Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 19;76(Pt 7):1107–1112. doi: 10.1107/S2056989020007975

Crystal structures and Hirshfeld surface analyses of 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one and 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one chloro­form monosolvate

Mustapha Tiouabi a, Raphaël Tabacchi a, Helen Stoeckli-Evans b,*
PMCID: PMC7336779  PMID: 32695461

Bromination of 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one resulted in the formation of the 5-bromo derivative, 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one. The two mol­ecules differ essentially in the orientation of the meth­oxy group on position 6 of the isocoumarin ring system.

Keywords: crystal structure, isocoumarin, isochromen-1-one, hydrogen bonding, C—H⋯π inter­actions, offset π-π– inter­actions, Hirshfeld surface analysis

Abstract

In the mol­ecule of 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one, C12H12O4, (I), the two meth­oxy groups are directed anti with respect to each other. In the mol­ecule of the brom­inated derivative, 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one, that crystallized as a chloro­form monosolvate, C12H11BrO4·CHCl3, (II·CHCl3), the meth­oxy groups are directed syn to each other. In the crystal of I, mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming a supra­molecular framework. In the crystal of II·CHCl3, mol­ecules are linked by C—H⋯O hydrogen bonds forming 21 helices parallel to the b-axis direction. The chloro­form solvate mol­ecules are linked to the helices by C—H⋯O(carbon­yl) hydrogen bonds. The helices stack up the c-axis direction and are linked by offset π–π inter­actions [inter­centroid distance = 3.517 (3) Å], forming layers parallel to the (100) plane. Compound II·CHCl3 was refined as a two-component twin. Two chlorine atoms of the chloro­form solvate are disordered over two positions and were refined with a fixed occupancy ratio of 0.5:0.5.

Chemical context  

Compound I is the protected form of the isocoumarin 6,8-dihy­droxy-3-methyl-1H-isochromen-1-one (L), which is a phytotoxin produced by the Ceratocystis fimbriata species coffea and platani (Gremaud & Tabacchi, 1994; Bürki et al., 2003). These fungi are pathogenic agents responsible for infections of coffee, plane and elm trees (Michel, 2001). Compound L has also been isolated from the organic extracts of the fungus Ceratocystis minor (Hemingway et al., 1977). The crystal structure of L has been reported for a sample obtained from the fermented culture of the endophytic marine fungus Cephalosporium sp. (Shao et al., 2009). Herein, we report on the crystal structures and Hirshfeld surface analyses of the 6,8-dimeth­oxy derivative of L, viz. 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one (I) and compound II, 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one, the brominated derivative of I. The syntheses of compounds I and II were undertaken during the syntheses of derivatives of natural isocoumarins, metabolites of the pathogenic fungus Ceratocystis fimbriata sp. (Tiouabi, 2005).graphic file with name e-76-01107-scheme1.jpg

Structural commentary  

The mol­ecular structures of compounds I and II are illustrated in Figs. 1 and 2, respectively. Compound II crystallized as a chloro­form monosolvate. Both isocoumarin mol­ecules are essentially planar with an r.m.s. deviation of 0.02 Å for I and 0.016 Å for II (H atoms not included). The maximum deviation from their mean planes is 0.047 (1) Å for atom O2 in I, and 0.035 (8) Å for atom C10 in II. The two mol­ecules differ essentially in the orientation of the meth­oxy group on atom C2. In I it is anti with respect to that on atom C4, while in II, owing to the steric hindrance of the Br atom, it has been rotated by 180° about the C2—O3 bond and is positioned syn with respect to the meth­oxy group on atom C4 (Fig. 3).

Figure 1.

Figure 1

The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the chloro­form solvate mol­ecule has been omitted.

Figure 3.

Figure 3

The structural overlap of compounds I (blue) and II (red); r.m.s. deviation = 0.0107 Å (Mercury; Macrae et al., 2020).

Supra­molecular features  

The crystal packing of compound I is illustrated in Fig. 4. Mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds, C1—H1⋯O1i and C7—H7⋯O1i, forming chains propagating along the c-axis direction (Table 1). The chains are linked by C—H⋯π inter­actions (C12—H12ACg ii and C12—H12BCg iii, where Cg is the centroid of the C1–C4/C8/C9 benzene ring), forming a supra­molecular framework (Table 1 and Fig. 4).

Figure 4.

Figure 4

A view along the a axis of the crystal packing of compound I. The hydrogen bonds (Table 1) are shown as dashed lines and the C—H⋯π inter­actions as blue arrows. For clarity, only the H atoms (grey sticks and blue balls) involved in these inter­actions have been included.

Table 1. Hydrogen-bond geometry (Å, °) for I .

Cg is the centroid of the C1–C4/C8/C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.55 3.366 (2) 144
C7—H7⋯O1i 0.95 2.50 3.3269 (19) 146
C12—H12ACg ii 0.98 2.67 3.4902 (18) 141
C12—H12BCg iii 0.98 2.88 3.5456 (18) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

In the crystal of II·CHCl3, mol­ecules are linked by C—H⋯O hydrogen bonds, C10—H10C⋯O1i, forming 21 helices lying parallel to the b-axis direction (Table 2 and Fig. 5). The chloro­form solvate mol­ecules are linked to the helices by C—H⋯Cl and C—H⋯O hydrogen bonds, C11—H11C⋯Cl3A and C20—H20⋯O1 (Table 2). The helices stack up the c-axis direction and are linked by offset π–π inter­actions: CgCg ii = 3.517 (3) Å, where Cg is the centroid of the C1–C4/C8/C9 benzene ring; α = 0.7 (3)°, β = 19.2°, γ = 19.8°, inter­planar distances are 3.359 (2) and 3.373 (2) Å, offset = 1.173 Å, symmetry code: (ii) x, −y + Inline graphic, z − Inline graphic. These latter inter­actions result in the formation of layers lying parallel to the bc plane (Fig. 5). There are no inter-layer contacts present.

Table 2. Hydrogen-bond geometry (Å, °) for II·CHCl3 .

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O1i 0.98 2.59 3.511 (6) 156
C11—H11C⋯Cl3A 0.98 2.79 3.629 (9) 144
C20—H20⋯O1 1.00 2.15 3.126 (6) 164

Symmetry code: (i) Inline graphic.

Figure 5.

Figure 5

A view along the c axis of the crystal packing of compound II·CHCl3. The hydrogen bonds (Table 2) are shown as dashed lines.

Hirshfeld surfaces and fingerprint plots for I and II·CHCl3  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the calculation of the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17.5 (Turner et al., 2017), following the protocol of Tiekink and collaborators (Tan et al., 2019). The Hirshfeld surface is colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

A summary of the short inter­atomic contacts in I and II·CHCl3 is given in Table 3. The Hirshfeld surfaces of I and II mapped over d norm, are shown in Fig. 6 a and b, respectively. The faint red spots indicate that short contacts are significant in the crystal packing of both compounds.

Table 3. Short inter­atomic contactsa (Å) for I and II·CHCl3 .

Atom1 Atom2 Length Length − VdW Symm. code Atom 2
I        
H7 O1 2.497 −0.223 x, Inline graphic − y, −Inline graphic + z
H1 O1 2.551 −0.169 x, Inline graphic − y, −Inline graphic + z
H10A H10A 2.281 −0.119 x, −y, −z
H11C O2 2.683 −0.037 Inline graphic + x, Inline graphic − y, 1 − z
H11B O1 2.691 −0.029 Inline graphic + x, Inline graphic − y, 1 − z
O3 O2 3.023 −0.017 x, −Inline graphic + y, Inline graphic − z
H10B C11 2.903 0.003 x, Inline graphic − y, −Inline graphic + z
C10 H12C 2.911 0.011 Inline graphic + x, Inline graphic − y, −z
C11 C11 3.411 0.011 x, −y, 1 − z
O4 H11A 2.735 0.015 x, −y, 1 − z
C8 H12B 2.915 0.015 Inline graphic − x, −Inline graphic + y, z
C8 H12A 2.920 0.020 Inline graphic + x, y, Inline graphic − z
C1 H12A 2.938 0.038 Inline graphic + x, y, Inline graphic − z
H1 O4 2.763 0.043 x, Inline graphic − y, −Inline graphic + z
C11 H11A 2.978 0.078 x, −y, 1 − z
C9 H12B 2.984 0.084 Inline graphic − x, −Inline graphic + y, z
O3 C6 3.310 0.090 x, −Inline graphic + y, Inline graphic − z
H10C C11 2.997 0.097 Inline graphic − x, −y, −Inline graphic + z
H10B O1 2.819 0.099 Inline graphic + x, y, Inline graphic − z
         
II·CHCl3        
O1 H20 2.154 −0.566 x, y, z
H11C Cl3A 2.793 −0.157 x, y, z
H10C O1 2.595 −0.125 1 − x, −Inline graphic + y, Inline graphic − z
H10A H10A 2.291 −0.109 1 − x, −y, 2 − z
O1 C20 3.126 −0.094 x, y, z
H7 Cl3A 2.871 −0.079 −1 + x, y, z
C3 C5 3.375 −0.025 x, Inline graphic − y, −Inline graphic + z
C10 O2 3.196 −0.024 1 − x, −Inline graphic + y, Inline graphic − z
C1 C8 3.399 −0.001 x, Inline graphic − y, −Inline graphic + z
H11A Cl1 2.961 0.011 x, Inline graphic − y, −Inline graphic + z
C4 C4 3.432 0.032 x, Inline graphic − y, −Inline graphic + z
H10C O2 2.754 0.034 1 − x, −Inline graphic + y, Inline graphic − z
Br1 C7 3.591 0.041 x, Inline graphic − y, −Inline graphic + z
C1 C7 3.463 0.063 x, Inline graphic − y, −Inline graphic + z
C8 C8 3.485 0.085 x, Inline graphic − y, −Inline graphic + z
C11 Cl1 3.538 0.088 x, Inline graphic − y, −Inline graphic + z
C9 C4 3.495 0.095 x, Inline graphic − y, −Inline graphic + z

(a) Calculated using Mercury (Macrae et al., 2020).

Figure 6.

Figure 6

(a) The Hirshfeld surface of compound I, mapped over d norm, in the colour range −0.1596 to 1.1682 a.u., (b) the Hirshfeld surface of compound II·CHCl3, mapped over d norm, in the colour range −0.0734 to 1.3731 a.u.. The dashed lines indicate the hydrogen bonds linking the two units (see Table 2).

The full two-dimensional fingerprint plot for I and fingerprint plots delineated into H⋯H (40.3%), O⋯H/H⋯O (28.2%), C⋯H/H⋯C (24.6%), C⋯O (3.0%) and O⋯O (2.9%) contacts, are shown in Fig. 7. The C⋯C contacts contribute only 1.0%.

Figure 7.

Figure 7

The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into H⋯H (40.3%), O⋯H/H⋯O (28.2%), C⋯H/H⋯C (24.6%), C⋯O (3.0%), and O⋯O (2.9%) contacts.

The full two-dimensional fingerprint plot for compound II·CHCl3, and fingerprint plots delineated into Cl⋯H/H⋯Cl (28.0%), H⋯H (18.3%), O⋯H/H⋯O (17.9%), C⋯C (9.6%), Br⋯H/H⋯Br (7.9%), Cl⋯Br (7.3%) and Cl⋯Cl (5.7%) contacts are shown in Fig. 8. The C⋯O contacts contribute 2.2% but the C⋯H/H⋯C contacts contribute only 1.2% compared to 24.6% in I.

Figure 8.

Figure 8

The full two-dimensional fingerprint plot for compound II·CHCl3, and fingerprint plots delineated into Cl⋯H/H⋯Cl (28.0%), H⋯H (18.3%), O⋯H/H⋯O (17.9%), C⋯C (9.6%), Br⋯H/H⋯Br (7.9%), Cl⋯Br (7.3%) and Cl⋯Cl (5.7%),contacts.

The H⋯H contacts in II·CHCl3 (18.3%) are considerably reduced compared to those in I (H⋯H at 40.3%), while the Cl⋯H/H⋯Cl (28.0%) and O⋯H/H⋯O (17.9%) contacts dominate the inter­atomic contacts and combined are stronger that those in I (O⋯H/H⋯O at 28.2%).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for the 1H-isochromen-1-one skeleton gave 217 hits. Only one compound contains 6,8-dimeth­oxy substituents, viz. 5,6,8-trimeth­oxy-3,4,7-tri­methyl­isocoumarin (CSD refcode JICLOW; Botha et al., 1991). A search for the 3-methyl-1H-isochromen-1-one substructure gave 16 hits. Apart from the structure of 3-methyl-1H-isochromen-1-one itself (GECYUK; Liu et al., 2012), the most important structure is that for 6,8-dihy­droxy-3-methyl-1H-isochromen-1-one (MOSLOW; Shao et al., 2009), viz. compound L described above (see §1. Chemical context).

Synthesis and crystallization  

The syntheses of compounds I and II are illustrated in Fig. 9, together with the atom labelling in relation to the NMR spectra. The syntheses of the keto-acid, 1,2,4-dimeth­oxy-6-(2-oxoprop­yl)benzoic acid (1), together with compounds I and II were undertaken during the syntheses of derivatives of natural isocoumarins, metabolites of the pathogenic fungus Ceratocystis fimbriata sp. (Tiouabi, 2005).

Figure 9.

Figure 9

Reaction schemes for the syntheses of compounds I and II, with atom-labelling schemes in relation to the NMR spectra (see §6. Synthesis and crystallization).

Preparation of Reagent A (1 M Ac2O; 10−3 M HClO4), was carried out according to the protocol of Edwards & Rao (Edwards & Rao, 1966). 0.0501 ml of HClO4 at 70% (0.575 mmol) were dissolved in 50 ml of AcOEt. 30 ml of this solution were added to a solution of 14.4 ml of Ac2O (0.153 mol) in 105.6 ml of AcOEt to give 150 ml of Reagent A.

Synthesis of 6,8-dimeth­oxy-3-methyl-1 H -isochromen-1-one (I): In a 250 ml flask equipped with a magnetic stirrer and under an atmosphere of argon, the keto-acid (1) was dissolved in 150 ml of Reagent A. The mixture was stirred vigorously for 10–15 min, then washed with an aqueous solution of saturated NaHCO3. The organic phase was dried over anhydrous Na2SO4, then filtered and the filtrate concentrated using rotary evaporation. The brown solid obtained was purified by chromatography on a silica column using as eluent CH2Cl2/AcOEt (15/1, v/v). On evaporation of the eluent 1.20 g of compound I (yield 95%) were obtained as colourless block-like crystals.

Analytical data for I: R f (CH2Cl2/MeOH: 20/0.5; UV) 0.735. 1H NMR (400 MHz, CDCl3, 298 K): 2.16 [d, 4J(3a-4) = 1, 3H, CH3], 3.84 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.03 [q, 4J(4-3a) = 1.0, 1H, H-4], 6.24 (d, J m = 2.3, 1H, ArH-5), 6.36 (d, J m = 2.3, 1H, ArH-7). 13C NMR (100 Hz, CDCl3, 298 K, HETCOR–SR/LR): 19.82 C(3a), 55.97 C(OCH3, 56.59 C(OCH3), 98.46 C(7), 99.80 C(5), 103.04 C(9), 104.08 C(4), 142.80 C(10), 155.79 C(3), 159.97 C(1), 163.56 C(8), 165.75 C(6). MS [ESI(+)]: ms 243.1 [M + Na]+; ms 221.3 [M + H]+. HR–MS (ESI(+)): ms 243.06256 [M + Na]+. IR (KBr disk, cm−1): 1713 vs, 1667 m, 1599 vs, 1168 m, 969 m.

Synthesis of 5-bromo-6,8-dimeth­oxy-3-methyl-1 H -isochro­men-1-one (II): In a 25 ml flask equipped with a magnetic stirrer and under an atmosphere of argon, NBS (N-bromosuccinimide) (28 mg, 0.158 mmol) was added under stirring to a solution of compound I (0.136 mmol) dissolved in CH3CN (1.5 ml). The reaction mixture was stirred for 2 h at room temperature. On completion of the reaction, followed by thin-layer chromatography using CH2Cl2/AcOEt (15/2, v/v) as eluent, NaBH4 (5.2 mg, 0.136 mmol) was added, resulting in the transformation of the yellow solution into a white suspension. After 1 h the reaction mixture was diluted using water and then extracted five times using AcOEt. The organic phases were combined, dried over anhydrous Na2SO4, then filtered and the filtrate concentrated using rotary evaporation. The white solid obtained was purified by chromatography on a silica column using CH2Cl2/AcOEt (20/1, v/v) as eluent. On evaporation of the eluent, 30 mg of compound II (yield 74%) were obtained as colourless rod-like crystals.

Analytical data for II: R f (CH2Cl2/AcOEt: 15/2, UV) 0.26. 1H NMR (400 MHz, CDCl3, 298K): 2.26 [d, 4J(3a-4) = 0.8, 3H, CH3], 4.02 (s, 6H, 2 × OCH3), 6.45 (s, 1H, ArH-7), 6.58 [q, 4J(4-3a) = 0.8, 1H, H-4]. 13C NMR (100 Hz, CDCl3, 298K, HETCOR–SR): 20.31 C(3a), 56.80 C(OCH3), 56.90 C(OCH3), 94.67 C(7), 98.47 C(5), 102.73 C(4), 103.56 C(9), 140.41 C(10), 156.86 C(3), 159.28 C(1), 161.67 C(8), 163.37 C(6). MS[ESI(+)]: ms 299.1 [M(79Br) + H]+, ms 301.1 [M(81Br) + H]+. HR–MS [ESI(+)]: ms 320.97315 [M(79Br) + Na]+, ms 322.97144 [M(81Br) + Na]+. IR (KBr disk, cm−1): 1724 vs, 1667 s, 1580 vs, 1215 vs, 1038 m.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. For both I and II the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.95–1.00 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 4. Experimental details.

  I II·CHCl3
Crystal data
Chemical formula C12H12O4 C12H11BrO4·CHCl3
M r 220.22 418.49
Crystal system, space group Orthorhombic, P b c a Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 12.7875 (9), 11.3732 (12), 14.3637 (12) 11.7655 (9), 20.4640 (17), 6.7332 (5)
α, β, γ (°) 90, 90, 90 90, 90.161 (9), 90
V3) 2089.0 (3) 1621.1 (2)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 3.04
Crystal size (mm) 0.36 × 0.28 × 0.26 0.30 × 0.11 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020) Multi-scan (MULABS; Spek, 2020)
T min, T max 0.903, 1.000 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24778, 2835, 1990 3131, 3131, 2066
R int 0.077 0.087
(sin θ/λ)max−1) 0.689 0.616
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.116, 1.05 0.040, 0.100, 0.88
No. of reflections 2835 3131
No. of parameters 148 211
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18 0.57, −0.40

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2005), EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Compound II·CHCl3 was refined as a two-component twin with a 180° rotation about axis c*. Details are given in the archived CIF. The final refined BASF factor is 0.2590 (19). Two of the chloro­form solvate chlorine atoms (Cl2 and Cl3) are disordered over two positions and were refined with a fixed occupancy ratio (Cl2A:Cl2B and Cl3A:Cl3B) of 0.5:0.5.

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989020007975/dj2010sup1.cif

e-76-01107-sup1.cif (997.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007975/dj2010Isup2.hkl

e-76-01107-Isup2.hkl (227.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007975/dj2010IIsup3.hkl

e-76-01107-IIsup3.hkl (250.2KB, hkl)

CCDC references: 2009829, 2009830

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RT and HSE are grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Crystal data

C12H12O4 Dx = 1.400 Mg m3
Mr = 220.22 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 10689 reflections
a = 12.7875 (9) Å θ = 1.7–29.6°
b = 11.3732 (12) Å µ = 0.11 mm1
c = 14.3637 (12) Å T = 173 K
V = 2089.0 (3) Å3 Block, colourless
Z = 8 0.36 × 0.28 × 0.26 mm
F(000) = 928

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Data collection

STOE IPDS 2 diffractometer 2835 independent reflections
Radiation source: fine-focus sealed tube 1990 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.077
φ + ω scans θmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −17→16
Tmin = 0.903, Tmax = 1.000 k = −15→15
24778 measured reflections l = −19→19

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.3781P] where P = (Fo2 + 2Fc2)/3
2835 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.18 e Å3

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15786 (9) 0.27567 (12) 0.46504 (8) 0.0395 (3)
O2 0.23972 (8) 0.33408 (10) 0.33972 (7) 0.0268 (3)
O3 −0.14208 (10) 0.07550 (12) 0.14615 (9) 0.0404 (3)
O4 −0.01901 (9) 0.15403 (11) 0.44753 (8) 0.0314 (3)
C1 0.01713 (12) 0.18950 (14) 0.16114 (11) 0.0266 (3)
H1 0.024720 0.199167 0.095797 0.032*
C2 −0.06630 (12) 0.12755 (14) 0.19739 (11) 0.0282 (3)
C3 −0.07906 (12) 0.11400 (14) 0.29319 (12) 0.0292 (3)
H3 −0.136951 0.070662 0.316450 0.035*
C4 −0.00875 (12) 0.16271 (14) 0.35416 (11) 0.0258 (3)
C5 0.15644 (12) 0.27686 (14) 0.38113 (11) 0.0263 (3)
C6 0.24844 (12) 0.34840 (13) 0.24518 (10) 0.0248 (3)
C7 0.17841 (12) 0.30230 (14) 0.18753 (10) 0.0248 (3)
H7 0.186695 0.312124 0.122268 0.030*
C8 0.09018 (11) 0.23769 (13) 0.22263 (10) 0.0233 (3)
C9 0.07889 (11) 0.22557 (13) 0.31981 (10) 0.0238 (3)
C10 −0.13653 (15) 0.08442 (17) 0.04763 (13) 0.0387 (4)
H10A −0.068771 0.054680 0.026132 0.058*
H10B −0.144175 0.166918 0.029140 0.058*
H10C −0.192803 0.037821 0.019638 0.058*
C11 −0.10579 (14) 0.08855 (17) 0.48242 (13) 0.0372 (4)
H11A −0.101267 0.007171 0.460350 0.056*
H11B −0.171053 0.123974 0.460230 0.056*
H11C −0.104631 0.089534 0.550635 0.056*
C12 0.34151 (12) 0.42031 (15) 0.22198 (12) 0.0317 (4)
H12A 0.404473 0.381766 0.246095 0.048*
H12B 0.334533 0.498334 0.250262 0.048*
H12C 0.347075 0.428395 0.154231 0.048*

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0350 (6) 0.0600 (9) 0.0237 (6) −0.0096 (6) −0.0017 (5) 0.0011 (5)
O2 0.0232 (5) 0.0312 (6) 0.0260 (5) −0.0034 (5) −0.0004 (4) −0.0008 (4)
O3 0.0388 (7) 0.0462 (8) 0.0363 (7) −0.0187 (6) −0.0090 (5) 0.0013 (6)
O4 0.0312 (6) 0.0374 (7) 0.0257 (6) −0.0052 (5) 0.0067 (5) 0.0027 (5)
C1 0.0281 (7) 0.0279 (8) 0.0238 (7) 0.0008 (6) −0.0029 (6) −0.0004 (6)
C2 0.0268 (7) 0.0268 (8) 0.0310 (8) −0.0025 (6) −0.0053 (6) −0.0013 (6)
C3 0.0249 (7) 0.0276 (8) 0.0352 (9) −0.0042 (6) 0.0019 (6) 0.0040 (7)
C4 0.0248 (7) 0.0259 (8) 0.0266 (7) 0.0021 (6) 0.0022 (6) 0.0012 (6)
C5 0.0233 (7) 0.0312 (8) 0.0244 (7) 0.0007 (6) 0.0011 (6) 0.0005 (6)
C6 0.0229 (7) 0.0258 (7) 0.0258 (7) 0.0014 (6) 0.0025 (6) 0.0006 (6)
C7 0.0235 (7) 0.0273 (7) 0.0235 (7) 0.0009 (6) 0.0011 (6) 0.0013 (6)
C8 0.0216 (6) 0.0223 (7) 0.0260 (7) 0.0026 (6) 0.0004 (6) 0.0003 (6)
C9 0.0222 (7) 0.0244 (7) 0.0249 (7) 0.0021 (6) 0.0011 (6) −0.0006 (6)
C10 0.0384 (9) 0.0419 (11) 0.0358 (9) −0.0055 (8) −0.0114 (8) −0.0041 (8)
C11 0.0348 (9) 0.0403 (10) 0.0365 (9) −0.0037 (8) 0.0118 (7) 0.0048 (8)
C12 0.0258 (7) 0.0349 (9) 0.0343 (8) −0.0060 (7) 0.0006 (7) 0.0024 (7)

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Geometric parameters (Å, º)

O1—C5 1.2056 (19) C6—C7 1.328 (2)
O2—C6 1.3722 (18) C6—C12 1.482 (2)
O2—C5 1.3825 (18) C7—C8 1.438 (2)
O3—C2 1.3532 (19) C7—H7 0.9500
O3—C10 1.421 (2) C8—C9 1.410 (2)
O4—C4 1.3511 (19) C10—H10A 0.9800
O4—C11 1.427 (2) C10—H10B 0.9800
C1—C2 1.380 (2) C10—H10C 0.9800
C1—C8 1.397 (2) C11—H11A 0.9800
C1—H1 0.9500 C11—H11B 0.9800
C2—C3 1.394 (2) C11—H11C 0.9800
C3—C4 1.372 (2) C12—H12A 0.9800
C3—H3 0.9500 C12—H12B 0.9800
C4—C9 1.418 (2) C12—H12C 0.9800
C5—C9 1.449 (2)
C6—O2—C5 122.97 (12) C1—C8—C9 121.25 (14)
C2—O3—C10 118.34 (14) C1—C8—C7 120.23 (14)
C4—O4—C11 117.52 (13) C9—C8—C7 118.52 (14)
C2—C1—C8 118.58 (14) C8—C9—C4 118.34 (14)
C2—C1—H1 120.7 C8—C9—C5 119.49 (14)
C8—C1—H1 120.7 C4—C9—C5 122.18 (14)
O3—C2—C1 124.86 (15) O3—C10—H10A 109.5
O3—C2—C3 113.86 (14) O3—C10—H10B 109.5
C1—C2—C3 121.28 (14) H10A—C10—H10B 109.5
C4—C3—C2 120.57 (14) O3—C10—H10C 109.5
C4—C3—H3 119.7 H10A—C10—H10C 109.5
C2—C3—H3 119.7 H10B—C10—H10C 109.5
O4—C4—C3 122.72 (14) O4—C11—H11A 109.5
O4—C4—C9 117.32 (14) O4—C11—H11B 109.5
C3—C4—C9 119.97 (14) H11A—C11—H11B 109.5
O1—C5—O2 115.07 (14) O4—C11—H11C 109.5
O1—C5—C9 127.84 (15) H11A—C11—H11C 109.5
O2—C5—C9 117.08 (13) H11B—C11—H11C 109.5
C7—C6—O2 121.03 (14) C6—C12—H12A 109.5
C7—C6—C12 128.27 (15) C6—C12—H12B 109.5
O2—C6—C12 110.69 (13) H12A—C12—H12B 109.5
C6—C7—C8 120.83 (14) C6—C12—H12C 109.5
C6—C7—H7 119.6 H12A—C12—H12C 109.5
C8—C7—H7 119.6 H12B—C12—H12C 109.5
C10—O3—C2—C1 0.0 (2) C2—C1—C8—C9 −1.0 (2)
C10—O3—C2—C3 179.81 (16) C2—C1—C8—C7 179.69 (15)
C8—C1—C2—O3 −179.38 (16) C6—C7—C8—C1 −179.92 (15)
C8—C1—C2—C3 0.8 (2) C6—C7—C8—C9 0.8 (2)
O3—C2—C3—C4 −179.52 (15) C1—C8—C9—C4 0.1 (2)
C1—C2—C3—C4 0.3 (3) C7—C8—C9—C4 179.43 (14)
C11—O4—C4—C3 1.6 (2) C1—C8—C9—C5 179.98 (14)
C11—O4—C4—C9 −178.59 (14) C7—C8—C9—C5 −0.7 (2)
C2—C3—C4—O4 178.59 (15) O4—C4—C9—C8 −178.83 (14)
C2—C3—C4—C9 −1.2 (2) C3—C4—C9—C8 1.0 (2)
C6—O2—C5—O1 −177.08 (15) O4—C4—C9—C5 1.3 (2)
C6—O2—C5—C9 3.2 (2) C3—C4—C9—C5 −178.86 (15)
C5—O2—C6—C7 −3.2 (2) O1—C5—C9—C8 179.13 (17)
C5—O2—C6—C12 175.88 (13) O2—C5—C9—C8 −1.2 (2)
O2—C6—C7—C8 1.1 (2) O1—C5—C9—C4 −1.0 (3)
C12—C6—C7—C8 −177.82 (15) O2—C5—C9—C4 178.68 (14)

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C4/C8/C9 benzene ring.

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.95 2.55 3.366 (2) 144
C7—H7···O1i 0.95 2.50 3.3269 (19) 146
C12—H12A···Cgii 0.98 2.67 3.4902 (18) 141
C12—H12B···Cgiii 0.98 2.88 3.5456 (18) 126

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, y+1/2, z.

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Crystal data

C12H11BrO4·CHCl3 F(000) = 832
Mr = 418.49 Dx = 1.715 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.7655 (9) Å Cell parameters from 6618 reflections
b = 20.4640 (17) Å θ = 2.0–25.9°
c = 6.7332 (5) Å µ = 3.04 mm1
β = 90.161 (9)° T = 173 K
V = 1621.1 (2) Å3 Rod, colourless
Z = 4 0.30 × 0.11 × 0.10 mm

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Data collection

STOE IPDS 1 diffractometer 3131 independent reflections
Radiation source: fine-focus sealed tube 2066 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.087
φ rotation scans θmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −14→14
Tmin = 0.894, Tmax = 1.000 k = −25→25
3131 measured reflections l = 0→8

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.100 H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0526P)2] where P = (Fo2 + 2Fc2)/3
3131 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.40 e Å3

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin. BASF = 0.2590 (19)2-axis ( 0 0 1 ) [ 0 0 1 ], Angle () [] = 0.16 Deg, Freq = 49 ************* (-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 3120 ( 0.000 -1.000 0.000) * (k1) = (k2) BASF = 0.15 ( 0.003 0.000 1.000) (l1) (l2) DEL-R =-0.011

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.17186 (4) 0.18589 (2) 0.76040 (12) 0.03702 (17)
O1 0.6171 (3) 0.37438 (16) 0.7786 (8) 0.0409 (11)
O2 0.4383 (2) 0.40139 (13) 0.7725 (6) 0.0265 (8)
O3 0.3644 (3) 0.09462 (14) 0.7647 (7) 0.0386 (9)
O4 0.6719 (3) 0.24940 (16) 0.7829 (7) 0.0390 (9)
C1 0.3284 (4) 0.2074 (2) 0.7669 (9) 0.0245 (11)
C2 0.4075 (4) 0.1564 (2) 0.7681 (9) 0.0281 (11)
C3 0.5225 (4) 0.1697 (2) 0.7730 (9) 0.0292 (12)
H3 0.575634 0.134698 0.774737 0.035*
C4 0.5612 (4) 0.2337 (2) 0.7756 (9) 0.0260 (12)
C5 0.5216 (4) 0.3538 (2) 0.7769 (9) 0.0249 (11)
C6 0.3248 (4) 0.3877 (2) 0.7700 (8) 0.0258 (11)
C7 0.2865 (4) 0.32622 (19) 0.7680 (9) 0.0215 (10)
H7 0.207010 0.318184 0.765122 0.026*
C8 0.3647 (4) 0.2720 (2) 0.7702 (8) 0.0204 (10)
C9 0.4828 (4) 0.2862 (2) 0.7722 (8) 0.0203 (10)
C10 0.4443 (5) 0.0418 (2) 0.7595 (12) 0.0515 (15)
H10A 0.486906 0.040490 0.884718 0.077*
H10B 0.497084 0.048281 0.648942 0.077*
H10C 0.403488 0.000461 0.741327 0.077*
C11 0.7509 (5) 0.1961 (3) 0.7800 (16) 0.069 (2)
H11A 0.742784 0.171933 0.655046 0.104*
H11B 0.735424 0.166759 0.891818 0.104*
H11C 0.828565 0.213036 0.791178 0.104*
C12 0.2546 (4) 0.4485 (2) 0.7733 (11) 0.0395 (14)
H12A 0.283364 0.479241 0.673878 0.047*
H12B 0.259135 0.468449 0.905318 0.047*
H12C 0.175335 0.437600 0.742878 0.047*
C20 0.8802 (5) 0.3955 (4) 0.7872 (12) 0.062 (2)
H20 0.799342 0.381292 0.801403 0.075*
Cl1 0.93131 (17) 0.41367 (10) 1.0251 (3) 0.0703 (6)
Cl2A 0.8846 (9) 0.4482 (4) 0.6107 (16) 0.130 (4) 0.5
Cl3A 0.9643 (6) 0.3226 (3) 0.7218 (19) 0.100 (3) 0.5
Cl2B 0.8631 (8) 0.4812 (4) 0.6905 (16) 0.104 (3) 0.5
Cl3B 0.9684 (6) 0.3556 (4) 0.6389 (15) 0.134 (4) 0.5

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0368 (3) 0.0338 (2) 0.0405 (3) −0.0140 (2) 0.0035 (3) −0.0009 (4)
O1 0.0160 (16) 0.0347 (19) 0.072 (3) −0.0049 (14) 0.001 (2) 0.003 (2)
O2 0.0222 (16) 0.0183 (14) 0.039 (2) 0.0000 (12) 0.0005 (19) 0.0003 (19)
O3 0.066 (2) 0.0165 (16) 0.034 (2) −0.0002 (14) 0.002 (2) −0.003 (2)
O4 0.0244 (17) 0.0432 (19) 0.049 (3) 0.0139 (16) −0.003 (2) 0.001 (2)
C1 0.028 (2) 0.022 (2) 0.023 (3) −0.0028 (18) 0.006 (3) −0.006 (2)
C2 0.045 (3) 0.021 (2) 0.018 (3) −0.001 (2) 0.004 (3) 0.000 (3)
C3 0.044 (3) 0.025 (2) 0.019 (3) 0.017 (2) 0.001 (3) 0.005 (2)
C4 0.024 (2) 0.032 (2) 0.022 (3) 0.0108 (19) 0.002 (2) 0.000 (3)
C5 0.026 (3) 0.026 (2) 0.022 (3) −0.0002 (19) −0.002 (2) 0.000 (3)
C6 0.026 (2) 0.025 (2) 0.027 (3) 0.0016 (19) 0.000 (3) 0.002 (3)
C7 0.0186 (19) 0.026 (2) 0.020 (3) 0.0001 (16) −0.002 (2) −0.002 (3)
C8 0.025 (2) 0.023 (2) 0.014 (3) −0.0008 (17) 0.000 (2) −0.005 (3)
C9 0.022 (2) 0.023 (2) 0.016 (3) −0.0009 (17) −0.001 (2) 0.001 (2)
C10 0.091 (4) 0.022 (2) 0.041 (4) 0.018 (3) 0.000 (5) 0.004 (3)
C11 0.033 (3) 0.063 (4) 0.112 (7) 0.027 (3) −0.004 (5) −0.006 (5)
C12 0.029 (2) 0.027 (3) 0.063 (4) 0.006 (2) 0.000 (3) 0.003 (3)
C20 0.025 (3) 0.092 (5) 0.070 (6) −0.002 (3) 0.001 (3) 0.009 (5)
Cl1 0.0589 (11) 0.0721 (12) 0.0799 (15) −0.0165 (9) −0.0007 (10) 0.0057 (11)
Cl2A 0.129 (7) 0.121 (7) 0.138 (9) −0.055 (6) −0.047 (6) 0.096 (6)
Cl3A 0.028 (2) 0.074 (3) 0.198 (9) −0.002 (2) 0.013 (4) −0.042 (5)
Cl2B 0.094 (4) 0.100 (5) 0.119 (8) −0.026 (4) −0.037 (4) 0.055 (5)
Cl3B 0.035 (3) 0.204 (9) 0.164 (9) −0.011 (6) 0.007 (4) −0.136 (8)

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Geometric parameters (Å, º)

Br1—C1 1.894 (4) C7—H7 0.9500
O1—C5 1.201 (5) C8—C9 1.419 (6)
O2—C6 1.364 (5) C10—H10A 0.9800
O2—C5 1.382 (5) C10—H10B 0.9800
O3—C2 1.361 (5) C10—H10C 0.9800
O3—C10 1.433 (6) C11—H11A 0.9800
O4—C4 1.343 (6) C11—H11B 0.9800
O4—C11 1.434 (6) C11—H11C 0.9800
C1—C8 1.389 (6) C12—H12A 0.9800
C1—C2 1.398 (6) C12—H12B 0.9800
C2—C3 1.381 (7) C12—H12C 0.9799
C3—C4 1.387 (6) C20—Cl2A 1.605 (12)
C3—H3 0.9500 C20—Cl3B 1.657 (10)
C4—C9 1.416 (6) C20—Cl1 1.749 (8)
C5—C9 1.457 (6) C20—Cl3A 1.844 (10)
C6—C7 1.335 (6) C20—Cl2B 1.882 (11)
C6—C12 1.494 (6) C20—H20 1.0000
C7—C8 1.441 (6)
C6—O2—C5 123.3 (3) C8—C9—C5 120.1 (4)
C2—O3—C10 117.2 (4) O3—C10—H10A 109.5
C4—O4—C11 116.5 (4) O3—C10—H10B 109.5
C8—C1—C2 120.4 (4) H10A—C10—H10B 109.5
C8—C1—Br1 121.3 (3) O3—C10—H10C 109.5
C2—C1—Br1 118.3 (3) H10A—C10—H10C 109.5
O3—C2—C3 123.2 (4) H10B—C10—H10C 109.5
O3—C2—C1 116.5 (4) O4—C11—H11A 109.5
C3—C2—C1 120.3 (4) O4—C11—H11B 109.5
C2—C3—C4 120.5 (4) H11A—C11—H11B 109.5
C2—C3—H3 119.7 O4—C11—H11C 109.5
C4—C3—H3 119.7 H11A—C11—H11C 109.5
O4—C4—C3 123.0 (4) H11B—C11—H11C 109.5
O4—C4—C9 116.8 (4) C6—C12—H12A 109.5
C3—C4—C9 120.2 (4) C6—C12—H12B 109.4
O1—C5—O2 114.6 (4) H12A—C12—H12B 109.5
O1—C5—C9 128.8 (4) C6—C12—H12C 109.5
O2—C5—C9 116.5 (4) H12A—C12—H12C 109.5
C7—C6—O2 121.6 (4) H12B—C12—H12C 109.5
C7—C6—C12 126.7 (4) Cl2A—C20—Cl1 121.6 (6)
O2—C6—C12 111.7 (4) Cl3B—C20—Cl1 116.2 (5)
C6—C7—C8 120.6 (4) Cl2A—C20—Cl3A 110.4 (7)
C6—C7—H7 119.7 Cl1—C20—Cl3A 102.0 (5)
C8—C7—H7 119.7 Cl3B—C20—Cl2B 108.5 (6)
C1—C8—C9 119.7 (4) Cl1—C20—Cl2B 98.9 (5)
C1—C8—C7 122.5 (4) Cl2A—C20—H20 107.4
C9—C8—C7 117.8 (4) Cl1—C20—H20 107.4
C4—C9—C8 118.8 (4) Cl3A—C20—H20 107.4
C4—C9—C5 121.0 (4)
C10—O3—C2—C3 −2.1 (9) C2—C1—C8—C9 0.8 (8)
C10—O3—C2—C1 178.1 (6) Br1—C1—C8—C9 −179.1 (4)
C8—C1—C2—O3 180.0 (5) C2—C1—C8—C7 179.6 (6)
Br1—C1—C2—O3 −0.1 (7) Br1—C1—C8—C7 −0.2 (8)
C8—C1—C2—C3 0.2 (9) C6—C7—C8—C1 −179.6 (6)
Br1—C1—C2—C3 −179.9 (5) C6—C7—C8—C9 −0.7 (8)
O3—C2—C3—C4 179.8 (6) O4—C4—C9—C8 −178.2 (5)
C1—C2—C3—C4 −0.4 (9) C3—C4—C9—C8 1.2 (8)
C11—O4—C4—C3 2.5 (9) O4—C4—C9—C5 −0.1 (8)
C11—O4—C4—C9 −178.1 (6) C3—C4—C9—C5 179.4 (6)
C2—C3—C4—O4 179.1 (6) C1—C8—C9—C4 −1.4 (8)
C2—C3—C4—C9 −0.3 (9) C7—C8—C9—C4 179.6 (5)
C6—O2—C5—O1 180.0 (5) C1—C8—C9—C5 −179.6 (5)
C6—O2—C5—C9 1.9 (8) C7—C8—C9—C5 1.4 (8)
C5—O2—C6—C7 −1.2 (9) O1—C5—C9—C4 2.1 (10)
C5—O2—C6—C12 177.8 (5) O2—C5—C9—C4 179.8 (5)
O2—C6—C7—C8 0.5 (9) O1—C5—C9—C8 −179.8 (6)
C12—C6—C7—C8 −178.3 (6) O2—C5—C9—C8 −2.0 (8)

5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10C···O1i 0.98 2.59 3.511 (6) 156
C11—H11C···Cl3A 0.98 2.79 3.629 (9) 144
C20—H20···O1 1.00 2.15 3.126 (6) 164

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

Funding Statement

This work was funded by Swiss National Science Foundation and the University of Neuchâtel grant .

References

  1. Botha, M. E., Giles, R. G. F., Moorhoff, C. M., Engelhardt, L. M., White, A. H., Jardine, A. & Yorke, S. C. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 89–95.
  2. Bürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191–198.
  3. Edwards, B. E. & Rao, P. N. (1966). J. Org. Chem. 31, 324–327.
  4. Gremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95–103.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25, 717–722.
  7. Liu, L., Hu, J., Wang, X.-C., Zhong, M.-J., Liu, X.-Y., Yang, S.-D. & Liang, Y.-M. (2012). Tetrahedron, 68, 5391–5395.
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  9. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  10. Michel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.
  11. Shao, C., Han, L., Li, C., Liu, Z. & Wang, C. (2009). Acta Cryst. E65, o736. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
  17. Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  18. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  19. Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989020007975/dj2010sup1.cif

e-76-01107-sup1.cif (997.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007975/dj2010Isup2.hkl

e-76-01107-Isup2.hkl (227.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007975/dj2010IIsup3.hkl

e-76-01107-IIsup3.hkl (250.2KB, hkl)

CCDC references: 2009829, 2009830

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES