Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 9;76(Pt 7):1051–1056. doi: 10.1107/S2056989020007380

Methyl 3-[(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)formamido]­propano­ate: crystal structure, Hirshfeld surface analysis and computational chemistry

Ignez Caracelli a,*, Julio Zukerman-Schpector b, Huey Chong Kwong c, Edward R T Tiekink c,
PMCID: PMC7336772  PMID: 32695451

The title compound is constructed about a tri-substituted 1,2,3-triazole ring, with the substituent at the C atom flanked by the C and N atoms being a substituted amide group, and with the adjacent C and N atoms bearing phenyl and benzyl groups, respectively. In the crystal, pairwise amide-N—H⋯O(carbon­yl) hydrogen bonds give rise to a centrosymmetric dimer.

Keywords: crystal structure; 1,2,3-triazole; Hirshfeld surface analysis; computational chemistry

Abstract

The title compound, C20H20N4O3, is constructed about a tri-substituted 1,2,3-triazole ring, with the substituent at one C atom flanked by the C and N atoms being a substituted amide group, and with the adjacent C and N atoms bearing phenyl and benzyl groups, respectively; the dihedral angle between the pendant phenyl rings is 81.17 (12)°, indicative of an almost orthogonal disposition. In the crystal, pairwise amide-N—H⋯O(carbon­yl) hydrogen bonds lead to a centrosymmetric dimer incorporating methyl­ene-C—H⋯π(benzene) inter­actions. The dimers are linked into a supra­molecular layer in the ab plane via methyl­ene-C—H⋯N(azo) and benzene-C—H⋯O(amide) inter­actions; the layers stack along the c-axis direction without directional inter­actions between them. The above-mentioned inter­molecular contacts are apparent in the analysis of the calculated Hirshfeld surface, which also provides evidence for short inter-layer H⋯C contacts with a significant dispersion energy contribution.

Chemical context  

The title 1,2,3-triazole-5-carboxamide derivative, (I), was recently prepared and characterized from a palladium-catal­ysed amino­carbonyl­ation reaction with the use of dimethyl carbonate as a sustainable solvent (de Albuquerque et al., 2019). The motivation for preparing such mol­ecules rests with the known pharmacological activity of these and related 1,2,3-triazole derivatives (Bonandi et al., 2017). Unambiguous structure determination of (I) is reported herein, via X-ray crystallography, as is a detailed analysis of the supra­molecular association by Hirshfeld surface analysis and computational chemistry.graphic file with name e-76-01051-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I), Fig. 1, features a tri-substituted 1,2,3-triazole ring. The five-membered ring is strictly planar with the r.m.s. deviation of the fitted atoms being 0.0021 Å. Within the ring, the lengthening of the formal azo-N2—N3 [1.306 (4) Å] and C1—C2 [1.388 (4) Å] double bonds coupled with the shortening of the N1—N2 [1.341 (4) Å], C1—N3 [1.368 (4) Å] and C2—N1 [1.347 (4) Å] bonds from their standard double/single bond values, are indicative of significant delocalization of π-electron density over the ring atoms. While the N1-bound C3-atom lies 0.131 (6) Å out of the plane of the ring, the C1- and C2-bound C10 [0.012 (6) Å] and C16 [0.008 (6) Å] atoms are effectively co-planar with the ring. The terminal residues are twisted out of the plane of the central ring as seen in the (C1,C2,N1–N3)/(C4–C9) [74.46 (13)°], (C1,C2,N1–N3)/(C10–C15) [28.10 (17)°] and (C1,C2,N1–N3)/(C16,N4,O1) [47.1 (2)°] dihedral angles. The dihedral angle between the terminal phenyl rings is 81.17 (12)° indicating a close to orthogonal disposition. There is a twist in the amide residue as seen in the value of the N4—C17—C18—C19 torsion angle of 73.6 (4)°, indicating a (+)syn-clinal relationship. This results in a dihedral angle close to orthogonal for the amide (C16,N4,O1) and carboxyl­ate (C19,O2,O3) residues, i.e. 73.6 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Supra­molecular features  

The mol­ecular packing in (I) features several identifiable points of contact, Table 1. The most evident of these are amide-N4—H⋯O2(carbon­yl) hydrogen bonds occurring between centrosymmetrically related mol­ecules to give the dimer shown in Fig. 2(a). The mol­ecules in the dimer are linked via a 12-membered {⋯OC3NH}2 synthon and additional stability to the assembly is provided by methyl­ene-C17—H⋯π(benzene) inter­actions. The dimeric aggregates are connected into a supra­molecular layer propagating in the ab plane via methyl­ene-C3—H⋯N2(azo) and benzene-C15—H⋯O1(amide) inter­actions, Fig. 2(b). The layers stack in an …ABAB… pattern along the c axis and inter-digitate to potentially form π–π inter­actions. However, these are not apparent, Fig. 2(c). A more detailed analysis of the inter­actions occurring in the inter-layer region is provided by an analysis of the calculated Hirshfeld surfaces.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the (C10–C15) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2i 0.86 (3) 2.04 (3) 2.884 (4) 167 (3)
C3—H3B⋯N2ii 0.97 2.55 3.495 (5) 165
C15—H15⋯O1iii 0.93 2.51 3.335 (5) 148
C17—H17BCg1i 0.97 2.71 3.640 (4) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Mol­ecular packing in (I): (a) supra­molecular dimer sustained by amide-N4—H⋯O2(carbon­yl) hydrogen bonds (H atoms omitted for clarity), (b) layer where the dimers of (a) are connected by methyl­ene-C3—H⋯N(azo) and benzene-C15—H⋯O1(amide) inter­actions [the methyl­ene-C17—H⋯π(benzene) inter­actions occur within the dimers] and (c) a view of the unit-cell contents shown in projection down the a axis. The N—H⋯O, C—H⋯O and C—H⋯π inter­actions are shown as blue, orange and purple dashed lines, respectively.

Hirshfeld surface analysis  

In order to probe the inter­action between mol­ecules of (I) in the crystal, Hirshfeld surfaces mapped with the normalized contact distance d norm (McKinnon et al., 2004), electrostatic potential (Spackman et al., 2008) and two-dimensional fingerprint plots were calculated using Crystal Explorer 17 (Turner et al., 2017) by established procedures (Tan et al., 2019). The electrostatic potentials were calculated using the wavefunction at the HF/STO-3 G level of theory. The bright-red spots on the Hirshfeld surface mapped over d norm in Fig. 3(a), i.e. near the amide-H4N and carbonyl-O2 atoms, correspond to the amide-N—H4N⋯O2(carbon­yl) hydrogen bond (Table 1). This hydrogen bond is also reflected in Hirshfeld surface mapped over the electrostatic potential Fig. 3(b), where the blue (positive electrostatic potential) and red (negative electrostatic potential) regions are apparent around the amide-H4N and carbonyl-O2 atoms, respectively.

Figure 3.

Figure 3

Views of the Hirshfeld surface for (I) mapped over (a) d norm in the range −0.249 to +1.397 arbitrary units and (b) the electrostatic potential map in the range −0.097 to 0.134 atomic units, highlighting N—H⋯O hydrogen bonding.

The methyl­ene-C3—H⋯N2(azo) and benzene-C15—H15⋯O1(amide) inter­actions are observed as faint-red spots on the d norm-mapped Hirshfeld surface in Fig. 4(a), with a distance of ∼0.3 Å shorter than the sum of their van der Waals radii, Table 2. The other faint red spots near the benzyl (C5, C12, C15, H7 and H12) and methyl­ene (H17A) atoms in Fig. 4(b) correspond to the inter-layer H7⋯C5, H17A⋯C12 and H12⋯C15 short contacts listed in Table 2. Even though the C—H⋯π inter­action, Table 1, was not manifested on the d norm-mapped Hirshfeld surface, this inter­action shows up as a distinctive orange ‘pothole’ on the shape-index-mapped Hirshfeld surface, Fig. 5.

Figure 4.

Figure 4

Views of the Hirshfeld surface mapped over d norm for (I) in the range −0.249 to +1.397 arbitrary units, highlighting (a) weak C—H⋯N and C—H⋯O inter­actions and (b) short H⋯C contacts, highlighted within red circles.

Table 2. Summary of short inter­atomic contacts (Å) in (I)a .

Contact Distance Symmetry operation
H4N⋯O2b 1.90 x + 1, −y, −z + 1
H3B⋯N2b 2.44 x + 1, −y + 1, −z + 1
H15⋯O1b 2.38 x, −y + 1, −z + 1
H7⋯C5 2.63 x, y − Inline graphic, −z + Inline graphic
H17A⋯C12 2.72 x, −y + Inline graphic, z − Inline graphic
H12⋯C15 2.73 x + 1, y − Inline graphic, −z + Inline graphic

Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values. (b) These inter­actions correspond to those reported in Table 1.

Figure 5.

Figure 5

A view of the Hirshfeld surface for (I) mapped with the shape-index property, highlighting the inter­molecular C—H⋯π inter­action.

The overall two-dimensional fingerprint plot for the Hirshfeld surface of (I) is shown with characteristic pseudo-symmetric wings in the upper left and lower right sides of the d e and d i diagonal axes, respectively, in Fig. 6(a). The delin­eated H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts from the overall two-dimensional fingerprint plot are illustrated in Fig. 6(b)–(e), respectively. The percentage contributions from different inter­atomic contacts to the Hirshfeld surface of (I) are summarized in Table 3. The greatest contribution to the overall Hirshfeld surface are due to H⋯H contacts, which contribute 46.7%. However, the H⋯H contacts appear as a square-like distribution with a small beak at d e = d i ∼2.6 Å in Fig. 6(b), corresponding to H8⋯H11 ≃2.67 Å (symmetry operation: −x, −y, −z + 1) indicating that all H⋯H contacts have long-range characteristics. The H⋯C/C⋯H contacts on the Hirshfeld surface, which contribute 24.9% to the overall surface, Fig. 6(c), reflect the C—H⋯π inter­action and C⋯H short contacts as discussed above. Consistent with the C—H⋯O and C—H⋯N inter­actions occurring in the crystal, H⋯O/O⋯H and H⋯N/N⋯H contacts contribute 14.4 and 12.6%, respectively, to the overall Hirshfeld surface. These appear as two sharp symmetric spikes in the fingerprint plots at d e + d i ≃ 1.9 and 2.4 Å in Fig. 6(d) and (e), respectively. The contribution from the other inter­atomic contacts summarized in Table 2 has a negligible influence on the calculated Hirshfeld surface of (I).

Figure 6.

Figure 6

(a) The full two-dimensional fingerprint plot for (II) and (b)–(e) those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts, respectively.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I).

Contact Percentage contribution
H⋯H 46.7
H⋯C/C⋯H 24.9
H⋯O/O⋯H 14.4
H⋯N/N⋯H 12.6
O⋯C/C⋯O 1.0
O⋯O 0.4

Energy frameworks  

The pairwise inter­action energies between the mol­ecules in the crystal of (I) were calculated using the 6-31G(d,p) basis set at the B3LYP level of theory. The total energy comprises four terms, i.e. the electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energy terms and were calculated with Crystal Explorer 17 (Turner et al., 2017). The benchmarked energies were scaled according to Mackenzie et al. (2017) while E ele, E pol, E dis, and E rep were scaled as 1.057, 0.740, 0.871 and 0.618, respectively (Edwards et al., 2017). The energies for the identified inter­molecular inter­actions are tabulated in Table 4. As anti­cipated, the greatest stabilization energy, with approximately equal contributions from E ele and E dis, arises from the conventional amide-N—H4N⋯O2(carbon­yl) hydrogen bond. The next most significant energies of stabilization arise from the methyl­ene-C3—H⋯N2(azo) (dominated by E dis) and benzene-C15—H15⋯O1(amide) (approximately equal contributions from E ele and E dis) inter­actions. In terms of energy, the next most significant contributions comes from an inter­action in the inter-layer region, namely the H17A⋯C12 contact, Table 4. As for the other identified inter-layer contacts, E dis is the dominant contributor. Views of the energy framework diagrams down a axis are shown in Fig. 7 and confirm the crystal to be mainly stabilized by electrostatic and dispersive forces with a clear dominance from the latter. The total E ele of all pairwise inter­actions sum to −142.9 kJ mol−1, while the total E dis computes to −251.1 kJ mol−1.

Table 4. Summary of inter­action energies (kJ mol−1) calculated for (I).

Contact R (Å) E ele E pol E dis E rep E tot
Intra-later            
N4—H4N⋯O2i 5.21 −73.7 −14.9 −84.6 94.6 −104.2
C15—H15⋯O1iii 5.57 −21.8 −5.7 −56.7 34.0 −55.0
C3—H3B⋯N2ii 9.97 −21.4 −6.2 −20.5 25.1 −29.6
H20B⋯N3iv +            
H9⋯O3v +            
H8⋯H18A v 11.43 −5.1 −1.6 −14.8 6.9 −15.2
H8⋯H14vi 12.81 −1.4 −0.5 −9.8 2.2 −9.0
H8⋯H11vii 9.77 −1.2 −0.4 −8.6 1.6 −8.0
H20C⋯H20C viii 14.84 1.3 −0.2 −3.1 0.6 −1.1
Inter-layer            
H17A⋯C12ix 9.37 −11.3 −3.4 −22.7 14.8 −25.1
H12⋯C15x 10.15 −5.1 −1.2 −16.3 10.0 −14.3
H7⋯C5xi 12.03 −3.2 −0.4 −14.0 11.5 −8.7

Notes: Symmetry operations: (i) −x + 1, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z + 1; (iv) x + 1, y, z; (v) x − 1, y, z; (vi) x − 1, −y + Inline graphic, z − Inline graphic; (vii) −x, −y, −z + 1; (viii) −x + 2, −y, −z + 1; (ix) x, −y + Inline graphic, −z − Inline graphic; (x) −x + 1, y − Inline graphic, −z + Inline graphic; (xi) −x, y − Inline graphic, −z + Inline graphic.

Figure 7.

Figure 7

Perspective views of the energy frameworks calculated for (I) showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the a axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 1 × 1 × 1 unit cells.

Database survey  

There is a sole literature precedent for (I), namely the analogue with ethyl carboxyl­ate and N-phenyl­amide substituents at the C1- and C2-atoms, respectively (WAGROM; Katritzky et al., 2003), hereafter (II). An overlay diagram of (I) and (II) is given in Fig. 8. As anti­cipated, the five-membered rings and the α-atoms of the three substituents exhibit close concordance but, beyond this, the mol­ecular conformations of the terminal residues differ significantly.

Figure 8.

Figure 8

Overlay diagram for (I), red image, and (II), blue image. The mol­ecules have been overlapped so the five-membered rings are superimposed.

Synthesis and crystallization  

Compound (I) was prepared as described in the literature (de Albuquerque et al., 2019). The crystals were obtained by the slow evaporation from an ethanol solution of (I).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2–1.5U eq(C). The nitro­gen-bound H atom was located in a difference Fourier map and refined with N—H = 0.86±0.01 Å, and with U iso(H) set to 1.2U eq(N).

Table 5. Experimental details.

Crystal data
Chemical formula C20H20N4O3
M r 364.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.4312 (14), 9.3013 (10), 18.737 (3)
β (°) 104.695 (4)
V3) 1927.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.46 × 0.31 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2009)
T min, T max 0.544, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24191, 3975, 2965
R int 0.066
(sin θ/λ)max−1) 0.628
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.077, 0.204, 1.08
No. of reflections 3975
No. of parameters 249
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.20

Computer programs: APEX2 and SAINT (Bruker, 2009), SIR2014 (Burla et al., 2015), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006), MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020007380/hb7921sup1.cif

e-76-01051-sup1.cif (737.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007380/hb7921Isup2.hkl

e-76-01051-Isup2.hkl (317KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020007380/hb7921Isup3.cml

CCDC reference: 2007664

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Regina H. A. Santos from IQSC-USP is thanked for the X-ray data collection. Ricardo S. Schwab from DQ-UFSCar is thanked for the generous gift of the sample.

supplementary crystallographic information

Crystal data

C20H20N4O3 F(000) = 768
Mr = 364.40 Dx = 1.256 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.4312 (14) Å Cell parameters from 6479 reflections
b = 9.3013 (10) Å θ = 2.5–23.9°
c = 18.737 (3) Å µ = 0.09 mm1
β = 104.695 (4)° T = 293 K
V = 1927.1 (4) Å3 Irregular, colourless
Z = 4 0.46 × 0.31 × 0.24 mm

Data collection

Bruker APEXII CCD diffractometer 2965 reflections with I > 2σ(I)
φ and ω scans Rint = 0.066
Absorption correction: multi-scan (SADABS; Bruker 2009) θmax = 26.5°, θmin = 1.8°
Tmin = 0.544, Tmax = 0.745 h = −14→14
24191 measured reflections k = −11→11
3975 independent reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.077 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0396P)2 + 3.4742P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3975 reflections Δρmax = 0.23 e Å3
249 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0267 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3969 (2) 0.4513 (3) 0.43041 (14) 0.0558 (7)
O2 0.6787 (3) 0.0379 (3) 0.5049 (2) 0.0836 (10)
O3 0.8198 (3) 0.2035 (3) 0.5160 (2) 0.0829 (10)
N1 0.1976 (2) 0.4009 (3) 0.49963 (14) 0.0450 (7)
N2 0.1426 (3) 0.3888 (4) 0.55460 (17) 0.0635 (9)
N3 0.2173 (3) 0.3227 (4) 0.60901 (16) 0.0598 (9)
N4 0.4356 (2) 0.2164 (3) 0.45617 (14) 0.0409 (6)
H4N 0.409 (3) 0.143 (2) 0.4749 (18) 0.049*
C1 0.3218 (3) 0.2907 (3) 0.58938 (16) 0.0399 (7)
C2 0.3086 (3) 0.3412 (3) 0.51805 (16) 0.0370 (7)
C3 0.1285 (3) 0.4596 (4) 0.42786 (19) 0.0527 (9)
H3A 0.180906 0.520492 0.407502 0.063*
H3B 0.062468 0.518335 0.435328 0.063*
C4 0.0785 (3) 0.3410 (4) 0.37406 (18) 0.0482 (8)
C5 0.1396 (4) 0.2962 (5) 0.3228 (2) 0.0691 (12)
H5 0.212880 0.338684 0.321872 0.083*
C6 0.0922 (6) 0.1895 (7) 0.2736 (2) 0.0986 (19)
H6 0.133334 0.158992 0.239445 0.118*
C7 −0.0168 (7) 0.1276 (7) 0.2749 (3) 0.111 (2)
H7 −0.049067 0.054764 0.241663 0.133*
C8 −0.0772 (6) 0.1728 (6) 0.3245 (3) 0.1071 (19)
H8 −0.151197 0.131428 0.324646 0.128*
C9 −0.0299 (4) 0.2792 (5) 0.3747 (2) 0.0707 (12)
H9 −0.071464 0.308948 0.408779 0.085*
C10 0.4213 (3) 0.2167 (3) 0.64097 (16) 0.0410 (7)
C11 0.3958 (4) 0.1262 (4) 0.69416 (19) 0.0598 (10)
H11 0.316046 0.112350 0.695971 0.072*
C12 0.4876 (6) 0.0571 (5) 0.7442 (2) 0.0812 (15)
H12 0.469542 −0.003111 0.779513 0.097*
C13 0.6056 (5) 0.0765 (5) 0.7421 (2) 0.0787 (15)
H13 0.667277 0.028938 0.775749 0.094*
C14 0.6325 (4) 0.1658 (5) 0.6906 (2) 0.0679 (12)
H14 0.712690 0.179290 0.689602 0.081*
C15 0.5411 (3) 0.2367 (4) 0.63968 (18) 0.0489 (8)
H15 0.560139 0.297321 0.604805 0.059*
C16 0.3854 (3) 0.3416 (3) 0.46468 (16) 0.0357 (7)
C17 0.5073 (3) 0.1985 (4) 0.40222 (19) 0.0560 (10)
H17A 0.469697 0.251931 0.357879 0.067*
H17B 0.508059 0.097734 0.389017 0.067*
C18 0.6360 (3) 0.2500 (4) 0.4315 (2) 0.0601 (10)
H18A 0.673282 0.260002 0.390743 0.072*
H18B 0.634970 0.344092 0.453692 0.072*
C19 0.7104 (3) 0.1507 (4) 0.4873 (2) 0.0525 (9)
C20 0.9011 (5) 0.1147 (7) 0.5700 (4) 0.116 (2)
H20A 0.864583 0.092823 0.609558 0.173*
H20B 0.975609 0.165410 0.589204 0.173*
H20C 0.917047 0.027061 0.547137 0.173*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0565 (15) 0.0461 (14) 0.0659 (16) −0.0003 (11) 0.0177 (12) 0.0213 (12)
O2 0.079 (2) 0.0530 (17) 0.114 (3) −0.0147 (15) 0.0151 (18) 0.0224 (17)
O3 0.0569 (17) 0.071 (2) 0.116 (3) −0.0102 (15) 0.0128 (17) 0.0251 (18)
N1 0.0430 (15) 0.0491 (16) 0.0420 (14) 0.0096 (13) 0.0092 (12) −0.0051 (12)
N2 0.0502 (18) 0.092 (3) 0.0525 (18) 0.0146 (18) 0.0204 (15) −0.0114 (18)
N3 0.0558 (18) 0.082 (2) 0.0465 (17) 0.0083 (17) 0.0218 (14) −0.0051 (16)
N4 0.0478 (15) 0.0374 (14) 0.0422 (14) −0.0016 (12) 0.0203 (12) 0.0002 (12)
C1 0.0442 (17) 0.0411 (17) 0.0365 (15) 0.0006 (14) 0.0140 (13) −0.0057 (13)
C2 0.0396 (16) 0.0311 (15) 0.0399 (16) 0.0042 (13) 0.0094 (12) −0.0019 (13)
C3 0.050 (2) 0.048 (2) 0.055 (2) 0.0155 (16) 0.0042 (16) 0.0014 (16)
C4 0.0507 (19) 0.0495 (19) 0.0407 (17) 0.0144 (16) 0.0048 (14) 0.0016 (15)
C5 0.076 (3) 0.084 (3) 0.049 (2) 0.021 (2) 0.018 (2) 0.001 (2)
C6 0.128 (5) 0.113 (5) 0.048 (2) 0.037 (4) 0.009 (3) −0.024 (3)
C7 0.133 (5) 0.096 (4) 0.079 (4) 0.006 (4) −0.019 (4) −0.041 (3)
C8 0.108 (4) 0.094 (4) 0.104 (4) −0.032 (3) −0.001 (4) −0.024 (4)
C9 0.062 (3) 0.082 (3) 0.064 (2) −0.007 (2) 0.009 (2) −0.014 (2)
C10 0.059 (2) 0.0350 (16) 0.0297 (14) 0.0017 (14) 0.0129 (13) −0.0044 (12)
C11 0.093 (3) 0.052 (2) 0.0417 (19) 0.000 (2) 0.0307 (19) 0.0006 (16)
C12 0.148 (5) 0.060 (3) 0.042 (2) 0.021 (3) 0.035 (3) 0.0155 (19)
C13 0.119 (4) 0.070 (3) 0.038 (2) 0.037 (3) 0.002 (2) 0.0025 (19)
C14 0.064 (2) 0.078 (3) 0.052 (2) 0.019 (2) −0.0025 (18) −0.005 (2)
C15 0.057 (2) 0.048 (2) 0.0388 (17) 0.0015 (16) 0.0058 (15) 0.0003 (15)
C16 0.0341 (15) 0.0349 (16) 0.0360 (15) −0.0021 (13) 0.0053 (12) 0.0029 (13)
C17 0.059 (2) 0.069 (2) 0.0475 (19) 0.0052 (19) 0.0267 (17) −0.0019 (17)
C18 0.058 (2) 0.059 (2) 0.072 (2) 0.0023 (19) 0.034 (2) 0.015 (2)
C19 0.055 (2) 0.044 (2) 0.066 (2) −0.0056 (17) 0.0293 (18) 0.0014 (17)
C20 0.068 (3) 0.119 (5) 0.145 (5) 0.011 (3) 0.000 (3) 0.036 (4)

Geometric parameters (Å, º)

O1—C16 1.231 (4) C7—H7 0.9300
O2—C19 1.184 (4) C8—C9 1.378 (7)
O3—C19 1.324 (5) C8—H8 0.9300
O3—C20 1.446 (6) C9—H9 0.9300
N1—N2 1.341 (4) C10—C15 1.388 (5)
N1—C2 1.347 (4) C10—C11 1.391 (5)
N1—C3 1.480 (4) C11—C12 1.376 (6)
N2—N3 1.306 (4) C11—H11 0.9300
N3—C1 1.368 (4) C12—C13 1.371 (7)
N4—C16 1.326 (4) C12—H12 0.9300
N4—C17 1.464 (4) C13—C14 1.366 (6)
N4—H4N 0.860 (10) C13—H13 0.9300
C1—C2 1.388 (4) C14—C15 1.389 (5)
C1—C10 1.464 (4) C14—H14 0.9300
C2—C16 1.489 (4) C15—H15 0.9300
C3—C4 1.506 (5) C17—C18 1.511 (5)
C3—H3A 0.9700 C17—H17A 0.9700
C3—H3B 0.9700 C17—H17B 0.9700
C4—C9 1.368 (5) C18—C19 1.489 (5)
C4—C5 1.387 (5) C18—H18A 0.9700
C5—C6 1.370 (7) C18—H18B 0.9700
C5—H5 0.9300 C20—H20A 0.9600
C6—C7 1.378 (8) C20—H20B 0.9600
C6—H6 0.9300 C20—H20C 0.9600
C7—C8 1.358 (8)
C19—O3—C20 116.5 (4) C11—C10—C1 119.2 (3)
N2—N1—C2 111.3 (3) C12—C11—C10 120.5 (4)
N2—N1—C3 118.9 (3) C12—C11—H11 119.7
C2—N1—C3 129.5 (3) C10—C11—H11 119.7
N3—N2—N1 107.3 (3) C13—C12—C11 120.3 (4)
N2—N3—C1 109.6 (3) C13—C12—H12 119.8
C16—N4—C17 121.3 (3) C11—C12—H12 119.8
C16—N4—H4N 116 (2) C14—C13—C12 120.0 (4)
C17—N4—H4N 121 (2) C14—C13—H13 120.0
N3—C1—C2 107.2 (3) C12—C13—H13 120.0
N3—C1—C10 120.6 (3) C13—C14—C15 120.6 (4)
C2—C1—C10 132.1 (3) C13—C14—H14 119.7
N1—C2—C1 104.6 (3) C15—C14—H14 119.7
N1—C2—C16 120.3 (3) C10—C15—C14 119.9 (4)
C1—C2—C16 135.2 (3) C10—C15—H15 120.1
N1—C3—C4 111.3 (3) C14—C15—H15 120.1
N1—C3—H3A 109.4 O1—C16—N4 123.9 (3)
C4—C3—H3A 109.4 O1—C16—C2 120.8 (3)
N1—C3—H3B 109.4 N4—C16—C2 115.2 (3)
C4—C3—H3B 109.4 N4—C17—C18 112.1 (3)
H3A—C3—H3B 108.0 N4—C17—H17A 109.2
C9—C4—C5 119.7 (4) C18—C17—H17A 109.2
C9—C4—C3 119.5 (3) N4—C17—H17B 109.2
C5—C4—C3 120.7 (4) C18—C17—H17B 109.2
C6—C5—C4 120.0 (5) H17A—C17—H17B 107.9
C6—C5—H5 120.0 C19—C18—C17 112.9 (3)
C4—C5—H5 120.0 C19—C18—H18A 109.0
C5—C6—C7 119.8 (5) C17—C18—H18A 109.0
C5—C6—H6 120.1 C19—C18—H18B 109.0
C7—C6—H6 120.1 C17—C18—H18B 109.0
C8—C7—C6 120.0 (5) H18A—C18—H18B 107.8
C8—C7—H7 120.0 O2—C19—O3 122.7 (4)
C6—C7—H7 120.0 O2—C19—C18 125.7 (4)
C7—C8—C9 120.7 (6) O3—C19—C18 111.6 (3)
C7—C8—H8 119.7 O3—C20—H20A 109.5
C9—C8—H8 119.7 O3—C20—H20B 109.5
C4—C9—C8 119.7 (5) H20A—C20—H20B 109.5
C4—C9—H9 120.1 O3—C20—H20C 109.5
C8—C9—H9 120.1 H20A—C20—H20C 109.5
C15—C10—C11 118.7 (3) H20B—C20—H20C 109.5
C15—C10—C1 122.0 (3)
C2—N1—N2—N3 0.5 (4) N3—C1—C10—C15 −150.9 (3)
C3—N1—N2—N3 174.1 (3) C2—C1—C10—C15 28.8 (5)
N1—N2—N3—C1 −0.3 (4) N3—C1—C10—C11 27.5 (5)
N2—N3—C1—C2 −0.1 (4) C2—C1—C10—C11 −152.8 (4)
N2—N3—C1—C10 179.6 (3) C15—C10—C11—C12 −0.5 (5)
N2—N1—C2—C1 −0.6 (4) C1—C10—C11—C12 −178.9 (3)
C3—N1—C2—C1 −173.3 (3) C10—C11—C12—C13 0.0 (6)
N2—N1—C2—C16 179.6 (3) C11—C12—C13—C14 0.5 (7)
C3—N1—C2—C16 6.8 (5) C12—C13—C14—C15 −0.5 (6)
N3—C1—C2—N1 0.4 (4) C11—C10—C15—C14 0.5 (5)
C10—C1—C2—N1 −179.3 (3) C1—C10—C15—C14 178.9 (3)
N3—C1—C2—C16 −179.8 (3) C13—C14—C15—C10 0.0 (6)
C10—C1—C2—C16 0.6 (6) C17—N4—C16—O1 −2.0 (5)
N2—N1—C3—C4 −97.4 (4) C17—N4—C16—C2 176.2 (3)
C2—N1—C3—C4 74.8 (5) N1—C2—C16—O1 46.0 (4)
N1—C3—C4—C9 85.4 (4) C1—C2—C16—O1 −133.9 (4)
N1—C3—C4—C5 −96.2 (4) N1—C2—C16—N4 −132.3 (3)
C9—C4—C5—C6 −0.7 (6) C1—C2—C16—N4 47.9 (5)
C3—C4—C5—C6 −179.1 (4) C16—N4—C17—C18 82.3 (4)
C4—C5—C6—C7 0.4 (8) N4—C17—C18—C19 73.6 (4)
C5—C6—C7—C8 0.3 (9) C20—O3—C19—O2 0.8 (7)
C6—C7—C8—C9 −0.8 (10) C20—O3—C19—C18 −178.9 (4)
C5—C4—C9—C8 0.2 (7) C17—C18—C19—O2 5.0 (6)
C3—C4—C9—C8 178.6 (4) C17—C18—C19—O3 −175.4 (3)
C7—C8—C9—C4 0.6 (9)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the (C10–C15) ring.

D—H···A D—H H···A D···A D—H···A
N4—H4N···O2i 0.86 (3) 2.04 (3) 2.884 (4) 167 (3)
C3—H3B···N2ii 0.97 2.55 3.495 (5) 165
C15—H15···O1iii 0.93 2.51 3.335 (5) 148
C17—H17B···Cg1i 0.97 2.71 3.640 (4) 161

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grants 312210/2019–1, 433957/2018–2, 406273/2015–4, and 303207/2017–5. Sunway University grant STR-RCTR-RCCM-001–2019.

References

  1. Albuquerque, D. Y. de, de Moraes, J. R. & Schwab, R. S. (2019). Eur. J. Org. Chem. pp. 6673–6681.
  2. Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). Drug Discovery Today, 22, 1572–1581. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
  5. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  6. ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.
  7. Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Faraday Discuss. 203, 93–112. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Katritzky, A. R., Zhang, Y., Singh, S. K. & Steel, P. J. (2003). Arkivoc, pp. 47–64.
  10. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  11. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  14. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  15. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020007380/hb7921sup1.cif

e-76-01051-sup1.cif (737.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007380/hb7921Isup2.hkl

e-76-01051-Isup2.hkl (317KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020007380/hb7921Isup3.cml

CCDC reference: 2007664

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES