) C00014
Carbon monoxide (CO) C00237
H2 (Hydrogen) C00282
H2S (HS-) C00283
Nitric Oxide (NO) C00533
Nitrite (NO2-) C00088
N2 C00697
Methane (CH4) C01438
Dichloromethane (Methylene chloride) C02271
DNA RNA Polynucleotide C00039, C00046, C00419
Starch (Amylopectin, Amylose, 1,4-alpha-D-Glucan, Pullulan, Resistant starch, Glycogen) C00317, C00369, C00480, C00718, C00182
Polypeptide C00403
Triglyceride C00422
Chitin C00461
Mannan C00464
Hyaluronan (Hyaluronate, Hyaluronic acid) C00518
Arabinogalactan C00569
Chondroitin 4-sulfate (Chondroitin 6-sulfate) C00634, C00635
Pectin C00714
Cellulose (Beta-D-glucan) C00760
Fructan (Inulin, Levan) C01355, C03323, C06215
Galactan C05796
Mucin (Mucus Glycoprotein) C02705
* Hemicellulose, not specified
Xylan C00707
Arabinan C02474
Hyodeoxycholic acid
alpha-Muricholic acid C17647
beta-Muricholic acid C17726
omega-Muricholic acid C17727
Tauro-b-muricholic acid
Tauroursodeoxycholic acid C16868
Ursodeoxycholic acid C07880
Indole-3-lactic acid
Indole-3-carboxaldehyde C08493
7-Oxodeoxycholic acid
7-Oxolithocholic acid
Carnosine C00386
Glycylsarcosine
Prolylglycine
Glycyl-Phenylalanine
Levomefolic acid
H+ C00080
Leucyl-leucine C11332
Alanylalanine
Glycylproline
Glycyl-leucine C02155
Leucylglycine
L-Dopa C00355
Lysophosphatidylcholine (1-Lysophosphatidylcholine, 2-Lysophosphatidylcholine) C04230, C04233
Cholesterol C00187
Glycylglycine C02037

*Denotes hemicellulose that is not yet specified as xylan, mannan, or others in NJC19.

Data Records

Our network NJC19 offers the reference map of the mammalian gut microbiota and chemical compound relationships (from 769 literature sources), which can be adapted for each context of mouse, human, and humanized mouse microbiomes. In NJC19, one set of nodes corresponds to organisms (i.e., microbial species and host cells), while the other set corresponds to chemical compounds (i.e., small-molecule metabolites or macromolecules). An organism and a chemical compound are connected if the organism imports, exports, or degrades the chemical compound. NJC19 comprises 838 microbial species (766 bacteria, 53 archaea, and 19 eukaryotes) in the mouse and human gut, 6 mouse and human cell types metabolically interacting with those microbes, and 283 chemical compounds (266 small molecules and 17 macromolecules)—all interconnected by 8,224 small-molecule transport or macromolecule degradation events. In addition, NJC19 provides information on small molecules and macromolecules that are reportedly not transportable or degradable by certain organisms—described through 912 negative metabolic associations. These negative associations can be particularly useful for the curation of automatically-generated metabolic models, which may include false-positive transport reactions derived from inaccurate genome annotations.

Figure 2a shows the overall phylogenetic composition of microbial species included in NJC19. To overview the network topology of NJC19, we counted the number of metabolites imported or exported by each microbial species. Each species in the network imports 5.8 and exports 3.5 metabolites on average, and the probability that a given species imports (or exports) k metabolites follows an exponential distribution P(k) ∝ erk (r ≈ 0.2 and 0.3 for the import and export cases, respectively; see Fig. 2b,c). Bacteroides thetaiotaomicron is one of the most promiscuous species, importing 33 and exporting 29 metabolites. Conversely, for each metabolite, we counted the number of species importing or exporting that metabolite. The probability that a given metabolite is imported (or exported) by k species follows a power-law distribution P(k) ∝ kγ (γ ≈ 1.4 for both import and export cases; Fig. 2d,e), which is much broader than the above exponential distributions. Among metabolites, glucose and acetate are the most frequent substrate and product, respectively, and are imported by 303 species (36.2% of the total species) and exported by 461 species (55.0% of the total species). In contrast, an average metabolite is imported by 21.8 species and exported by 13.0 species. Collectively, metabolites are highly uneven in terms of the ranges of their transporting species.

Fig. 2.

Fig. 2

Microbial taxonomic composition and network structural properties of NJC19. (a) Fraction of microbial species in the network, which belong to each domain (left) or phylum (right). The right panel shows several phyla with the largest fractions in each domain. Both left and right panels show bacteria in blue, archaea in tan, and eukaryotes in green. (b,c) The vertical axis represents the distribution of the probability P(k) that a given microbial species imports (b) or exports (c) k metabolites on the horizontal axis. (d,e) The vertical axis represents the distribution of the probability P(k) that a given metabolite is imported (d) or exported (e) by k species on the horizontal axis.

As noted above, the full details of NJC19 are available in both human- and machine-readable forms, through Online-only Table 1 and JSON files in the Dryad Digital Repository35, respectively. As noted above, the cys file of NJC19 is available for network visualization35, and can be accessed by Cytoscape v3.7.236.

Online-only Table 1 shows the detailed sources of mouse metagenome and 16S rRNA gene sequence data that were used for microbial species identification when we constructed NJC19. Online-only Table 2 shows the literature sources of metabolic information used for NJC19 construction. Online-only Table 3 shows the list of microbial species and host cell types in NJC19. The name of each microbial species is presented with the NCBI taxonomy ID. Online-only Table 4 includes the list of small-molecule metabolites and macromolecules in NJC19. The name of each compound is presented with the KEGG compound ID. Supplementary Table 1 provides all the metabolic associations between chemical compounds and microbial species/host cells in NJC19, along with their literature sources. These metabolic associations include both positive and negative associations (see above). Online-only Table 5 shows the degradation products of macromolecules in NJC19.

Online-only Table 3.

List of microbial species and host cell types in NJC19.

NCBI ID Species name Synonym
* 31971 Absiella dolichum Eubacterium dolichum
1511 Acetoanaerobium sticklandii Clostridium sticklandii
438 Acetobacter pasteurianus
* 33952 Acetobacterium woodii
28187 Acetohalobium arabaticum
2148 Acholeplasma laidlawii
72556 Achromobacter piechaudii
85698 Achromobacter xylosoxidans
905 Acidaminococcus fermentans
53635 Acidimicrobium ferrooxidans
524 Acidiphilium cryptum
33059 Acidithiobacillus caldus
920 Acidithiobacillus ferrooxidans
28049 Acidothermus cellulolyticus
80867 Acidovorax avenae
47920 Acidovorax delafieldii
471 Acinetobacter calcoaceticus
40216 Acinetobacter radioresistens
67854 Actinobacillus succinogenes
103618 Actinomyces coleocanis
544580 Actinomyces oris
103621 Actinomyces urogenitalis
1656 Actinomyces viscosus
40567 Actinosynnema mirum
* 1377 Aerococcus viridans
219314 Aeromicrobium marinum
644 Aeromonas hydrophila
645 Aeromonas salmonicida
56636 Aeropyrum pernix
714 Aggregatibacter actinomycetemcomitans
358 Agrobacterium tumefaciens
239935 Akkermansia muciniphila
179636 Alicycliphilus denitrificans
* 214856 Alistipes finegoldii
* 626932 Alistipes indistinctus
* 1118061 Alistipes obesi Bacteroidales bacterium ph8
* 328813 Alistipes onderdonkii
28117 Alistipes putredinis
* 1288121 Alistipes senegalensis
328814 Alistipes shahii
* 908612 Alistipes sp. HGB5
* 671218 Alloprevotella rava Prevotella sp. oral taxon 302
76122 Alloprevotella tannerae
81468 Aminobacterium colombiense
* 81412 Aminomonas paucivorans
39488 Anaerobutyricum hallii Eubacterium hallii
33029 Anaerococcus hydrogenalis
33032 Anaerococcus lactolyticus
* 1287640 Anaerococcus obesiensis
33034 Anaerococcus prevotii
33036 Anaerococcus tetradius
33037 Anaerococcus vaginalis
105841 Anaerostipes caccae
* 649756 Anaerostipes hadrus Eubacterium hadrum
169435 Anaerotruncus colihominis
2234 Archaeoglobus fulgidus
1382 Atopobium parvulum
1383 Atopobium rimae
82135 Atopobium vaginae
354 Azotobacter vinelandii
1390 Bacillus amyloliquefaciens
1392 Bacillus anthracis
1452 Bacillus atrophaeus
1413 Bacillus cellulosilyticus
1396 Bacillus cereus
79880 Bacillus clausii
1398 Bacillus coagulans
408580 Bacillus coahuilensis
86665 Bacillus halodurans
1402 Bacillus licheniformis
1404 Bacillus megaterium
1405 Bacillus mycoides Bacillus weihenstephanensis
79885 Bacillus pseudofirmus
64104 Bacillus pseudomycoides
1408 Bacillus pumilus
85683 Bacillus selenitireducens
1423 Bacillus subtilis
1428 Bacillus thuringiensis
* 376804 Bacteroides barnesiae
47678 Bacteroides caccae
246787 Bacteroides cellulosilyticus
* 626929 Bacteroides clarus
310298 Bacteroides coprocola
387090 Bacteroides coprophilus
* 151276 Bacteroides coprosuis
357276 Bacteroides dorei
28111 Bacteroides eggerthii
* 674529 Bacteroides faecis
338188 Bacteroides finegoldii
* 626930 Bacteroides fluxus
817 Bacteroides fragilis
* 376806 Bacteroides gallinarum
290053 Bacteroides helcogenes
329854 Bacteroides intestinalis
* 204516 Bacteroides massiliensis
* 291645 Bacteroides nordii
* 626931 Bacteroides oleiciplenus
28116 Bacteroides ovatus
384638 Bacteroides pectinophilus
310297 Bacteroides plebeius
* 392838 Bacteroides propionicifaciens
* 310300 Bacteroides pyogenes
376805 Bacteroides salanitronis
* 291644 Bacteroides salyersiae
* 469589 Bacteroides sp. 2_1_33B
46506 Bacteroides stercoris
818 Bacteroides thetaiotaomicron
820 Bacteroides uniformis
821 Bacteroides vulgatus
371601 Bacteroides xylanisolvens
* 1015 Bergeyella zoohelcum
* 999 Bernardetia litoralis Flexibacter litoralis
1680 Bifidobacterium adolescentis
1683 Bifidobacterium angulatum
28025 Bifidobacterium animalis
1681 Bifidobacterium bifidum
1685 Bifidobacterium breve
1686 Bifidobacterium catenulatum
1689 Bifidobacterium dentium
78342 Bifidobacterium gallicum
216816 Bifidobacterium longum
28026 Bifidobacterium pseudocatenulatum
* 1694 Bifidobacterium pseudolongum
35833 Bilophila wadsworthia
1322 Blautia hansenii
53443 Blautia hydrogenotrophica
40520 Blautia obeum Ruminococcus obeum
* 33035 Blautia producta Ruminococcus productus
* 1287055 Brachyspira hampsonii
* 159 Brachyspira hyodysenteriae
* 13264 Brachyspira innocens
* 84377 Brachyspira intermedia
* 84378 Brachyspira murdochii
* 52584 Brachyspira pilosicoli
375 Bradyrhizobium japonicum
1393 Brevibacillus brevis
235 Brucella abortus
29459 Brucella melitensis
29461 Brucella suis
9 Buchnera aphidicola
152480 Burkholderia ambifaria
95486 Burkholderia cenocepacia
292 Burkholderia cepacia
337 Burkholderia glumae
87883 Burkholderia multivorans
60552 Burkholderia vietnamiensis
* 544644 Butyricimonas synergistica
45851 Butyrivibrio crossotus
831 Butyrivibrio fibrisolvens
43305 Butyrivibrio proteoclasticus
* 911092 Caldanaerobacter subterraneus
31899 Caldicellulosiruptor bescii
44001 Caldicellulosiruptor saccharolyticus
* 693075 Caldisericum exile
* 200415 Caldisphaera lagunensis
477976 Calditerrivibrio nitroreducens
* 187145 Caldithrix abyssi
* 515264 Caloramator australicus
291048 Caminibacter mediatlanticus
* 195 Campylobacter coli
* 199 Campylobacter concisus
* 200 Campylobacter curvus
* 196 Campylobacter fetus
824 Campylobacter gracilis
* 76517 Campylobacter hominis
197 Campylobacter jejuni
* 201 Campylobacter lari
* 203 Campylobacter rectus
* 204 Campylobacter showae
* 28080 Campylobacter upsaliensis
* 827 Campylobacter ureolyticus
* 5476 Candida albicans
* 42374 Candida dubliniensis
* 5482 Candida tropicalis
186490 Candidatus Baumannia cicadellinicola
* 28188 Capnocytophaga canimorsus
* 28189 Capnocytophaga cynodegmi
* 1017 Capnocytophaga gingivalis
* 45242 Capnocytophaga granulosa
* 1018 Capnocytophaga ochracea
* 1019 Capnocytophaga sputigena
* 300419 Catellicoccus marimammalium
100886 Catenibacterium mitsuokai
1711 Cellulomonas flavigena
29360 Cellulosilyticum lentocellum Clostridium lentocellum
* 188913 Cetobacterium somerae
1096 Chlorobium phaeobacteroides
1108 Chloroflexus aurantiacus
536 Chromobacterium violaceum
545 Citrobacter koseri
67825 Citrobacter rodentium
133448 Citrobacter youngae
1496 Clostridioides difficile Clostridium difficile, Peptoclostridium difficile
1488 Clostridium acetobutylicum
* 1137848 Clostridium arbusti
333367 Clostridium asparagiforme
* 84023 Clostridium autoethanogenum
1520 Clostridium beijerinckii
208479 Clostridium bolteae
1491 Clostridium botulinum
1492 Clostridium butyricum
217159 Clostridium carboxidivorans
* 36834 Clostridium celatum
1493 Clostridium cellulovorans
* 358743 Clostridium citroniae
* 1531 Clostridium clostridioforme
* 179628 Clostridium colicanis
89152 Clostridium hiranonis
89153 Clostridium hylemonae
* 1522 Clostridium innocuum
1534 Clostridium kluyveri
1535 Clostridium leptum
1538 Clostridium ljungdahlii
84026 Clostridium methylpentosum
1542 Clostridium novyi Clostridium oedematiens
* 1501 Clostridium pasteurianum
1502 Clostridium perfringens
* 169679 Clostridium saccharobutylicum
84030 Clostridium saccharolyticum
* 36745 Clostridium saccharoperbutylacetonicum
* 84031 Clostridium sartagoforme Clostridium sartagoformum
29347 Clostridium scindens
* 97138 Clostridium sp. ASF356
* 97139 Clostridium sp. ASF502
1509 Clostridium sporogenes
1512 Clostridium symbiosum
1513 Clostridium tetani
* 219748 Clostridium tunisiense
* 1519 Clostridium tyrobutyricum
* 45497 Clostridium ultunense
74426 Collinsella aerofaciens
147207 Collinsella intestinalis
147206 Collinsella stercoris
285 Comamonas testosteroni
116085 Coprococcus catus
410072 Coprococcus comes
33043 Coprococcus eutactus
* 1697 Corynebacterium ammoniagenes
1717 Corynebacterium diphtheriae
1718 Corynebacterium glutamicum
1747 Cutibacterium acnes Propionibacterium acnes
985 Cytophaga hutchinsonii
1299 Deinococcus radiodurans
118000 Denitrovibrio acetiphilus
453230 Desulfarculus baarsii
259354 Desulfatibacillum alkenivorans
* 49338 Desulfitobacterium hafniense
2296 Desulfobacterium autotrophicum
* 28223 Desulfobacula toluolica
894 Desulfobulbus propionicus
* 873 Desulfocurvibacter africanus Desulfovibrio africanus
58138 Desulfofarcimen acetoxidans
* 293256 Desulfohalovibrio alkalitolerans Desulfovibrio alkalitolerans
1565 Desulfotomaculum nigrificans Desulfotomaculum carboxydivorans
59610 Desulfotomaculum reducens
* 58180 Desulfovibrio alaskensis
876 Desulfovibrio desulfuricans
878 Desulfovibrio fructosivorans
* 879 Desulfovibrio gigas
* 191026 Desulfovibrio hydrothermalis
* 889 Desulfovibrio longus
184917 Desulfovibrio magneticus
* 63560 Desulfovibrio oxyclinae
901 Desulfovibrio piger
880 Desulfovibrio salexigens
* 42252 Desulfovibrio termitidis
881 Desulfovibrio vulgaris
* 427923 Desulfurivibrio alkaliphilus
* 64160 Desulfurobacterium thermolithotrophum
891 Desulfuromonas acetoxidans
* 427926 Dethiobacter alkaliphilus
218538 Dialister invisus
39486 Dorea formicigenerans Eubacterium formicigenerans
88431 Dorea longicatena
* 156974 Dysgonomonas gadei
* 163665 Dysgonomonas mossii
84112 Eggerthella lenta
* 5802 Eimeria tenella
* 1117645 Elizabethkingia anophelis
* 238 Elizabethkingia meningoseptica
* 247 Empedobacter brevis
* 312279 Emticicia oligotrophica
69218 Enterobacter cancerogenus Enterobacter taylorae
550 Enterobacter cloacae
* 57732 Enterococcus asini
* 33945 Enterococcus avium
* 317735 Enterococcus caccae
37734 Enterococcus casseliflavus
* 44008 Enterococcus cecorum
* 1355 Enterococcus columbae
* 44009 Enterococcus dispar
* 53345 Enterococcus durans
1351 Enterococcus faecalis
1352 Enterococcus faecium
1353 Enterococcus gallinarum
* 160453 Enterococcus gilvus
* 155618 Enterococcus haemoperoxidus
* 1354 Enterococcus hirae
246144 Enterococcus italicus
* 71451 Enterococcus malodoratus
* 155617 Enterococcus moraviensis
* 53346 Enterococcus mundtii
* 160454 Enterococcus pallens
* 154621 Enterococcus phoeniculicola
* 71452 Enterococcus raffinosus
* 41997 Enterococcus saccharolyticus
* 1356 Enterococcus sulfureus
* 112904 Enterococcus villorum Enterococcus porcinus
* 1547 Erysipelatoclostridium ramosum Clostridium ramosum
1648 Erysipelothrix rhusiopathiae
208962 Escherichia albertii Escherichia/Shigella albertii
562 Escherichia coli
564 Escherichia fergusonii Escherichia/Shigella fergusonii
253239 Ethanoligenens harbinense
* 35517 Eubacterium brachy
29322 Eubacterium cellulosolvens
39485 Eubacterium eligens
1736 Eubacterium limosum
* 97253 Eubacterium plexicaudatum
* 39490 Eubacterium ramulus
39491 Eubacterium rectale
51123 Eubacterium saphenum
39492 Eubacterium siraeum
39496 Eubacterium ventriosum
* 39498 Eubacterium yurii
853 Faecalibacterium prausnitzii
833 Fibrobacter succinogenes
* 143361 Filifactor alocis
1260 Finegoldia magna Peptostreptococcus magnus
* 271155 Flavobacterium antarcticum
* 55197 Flavobacterium branchiophilum
* 510946 Flavobacterium cauense
* 996 Flavobacterium columnare
* 1341165 Flavobacterium enshiense
* 229204 Flavobacterium frigoris
986 Flavobacterium johnsoniae
* 1401027 Flavobacterium limnosediminis
* 96345 Flavobacterium psychrophilum
* 498301 Flavobacterium rivuli
* 329186 Flavobacterium saliperosum
* 70993 Flexithrix dorotheae
849 Fusobacterium gonidiaformans Fusobacterium gonidiiformans
850 Fusobacterium mortiferum Clostridium rectum
* 859 Fusobacterium necrophorum
851 Fusobacterium nucleatum
860 Fusobacterium periodonticum
* 854 Fusobacterium russii
861 Fusobacterium ulcerans
856 Fusobacterium varium
* 84136 Gemella bergeri
* 29391 Gemella morbillorum
* 84135 Gemella sanguinis
33940 Geobacillus thermodenitrificans Bacillus thermodenitrificans
225194 Geobacter bemidjiensis
313985 Geobacter lovleyi
28232 Geobacter metallireducens
35554 Geobacter sulfurreducens
351604 Geobacter uraniireducens
442 Gluconobacter oxydans Gluconobacter uchimurae
364410 Granulibacter bethesdensis
727 Haemophilus influenzae
729 Haemophilus parainfluenzae
* 656519 Halanaerobium hydrogeniformans
* 2331 Halanaerobium praevalens
* 43595 Halanaerobium saccharolyticum
2238 Haloarcula marismortui
2242 Halobacterium salinarum
* 42422 Halobacteroides halobius
2246 Haloferax volcanii
* 40091 Helcococcus kunzii
* 212 Helicobacter acinonychis
* 37372 Helicobacter bilis
* 56877 Helicobacter bizzozeronii
* 123841 Helicobacter canadensis
* 29419 Helicobacter canis
* 138563 Helicobacter cetorum
* 213 Helicobacter cinaedi
* 214 Helicobacter felis
* 215 Helicobacter fennelliae
* 32025 Helicobacter hepaticus
* 398626 Helicobacter macacae
* 217 Helicobacter mustelae
* 35818 Helicobacter pullorum
210 Helicobacter pylori
* 104628 Helicobacter suis
* 157268 Helicobacter winghamensis
* 1279027 Hippea alviniae
* 84405 Hippea maritima
* 1735 Holdemanella biformis Eubacterium biforme
61171 Holdemania filiformis
35830 Hungateiclostridium cellulolyticum Acetivibrio cellulolyticus
* 288965 Hungateiclostridium clariflavum Clostridium clariflavum
1515 Hungateiclostridium thermocellum Clostridium thermocellum, Ruminiclostridium thermocellum
154046 Hungatella hathewayi Clostridium hathewayi
53399 Hyphomicrobium denitrificans
* 591197 Ignavibacterium album
160233 Ignicoccus hospitalis
167642 Ilyobacter polytropus
261299 Intestinibacter bartlettii
* 43995 Johnsonella ignava
92945 Ketogulonicigenium vulgare
502 Kingella denitrificans
573 Klebsiella pneumoniae
244366 Klebsiella variicola
467210 Lachnoanaerobaculum saburreum Eubacterium saburreum
* 140626 Lachnobacterium bovis
66219 Lachnoclostridium phytofermentans Clostridium phytofermentans
* 89059 Lactobacillus acidipiscis
1579 Lactobacillus acidophilus
83683 Lactobacillus amylolyticus
1604 Lactobacillus amylovorus Lactobacillus sobrius
* 1605 Lactobacillus animalis
227943 Lactobacillus antri
1580 Lactobacillus brevis
1581 Lactobacillus buchneri
1582 Lactobacillus casei
181675 Lactobacillus coleohominis
* 1610 Lactobacillus coryniformis
47770 Lactobacillus crispatus
* 28038 Lactobacillus curvatus
1584 Lactobacillus delbrueckii
* 137357 Lactobacillus equi
* 420645 Lactobacillus equicursoris
* 1612 Lactobacillus farciminis
1613 Lactobacillus fermentum
* 640331 Lactobacillus florum
* 1614 Lactobacillus fructivorans
1596 Lactobacillus gasseri
* 227942 Lactobacillus gastricus
* 1203069 Lactobacillus gigeriorum
1587 Lactobacillus helveticus
1588 Lactobacillus hilgardii
* 1203033 Lactobacillus hominis
147802 Lactobacillus iners Lactobacillus sp. 7_1_47FAA
* 148604 Lactobacillus ingluviei Lactobacillus thermotolerans
109790 Lactobacillus jensenii
33959 Lactobacillus johnsonii
* 267818 Lactobacillus kefiranofaciens
* 176292 Lactobacillus malefermentans
* 1618 Lactobacillus mali
* 97478 Lactobacillus mucosae
* 1622 Lactobacillus murinus
1632 Lactobacillus oris
1597 Lactobacillus paracasei
* 872327 Lactobacillus pasteurii
* 1589 Lactobacillus pentosus
1590 Lactobacillus plantarum Lactobacillus arizonensis
* 449659 Lactobacillus pobuzihii
1598 Lactobacillus reuteri
47715 Lactobacillus rhamnosus
* 231049 Lactobacillus rossiae
1623 Lactobacillus ruminis
* 228229 Lactobacillus saerimneri
1599 Lactobacillus sakei
1624 Lactobacillus salivarius
* 1625 Lactobacillus sanfranciscensis
* 1231337 Lactobacillus shenzhenensis
* 97137 Lactobacillus sp. ASF360
* 152335 Lactobacillus suebicus
227945 Lactobacillus ultunensis
1633 Lactobacillus vaginalis
* 194326 Lactobacillus versmoldensis
* 238015 Lactobacillus vini
1358 Lactococcus lactis
* 5671 Leishmania infantum
* 5664 Leishmania major
40542 Leptotrichia buccalis
157692 Leptotrichia goodfellowii
157688 Leptotrichia hofstadii
* 157691 Leptotrichia shahii
* 157687 Leptotrichia wadei
33964 Leuconostoc citreum
* 1244 Leuconostoc gelidum
136609 Leuconostoc kimchii
1245 Leuconostoc mesenteroides
1642 Listeria innocua
1639 Listeria monocytogenes
168384 Marvinbryantia formatexigens
* 437897 Megamonas funiformis
158847 Megamonas hypermegale
* 491921 Megamonas rupellensis
187326 Megasphaera micronuciformis
* 1134405 Melioribacter roseus
* 33970 Melissococcus plutonius
381 Mesorhizobium loti
43687 Metallosphaera sedula
83816 Methanobrevibacter ruminantium
2173 Methanobrevibacter smithii
83171 Methanocaldococcus fervens
67760 Methanocaldococcus infernus
2190 Methanocaldococcus jannaschii
* 667126 Methanocaldococcus villosus
73913 Methanocaldococcus vulcanius
29291 Methanococcoides burtonii
42879 Methanococcus aeolicus
39152 Methanococcus maripaludis
2187 Methanococcus vannielii
2188 Methanococcus voltae
83984 Methanocorpusculum labreanum
2198 Methanoculleus marisnigri
2322 Methanohalobium evestigatum
2176 Methanohalophilus mahii
54120 Methanolacinia petrolearia
2320 Methanopyrus kandleri
2214 Methanosarcina acetivorans
2208 Methanosarcina barkeri
2209 Methanosarcina mazei
2317 Methanosphaera stadtmanae
475088 Methanosphaerula palustris
2203 Methanospirillum hungatei
145263 Methanothermobacter marburgensis
145262 Methanothermobacter thermautotrophicus Methanobacterium thermautotrophicum
155863 Methanothermococcus okinawensis
2180 Methanothermus fervidus
2224 Methanothrix thermoacetophila
* 213185 Methanotorris formicicus
* 2189 Methanotorris igneus
511746 Methylacidiphilum infernorum
105560 Methylibium petroleiphilum
405 Methylobacillus flagellatus
114616 Methylobacterium nodulans
199596 Methylocella silvestris
414 Methylococcus capsulatus
392484 Methylophaga thiooxydans Methylophaga thiooxidans
408 Methylorubrum extorquens Methylobacterium dichloromethanicum, Methylobacterium chloromethanicum
426 Methylosinus trichosporium
359408 Methylotenera mobilis
1270 Micrococcus luteus
52226 Mitsuokella multacida
1525 Moorella thermoacetica
480 Moraxella catarrhalis
1764 Mycobacterium avium
1769 Mycobacterium leprae
1773 Mycobacterium tuberculosis
1772 Mycolicibacterium smegmatis
2110 Mycoplasma agalactiae
* 45363 Mycoplasma alkalescens
47687 Mycoplasma alligatoris
* 2094 Mycoplasma arginini
2111 Mycoplasma arthritidis
* 51363 Mycoplasma auris
28903 Mycoplasma bovis
2095 Mycoplasma capricolum
* 114881 Mycoplasma columbinum
45361 Mycoplasma conjunctivae
50052 Mycoplasma crocodyli
* 171284 Mycoplasma cynos
2115 Mycoplasma fermentans
2096 Mycoplasma gallisepticum
2097 Mycoplasma genitalium
29501 Mycoplasma haemofelis
2098 Mycoplasma hominis
2099 Mycoplasma hyopneumoniae
2100 Mycoplasma hyorhinis
* 2116 Mycoplasma iowae
2105 Mycoplasma leachii
* 171287 Mycoplasma moatsii
2118 Mycoplasma mobile
2102 Mycoplasma mycoides
28227 Mycoplasma penetrans
2104 Mycoplasma pneumoniae
2107 Mycoplasma pulmonis
* 2123 Mycoplasma putrefaciens
2109 Mycoplasma synoviae
* 51365 Mycoplasma yeatsii
* 1183151 Myroides injenensis
* 76832 Myroides odoratimimus
* 256 Myroides odoratus
* 27289 Naumovozyma dairenensis
484 Neisseria flavescens
485 Neisseria gonorrhoeae
488 Neisseria mucosa
* 490 Neisseria sicca
* 28449 Neisseria subflava
* 626933 Odoribacter laneus
28118 Odoribacter splanchnicus Bacteroides splanchnicus
* 351091 Oscillibacter valericigenes
847 Oxalobacter formigenes
1464 Paenibacillus larvae
1406 Paenibacillus polymyxa
* 1505 Paeniclostridium sordellii Clostridium sordellii
823 Parabacteroides distasonis Bacteroides distasonis
* 328812 Parabacteroides goldsteinii Bacteroides goldsteinii
387661 Parabacteroides johnsonii
46503 Parabacteroides merdae Bacteroides merdae
148447 Paraburkholderia phymatum Burkholderia phymatum
* 1490 Paraclostridium bifermentans Clostridium bifermentans
266 Paracoccus denitrificans
208216 Parvularcula bermudensis
1254 Pediococcus acidilactici
19 Pelobacter carbinolicus
29543 Pelobacter propionicus
110500 Pelotomaculum thermopropionicum
* 507750 Peptoniphilus duerdenii
54005 Peptoniphilus harei Peptostreptococcus harei
* 33030 Peptoniphilus indolicus
33031 Peptoniphilus lacrimalis Peptostreptococcus lacrimalis
* 1175452 Peptoniphilus rhinitidis
* 1111134 Peptoniphilus sp. BV3C26 Clostridiales bacterium BV3C26
* 671216 Peptoniphilus sp. oral taxon 836
* 1268254 Peptoniphilus timonensis
1261 Peptostreptococcus anaerobius
341694 Peptostreptococcus stomatis
82076 Picrophilus torridus
* 5821 Plasmodium berghei
* 5833 Plasmodium falciparum
* 5850 Plasmodium knowlesi
* 5855 Plasmodium vivax
* 5861 Plasmodium yoelii
* 37453 Polaribacter franzmannii
* 531 Polaribacter irgensii
28123 Porphyromonas asaccharolytica
837 Porphyromonas gingivalis
419005 Prevotella amnii
242750 Prevotella bergensis
28125 Prevotella bivia
77095 Prevotella bryantii
28126 Prevotella buccae
28127 Prevotella buccalis
165179 Prevotella copri
28130 Prevotella disiens
189722 Prevotella marshii
28132 Prevotella melaninogenica
282402 Prevotella multiformis
28134 Prevotella oralis
28135 Prevotella oris
839 Prevotella ruminicola
228604 Prevotella salivae
386414 Prevotella timonensis
28137 Prevotella veroralis
1744 Propionibacterium freudenreichii
* 294710 Proteiniphilum acetatigenes
584 Proteus mirabilis
102862 Proteus penneri
182210 Pseudodesulfovibrio aespoeensis Desulfovibrio aespoeensis
* 879567 Pseudodesulfovibrio piezophilus Desulfovibrio piezophilus
106588 Pseudoflavonifractor capillosus Bacteroides capillosus
287 Pseudomonas aeruginosa
312306 Pseudomonas entomophila
294 Pseudomonas fluorescens
300 Pseudomonas mendocina
303 Pseudomonas putida
29438 Pseudomonas savastanoi
316 Pseudomonas stutzeri
317 Pseudomonas syringae
* 251 Psychroflexus gondwanensis
638849 Pyramidobacter piscolens
13773 Pyrobaculum aerophilum
181486 Pyrobaculum calidifontis
29292 Pyrococcus abyssi
2261 Pyrococcus furiosus
53953 Pyrococcus horikoshii
329 Ralstonia pickettii
384 Rhizobium leguminosarum
1061 Rhodobacter capsulatus
1076 Rhodopseudomonas palustris
1085 Rhodospirillum rubrum
29549 Rhodothermus marinus Rhodothermus obamensis
* 301301 Roseburia hominis
166486 Roseburia intestinalis
360807 Roseburia inulinivorans
2434 Roseobacter denitrificans
* 29355 Ruminiclostridium cellobioparum Clostridium termitidis, Ruminiclostridium cellobioparum subsp. termitidis
1521 Ruminiclostridium cellulolyticum Clostridium cellulolyticum
29362 Ruminiclostridium papyrosolvens Clostridium papyrosolvens
1264 Ruminococcus albus
40518 Ruminococcus bromii
1265 Ruminococcus flavefaciens
33038 Ruminococcus gnavus
46228 Ruminococcus lactaris
33039 Ruminococcus torques
2287 Saccharolobus solfataricus Sulfolobus solfataricus
* 4932 Saccharomyces cerevisiae
28901 Salmonella enterica
1660 Schaalia odontolytica Actinomyces odontolyticus
671224 Selenomonas artemidis
135080 Selenomonas flueggei
135083 Selenomonas noxia
* 971 Selenomonas ruminantium
69823 Selenomonas sputigena
192073 Shewanella denitrificans
24 Shewanella putrefaciens
621 Shigella boydii
622 Shigella dysenteriae
623 Shigella flexneri Escherichia/Shigella flexneri
624 Shigella sonnei
382 Sinorhizobium meliloti
63612 Sodalis glossinidius
2057 Sphaerobacter thermophilus
332056 Sphingobium japonicum
154 Spirochaeta thermophila
* 216933 Spiroplasma chrysopicola
* 216936 Spiroplasma diminutum
* 2134 Spiroplasma melliferum
* 216945 Spiroplasma syrphidicola
* 2145 Spiroplasma taiwanense
1280 Staphylococcus aureus
29388 Staphylococcus capitis
1281 Staphylococcus carnosus
1282 Staphylococcus epidermidis
1283 Staphylococcus haemolyticus
1290 Staphylococcus hominis
* 42858 Staphylococcus lentus
28035 Staphylococcus lugdunensis
* 45972 Staphylococcus pasteuri
283734 Staphylococcus pseudintermedius
29385 Staphylococcus saprophyticus
1292 Staphylococcus warneri
40324 Stenotrophomonas maltophilia
1311 Streptococcus agalactiae
1328 Streptococcus anginosus
113107 Streptococcus australis
* 439220 Streptococcus caballi
* 1329 Streptococcus canis
* 76860 Streptococcus constellatus
* 1333 Streptococcus criceti
45634 Streptococcus cristatus Streptococcus oligofermentans
* 102886 Streptococcus didelphis
1317 Streptococcus downei
1334 Streptococcus dysgalactiae
* 155680 Streptococcus entericus
1336 Streptococcus equi
1335 Streptococcus equinus Streptococcus bovis
* 1345 Streptococcus ferus
315405 Streptococcus gallolyticus
1302 Streptococcus gordonii
* 439219 Streptococcus henryi
* 380397 Streptococcus ictaluri
102684 Streptococcus infantarius
68892 Streptococcus infantis
* 1346 Streptococcus iniae
* 1338 Streptococcus intermedius
* 150055 Streptococcus lutetiensis Streptococcus infantarius subsp. coli
* 1339 Streptococcus macacae
* 59310 Streptococcus macedonicus Streptococcus gallolyticus subsp. macedonicus
* 269666 Streptococcus marimammalium
* 313439 Streptococcus massiliensis
* 400065 Streptococcus merionis
* 229549 Streptococcus minor
28037 Streptococcus mitis
1309 Streptococcus mutans
1303 Streptococcus oralis Streptococcus tigurinus, Streptococcus oralis subsp. tigurinus
* 114652 Streptococcus orisratti
* 82806 Streptococcus ovis
1318 Streptococcus parasanguinis Streptococcus gallolyticus subsp. pasteurianus
* 1348 Streptococcus parauberis
* 197614 Streptococcus pasteurianus
68891 Streptococcus peroris
1313 Streptococcus pneumoniae
* 1340 Streptococcus porcinus
* 257758 Streptococcus pseudopneumoniae
361101 Streptococcus pseudoporcinus
1314 Streptococcus pyogenes
* 1341 Streptococcus ratti
1304 Streptococcus salivarius
1305 Streptococcus sanguinis
* 1310 Streptococcus sobrinus
* 1169673 Streptococcus sp. GMD4S
1307 Streptococcus suis
1308 Streptococcus thermophilus
* 55085 Streptococcus thoraltensis
1349 Streptococcus uberis
* 149016 Streptococcus urinalis
1343 Streptococcus vestibularis
1911 Streptomyces griseus
1916 Streptomyces lividans
1938 Streptomyces viridochromogenes
214851 Subdoligranulum variabile
* 78120 Succinispira mobilis
2285 Sulfolobus acidocaldarius
39766 Sulfurimonas denitrificans
40545 Sutterella wadsworthensis
119484 Syntrophobacter fumaroxidans
51197 Syntrophobotulus glycolicus
863 Syntrophomonas wolfei
86170 Syntrophothermus lipocalidus
316277 Syntrophus aciditrophicus
* 36841 Terrisporobacter glycolicus Clostridium glycolicum
* 1071379 Tetrapisispora blattae
* 113608 Tetrapisispora phaffii
* 29323 Thermoanaerobacter brockii
* 1757 Thermoanaerobacter ethanolicus
* 1125974 Thermoanaerobacter indiensis
* 108150 Thermoanaerobacter italicus
* 583357 Thermoanaerobacter mathranii
* 496866 Thermoanaerobacter pseudethanolicus
* 106578 Thermoanaerobacter siderophilus
* 1516 Thermoanaerobacter thermohydrosulfuricus Clostridium thermohydrosulfuricum
* 46354 Thermoanaerobacter wiegelii
* 28896 Thermoanaerobacterium saccharolyticum
* 1517 Thermoanaerobacterium thermosaccharolyticum
* 29329 Thermoanaerobacterium xylanolyticum Thermoanaerobacter xylanolyticum
2021 Thermobifida fusca
* 1510 Thermoclostridium stercorarium Clostridium stercorarium
55802 Thermococcus barophilus
187878 Thermococcus gammatolerans
311400 Thermococcus kodakarensis
342948 Thermococcus onnurineus
172049 Thermococcus sibiricus
* 501497 Thermodesulfatator atlanticus
* 171695 Thermodesulfatator indicus
* 1295609 Thermodesulfobacterium geofontis
* 886 Thermodesulfobacterium thermophilum
* 184064 Thermodesulfobium narugense
2303 Thermoplasma acidophilum
2336 Thermotoga maritima
2337 Thermotoga neapolitana
* 271 Thermus aquaticus
* 88189 Thermus igniterrae
* 540988 Thermus islandicus
* 56957 Thermus oshimai
* 37636 Thermus scotoductus
274 Thermus thermophilus
36861 Thiobacillus denitrificans
* 163 Treponema bryantii
* 88058 Treponema primitia
* 167 Treponema succinifaciens
* 5722 Trichomonas vaginalis
* 63417 Trichophyton verrucosum
* 5691 Trypanosoma brucei
* 5693 Trypanosoma cruzi
* 154288 Turicibacter sanguinis
29361 Tyzzerella nexilis Clostridium nexile
134821 Ureaplasma parvum
2130 Ureaplasma urealyticum
* 184870 Varibaculum cambriense
39777 Veillonella atypica
39778 Veillonella dispar
29466 Veillonella parvula
666 Vibrio cholerae
672 Vibrio vulnificus
* 1482 Virgibacillus halodenitrificans
* 1583 Weissella confusa
51229 Wigglesworthia glossinidia
844 Wolinella succinogenes
339 Xanthomonas campestris
2371 Xylella fastidiosa
542 Zymomonas mobilis
human colonocyte
human goblet cell
human hepatocyte
* mouse goblet cell
* mouse hepatocyte
* mouse intestinal cell

*Denotes a species/host cell type that was not included in the predecessor, NJS16 (Sung et al., Nat. Commun. 8, 15393 (2017)).

On the other hand, our JSON files35 include “NJC19_network.json”, “NJC19_organism.json”, “NJC19_compound.json”, and “NJC19_reference.json”. Among them, “NJC19_network.json” is equivalent to in Supplementary Table 1, in terms of its contents. This file consists of a total of 9,136 items. Each object in the file is exactly matched with one association in Supplementary Table 1. Each object has its own identification number that starts with “NJC19_” followed by a five-digit number. The object includes four key-value pairs. The keys are “Species”, “Small-molecule metabolite or macromolecule”, “Metabolic activity”, and “Ref. #”, reminiscent of the column names in Supplementary Table 1. The other files “NJC19_organism.json”, “NJC19_compound.json”, and “NJC19_reference.json” include detailed information on the values of the keys “Species”, “Small-molecule metabolite or macromolecule”, and “Ref. #” in the file “NJC19_network.json”, respectively. In a similar fashion to Online-only Tables 3 and 4, each microbial species in “NJC19_organism.json” is annotated with the NCBI taxonomy ID, and each compound in “NJC19_compound.json” is annotated with the KEGG compound ID. Furthermore, the specific sample sources of these microbial species are also present in “NJC19_organism.json”. Full metadata of these JSON files are provided in another file “README_NJC19.txt”, which is available in the Dryad Digital Repository together with the JSON files35.

As described in Methods, our NJC19 construction was started with taxonomic identification of mouse gut microbiome samples. The comprehensive repertoire of those microbial taxa, identified before the collection of their metabolic information, is provided in the Dryad Digital Repository35 (Table 1). In the case of the metagenome samples, it also provides the list of the selected species based on the frequency of their occurrence across the samples (Methods).

Technical Validation

Metabolic information collected in this study was primarily experimental evidence of small molecule transport and macromolecule degradation events, reported in the literature. Given the information dispersed across research papers, review articles, and textbooks (Online-only Table 2), a careful read of these sources was done to distinguish experimentally-verified information from the predictions solely based on automated bioinformatics algorithms. To check the accuracy of our network, the entire individual links in the compiled network were thoroughly re-examined by the independent authors who had not participated in the initial construction of the network. If potential errors were identified from the examined links (e.g., errors from the possible misinterpretations of the literature), these errors were carefully corrected based on the discussion of multiple authors.

To further assess the validity of our network, we examined the correlations between microbe-metabolite links in the network and measured metabolite levels in the mouse gut and portal vein plasma. Specifically, we examined whether the abundance increase/decrease of microbes associated with a particular metabolite in our network is consistent with the shift of the metabolite level across different experimental conditions. Regarding this analysis, three published mouse studies were found to provide the information of both microbial and metabolite levels in their collected samples: one study is for antibiotics (cefoperazone) treatment and recovery37, another is for fecal microbiota transplantation from twins discordant for obesity4, and the other for gnotobiotic mice with multiple diets38. From these studies, we considered only the cases with clear variations in the microbial and metabolite levels, which span at least 1.5-fold changes across different mouse groups for the metabolites and their microbial producers/consumers in NJC19. We further excluded host- and diet-derived metabolites, which may confound our analysis focusing on the effects of microbial metabolism. For all the resulting metabolites, Fig. 3 presents the levels of their microbial producers in NJC19 and those metabolite levels across the mouse groups with varying experimental conditions (Table 1). In Fig. 3, we did not consider microbial consumers because they were relatively deficient in their abundance, less than a half of the producers in each case. Here, microbial producers of each metabolite from the gnotobiotic mouse study38 in Fig. 3 are defined as the microbial species that produce this metabolite in NJC19. However, for the other two studies in Fig. 3, the finest taxonomic information is available at the genus level35, from the 16S rRNA gene sequence data processed by the Ribosomal Database Project Classifier in this analysis (RDP Naive Bayesian rRNA Classifier Version 2.11 with 16S rRNA training set 16)39. Therefore, for these two studies, microbial producers of a given metabolite are defined as the microbial genera, with each having the species whose majority (>50%) can produce that metabolite in NJC19. We also defined microbial consumers in a similar way, although they were excluded from Fig. 3 as discussed above.

Fig. 3.

Fig. 3

Comparison of mouse microbiome and metabolome data based on NJC19. (a,b) In the left panels, the abundances of the propionate (a) and acetate (b) producers in NJC19 were obtained from cecal 16S rRNA gene sequence data35 in ref. 37 Cecal metabolite concentrations in the right panels were obtained from Fig. 3c of the same study. Mouse group I consists of mice six weeks after 10-day cefoperazone treatment on mouse group II, cefoperazone-naive mice. (c) In the left panel, the abundances of the butyrate producers in NJC19 were obtained from fecal 16S rRNA gene sequence data35 in ref. 4 Cecal butyrate concentrations in the right panel were obtained from Fig. 2c of the same study. Although we used the fecal 16S rRNA gene sequence data for the left panel due to the limited data availability, fecal and cecal microbial compositions were found to strongly correlate in other samples from that study, allowing us to use the fecal sequence data as a proxy for the cecal ones. All mice were initially germ-free in the study. Mouse groups I to V comprise mice transplanted with an obese twin’s microbiota (Ob; group I), mice co-housed with Ob and Ln mice (group II; see next for the definition of Ln mice), mice transplanted with the lean co-twin’s microbiota (Ln; group III), Ob mice co-housed with Ln and germ-free mice (group IV), and Ln mice co-housed with Ob and germ-free mice (group V). (df) In the left panels, the abundances of the succinate (d,e) and isovalerate (f) producers in NJC19 were obtained from cecal 16S rRNA gene copy levels in Fig. 2a of ref. 38 We re-scaled succinate producers in (d) to the total 16S rRNA gene copy levels, because the corresponding succinate concentrations (d) were available per cecal dry weight (i.e., per cecal microbial load). Cecal and portal vein metabolite concentrations in the right panels were obtained from Fig. 2b and Supplementary Table 4 of the same study, respectively. Mouse groups ‘HF/HS’, ‘ZF/HS’, and ‘Chow’ represent gnotobiotic mice on a high-fat/high-sucrose diet, a zero-fat/high-sucrose diet, and a chow diet, respectively. In (ad), each error bar represents standard deviation across replicates. Error bars are missing for (e,f), as well as for the left panel in (d), and units are missing for the right panels in (e,f), because of the information unavailability from the data sources.

Figure 3 indeed demonstrates that alternations in the producer and metabolite levels tend to agree with each other, with the overall 71.4% matches of their increasing or decreasing tendencies across the mouse groups. For example, the propionate producers in NJC19 decreased by 90.0% in the cecum after cefoperazone treatment and recovery, consistent with an 88.5% decrease in the cecal propionate concentration (Fig. 3a). Likewise, the acetate producers in NJC19 decreased by 64.5% at the same time, consistent with a 59.3% decrease in the cecal acetate concentration (Fig. 3b). In these examples, the total microbial loads remained similar during the experiments37, and thus the metabolite concentration changes here are not likely to be a mere consequence of the microbial load changes. To test the statistical significance of these correlations, we introduce quantities fij, gij, and fij’ for each pair of mouse groups i and j: fij (gij) denotes a fold change from group i to group j in the measured producer (metabolite) abundance averaged over the replicates in the group i or j. fij’ denotes a group-i-to-j fold change in the average abundance of randomly-assigned producers, while the number of those randomly-assigned producers from all the data sources in Fig. 3 is maintained as the same as the number of the total observed producers. To assess the significance of the observed producer and metabolite correlations against a scenario that the producer information in NJC19 may not be more correct than expected by chance, we computed the P value as the probability of satisfying fij’ ≥ fij (fij’ ≤ fij) for all (i, j)-pairs that have fij and gij with both ≥ 1 (≤1). Accordingly, our P value calculation reveals that the producers in NJC19 and the detected metabolic compounds are significantly correlated in Fig. 3, thereby supporting the validity of the microbe-compound associations in NJC19 (P = 0.02 for Fig. 3a,c–e, P < 10–4 for Fig. 3f, and P = 0.06 for Fig. 3b).

Supplementary information

Supplementary Table (233KB, xlsx)

Acknowledgements

We thank John F. Baines and Philipp Rausch for kindly providing wild-caught mouse metagenome data, and Jonathan W. Johnson for preparing most icons in Fig. 1. This work was supported by Hong Kong Baptist University, Faculty Research Grant Category II (FRG2/17-18/097) and Start-up Grant Tier 2 (RC-SGT2/18-19/SCI/001). This work was conducted using the resources of the High Performance Cluster Computing Centre, Hong Kong Baptist University, which receives funding from Research Grant Council, University Grant Committee of the HKSAR and Hong Kong Baptist University.

Online-only Table

Online-only Table 5.

Degradation products of macromolecules in NJC19.

Macromolecule Degradation product(s) Remark
Arabinogalactan D-Galactose, D-Arabinose (L-Arabinose, Arabinose, L-Arabinopyranose, L-Arabinofuranose)
Cellulose (Beta-D-glucan) D-Glucose (Glucose), Cellobiose, Cellotetraose (Cellohexaose, Cellopentaose, Cellotriose)
Chitin N-Acetyl-D-Glucosamine (N-Acetylglucosamine)
Chondroitin 4-sulfate (Chondroitin 6-sulfate) D-Glucuronic acid (D-Glucuronate), N-Acetylgalactosamine (N-Acetyl-D-galactosamine), Sulfate (Sulfuric acid, Sulfite)
Fructan (Inulin, Levan) D-Fructose (Fructose), FOS (Fructooligosaccharide)
Galactan D-Galactose
Hemicellulose, not specified D-Glucose (Glucose), D-Ribose (Ribose), D-Galactose, D-Mannose (Mannose), D-Xylose (Xylose), D-Glucuronic acid (D-Glucuronate), D-Arabinose (L-Arabinose, Arabinose, L-Arabinopyranose, L-Arabinofuranose), D-Galacturonate, L-Rhamnose (Rhamnose, D-Rhamnose), XOS (Xylooligosaccharide)
Hyaluronan (Hyaluronate, Hyaluronic acid) N-Acetyl-D-Glucosamine (N-Acetylglucosamine), D-Glucuronic acid (D-Glucuronate)
Mucin (Mucus Glycoprotein) D-Galactose, N-Acetyl-D-Glucosamine (N-Acetylglucosamine), D-Glucuronic acid (D-Glucuronate), N-Acetylneuraminic acid (N-acetylneuraminate, Neu5Ac, Sialic acid), D-Galacturonate, L-Fucose, N-Acetylgalactosamine (N-Acetyl-D-galactosamine), L-Serine (Serine, D-Serine), L-Cysteine (Cysteine, D-Cysteine), L-Proline (Proline, D-Proline), L-Threonine (Threonine), Sulfate (Sulfuric acid, Sulfite)
Pectin D-Galacturonate
Starch (Amylopectin, Amylose, 1,4-alpha-D-Glucan, Pullulan, Resistant starch, Glycogen) D-Glucose (Glucose), Maltose, Dextrin (Maltotriose, Maltodextrin, Maltohexaose, Maltotetraose, Maltooligosaccharide)
Triglyceride 1,2-diacylglycerol (1-acylglycerol, Monoacylglycerol, Monoglyceride, Monoacylglycerol, Diacylglycerol), Glycerol
Xylan D-Xylose (Xylose), XOS (Xylooligosaccharide)
Polypeptide L-Alanine (D-Alanine, Alanine), L-Arginine (Arginine), L-Asparagine (Asparagine), L-Aspartate (Aspartate, D-Aspartate), L-Cysteine (Cysteine, D-Cysteine), L-Glutamine (D-Glutamine, Glutamine), L-Leucine (Leucine), L-Histidine (Histidine), L-Isoleucine (Isoleucine), L-Threonine (Threonine), L-Lysine (Lysine, D-Lysine), L-Methionine (D-Methionine), L-Phenylalanine (Phenylalanine, D-Phenylalanine), L-Proline (Proline, D-Proline), L-Serine (Serine, D-Serine), L-Tryptophan (Tryptophan), L-Tyrosine (Tyrosine), L-Valine (Valine, D-Valine), L-Glycine (Glycine), L-Glutamate (L-Glutamic acid, Glutamate, D-Glutamate), Prolylglycine, Glycyl-Phenylalanine, Leucyl-leucine, Alanylalanine, Glycylproline, Glycyl-leucine, Leucylglycine, Glycylglycine Polypeptides can be broken down into amino acids and small peptides. Among them, only the compounds which have associations with the microbial species or the host cells in NJC19 are listed as the degradation products in Column B.
Arabinan D-Arabinose (L-Arabinose, Arabinose, L-Arabinopyranose, L-Arabinofuranose)
Mannan D-Mannose (Mannose)
DNA RNA Polynucleotide Adenine, Cytosine, Guanine, Thymine, Uracil

Author contributions

P.-J.K. designed the research. R.L., J.J.T.C., T.L.P.M., H.K., S.K., J.S. and P.-J.K. performed the research. R.L., J.J.T.C., T.L.P.M., H.K., C.-M.G. and P.-J.K. analyzed the data. R.L., J.J.T.C., J.S., C.-M.G. and P.-J.K. wrote the manuscript.

Code availability

Our Python code that converts the JSON format of NJC19 network data (NJC19_network.json35) to the format of Supplementary Table 1 can be downloaded from the Dryad Digital Repository35. For the taxonomic profiling of microbiome samples for the NJC19 construction, we used MetaPhlAn v2.0 with the “sensitive-local” mapping option and QIIME v1.8.0 with Greengenes v13_8_pp reference files30,31, as described above. The aforementioned cys file of NJC19 for network visualization was produced by Cytoscape v3.7.236.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

is available for this paper at 10.1038/s41597-020-0516-5.

References

  • 1.Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Mackie, R. I., White, B. A. & Isaacson, R. E. Gastrointestinal Microbiology (Chapman & Hall, New York, 1997).
  • 3.Wang J, et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. USA. 2014;111:E2703–E2710. doi: 10.1073/pnas.1402342111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ridaura VK, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012;9:599–608. doi: 10.1038/nrgastro.2012.152. [DOI] [PubMed] [Google Scholar]
  • 6.Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014;12:661–672. doi: 10.1038/nrmicro3344. [DOI] [PubMed] [Google Scholar]
  • 7.Zhao L, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–1156. doi: 10.1126/science.aao5774. [DOI] [PubMed] [Google Scholar]
  • 8.Blaut M. Ecology and physiology of the intestinal tract. Curr. Top. Microbiol. Immunol. 2013;358:247–272. doi: 10.1007/82_2011_192. [DOI] [PubMed] [Google Scholar]
  • 9.Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450. doi: 10.1038/nature12721. [DOI] [PubMed] [Google Scholar]
  • 10.Sung J, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat. Commun. 2017;8:15393. doi: 10.1038/ncomms15393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Abubucker S, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. Plos Comput. Biol. 2012;8:e1002358. doi: 10.1371/journal.pcbi.1002358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl. Acad. Sci. USA. 2012;109:594–599. doi: 10.1073/pnas.1116053109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Levy R, Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl. Acad. Sci. USA. 2013;110:12804–12809. doi: 10.1073/pnas.1300926110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zelezniak A, et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. USA. 2015;112:6449–6454. doi: 10.1073/pnas.1421834112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Heinken A, Thiele I. Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes. 2015;6:120–130. doi: 10.1080/19490976.2015.1023494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kettle H, Louis P, Holtrop G, Duncan SH, Flint HJ. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 2015;17:1615–1630. doi: 10.1111/1462-2920.12599. [DOI] [PubMed] [Google Scholar]
  • 17.Magnúsdóttir S, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 2017;35:81–89. doi: 10.1038/nbt.3703. [DOI] [PubMed] [Google Scholar]
  • 18.Tramontano M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 2018;3:514–522. doi: 10.1038/s41564-018-0123-9. [DOI] [PubMed] [Google Scholar]
  • 19.Babaei P, Shoaie S, Ji B, Nielsen J. Challenges in modeling the human gut microbiome. Nat. Biotechnol. 2018;36:682–686. doi: 10.1038/nbt.4213. [DOI] [PubMed] [Google Scholar]
  • 20.Magnúsdóttir S, Heinken A, Fleming RMT, Thiele I. Reply to “Challenges in modeling the human gut microbiome”. Nat. Biotechnol. 2018;36:686–691. doi: 10.1038/nbt.4212. [DOI] [PubMed] [Google Scholar]
  • 21.Bleich A, Fox J. The mammalian microbiome and its importance in laboratory animal research. ILAR J. 2015;56:153–158. doi: 10.1093/ilar/ilv031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Nelson KE. An update on the status of current research on the mammalian microbiome. ILAR J. 2015;56:163–168. doi: 10.1093/ilar/ilv033. [DOI] [PubMed] [Google Scholar]
  • 23.Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis. Model Mech. 2015;8:1–16. doi: 10.1242/dmm.017400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pickard JM, et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature. 2014;514:638–641. doi: 10.1038/nature13823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Cullender TC, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14:571–581. doi: 10.1016/j.chom.2013.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Langille MG, et al. Microbial shifts in the aging mouse gut. Microbiome. 2014;2:50. doi: 10.1186/s40168-014-0050-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rooks MG, et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 2014;8:1403–1417. doi: 10.1038/ismej.2014.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Benson AK, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA. 2010;107:18933–18938. doi: 10.1073/pnas.1007028107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 2013;22:1904–1916. doi: 10.1111/mec.12206. [DOI] [PubMed] [Google Scholar]
  • 30.Truong DT, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods. 2015;12:902–903. doi: 10.1038/nmeth.3589. [DOI] [PubMed] [Google Scholar]
  • 31.Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bouladoux N, Harrison OJ, Belkaid Y. The mouse model of infection with Citrobacter rodentium. Curr. Protoc. Immunol. 2017;119:19.15.1–19.15.25. doi: 10.1002/cpim.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Heinken A, Sahoo S, Fleming RMT, Thiele I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes. 2013;4:28–40. doi: 10.4161/gmic.22370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Sung J, 2017. Data from: Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Dryad Digital Repository. [DOI] [PMC free article] [PubMed]
  • 35.Lim R, 2020. Data from: Large-scale metabolic interaction network of the mouse and human gut microbiota. Dryad Digital Repository. [DOI] [PMC free article] [PubMed]
  • 36.Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Theriot CM, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 2014;5:3114. doi: 10.1038/ncomms4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kovatcheva-Datchary P, et al. Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep. 2019;26:3772–3783. doi: 10.1016/j.celrep.2019.02.090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Citations

  1. Sung J, 2017. Data from: Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Dryad Digital Repository. [DOI] [PMC free article] [PubMed]
  2. Lim R, 2020. Data from: Large-scale metabolic interaction network of the mouse and human gut microbiota. Dryad Digital Repository. [DOI] [PMC free article] [PubMed]

Supplementary Materials

Supplementary Table (233KB, xlsx)

Data Availability Statement

Our Python code that converts the JSON format of NJC19 network data (NJC19_network.json35) to the format of Supplementary Table 1 can be downloaded from the Dryad Digital Repository35. For the taxonomic profiling of microbiome samples for the NJC19 construction, we used MetaPhlAn v2.0 with the “sensitive-local” mapping option and QIIME v1.8.0 with Greengenes v13_8_pp reference files30,31, as described above. The aforementioned cys file of NJC19 for network visualization was produced by Cytoscape v3.7.236.


Articles from Scientific Data are provided here courtesy of Nature Publishing Group

RESOURCES