Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 2;76(Pt 7):984–989. doi: 10.1107/S2056989020007161

Crystal structures of [(μ2-L1)di­bromidodicopper(II)] dibromide and poly[[(μ2-L1)diiodido­dicopper(I)]-di-μ-iodido-dicopper(I)], where L1 is 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane

Tokouré Assoumatine a, Helen Stoeckli-Evans b,*
PMCID: PMC7336783  PMID: 32695438

The reaction of the hexa­thia­pyrazino­phane ligand, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane, with copper(II) dibromide lead to the formation of a binuclear complex. Reaction with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer.

Keywords: crystal structure, pyrazino­phane, hexa­thia­pyrazino­phane, copper(II), copper(I), binuclear complex, two-dimensional coordination polymer, supra­molecular network

Abstract

The reaction of the hexa­thia­pyrazino­phane ligand, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [μ2-2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane]bis­[bromi­docopper(II)] dibromide, [Cu2Br2(C16H24N2S6)]Br2, (I). The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. The ligand coordinates to the copper(II) atom in a bis-tetra­dentate manner and the copper atom has a fivefold NS3Br coordination environment with a distorted shape. The reaction of ligand L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly[[μ2-2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane]tetra-μ-iodido-tetra­copper(I)], [Cu4I4(C16H24N2S6)]n, (II). The binuclear unit possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. The two independent copper(I) atoms are both fourfold coordinate. That coordinating to the ligand L1 in a bis-tridentate manner has an NS2I coordination environment and an irregular shape, while the second copper(I) atom, where L1 coordinates in a bis-monodentate manner, has an SI3 coordination environment with an almost perfect tetra­hedral geometry. In the crystal of I, the cations and Br anions are linked by a number of C—H⋯S and C—H⋯Br hydrogen bonds, forming a supra­molecular network. In the crystal of II, the two-dimensional coordination polymers lie parallel to the ab plane and there are no significant inter-layer contacts present.

Chemical context  

Tetra­substituted pyrazines are inter­esting ligands for the formation of multi-dimensional coordination polymers and metal-organic frameworks: for example, tetra-2-pyridyl­pyrazine (Ouellette et al., 2004; Nawrot et al., 2015) and pyrazine­tetra­carb­oxy­lic acid (Masci & Thuéry, 2008; Zhang et al., 2014). In recent years a new ligand, 2,3,5,6-(4-carboxyl-tetra­phen­yl)pyrazine, has been used successfully to form a number of metal–organic frameworks (Wang et al., 2019).

A number of such ligands involving Npyrazine and S coordin­ation sites have been synthesized and their coordination behaviour with transition metals investigated (Assoumatine, 1999). The title ligand, L1 (Assoumatine & Stoeckli-Evans, 2020a ), is the third in a series of pyrazine­thio­phane ligands that have been shown to form chains, networks and frameworks with copper halides (Assoumatine, 1999), especially with CuI. For example, ligand L2, 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine, when reacted with CuI formed a two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine]­di-iodido-­dicopper(I)] (Fig. 1 a; Assoumatine & Stoeckli-Evans, 2020b ). Ligand L3, 5,7-di­hydro-1H,3H-dithieno[3,4-b:30,40-e]pyrazine, when reacted with CuI formed a three-dimensional coordination polymer, poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine-κ4N:N′:S:S′)tetra-μ3-iodido­tetra­copper] (Fig. 1 b; Assoumatine & Stoeckli-Evans, 2020c ). Inter­estingly, in compound CuI-L2 the copper atom does not coordinate to the pyrazine N atom, whereas in compound CuI-L3 one of the two independent copper atoms does coordinate to the pyrazine N atom. Herein, we report on the results of the reactions of ligand L1 with CuBr2 and CuI, where in both cases the pyrazine N atom is involved in coordination to the copper(II) and copper(I) atoms, respectively.graphic file with name e-76-00984-scheme1.jpg graphic file with name e-76-00984-scheme2.jpg

Figure 1.

Figure 1

Chemical drawings of the complexes involving CuI and ligands L2 and L3.

Structural commentary  

The reaction of the hexa­thia­pyrazino­phane ligand, 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [(μ2-L1)di­bromodo dicopper(II)] dibromide, (I); see Fig. 2. The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. Selected bond distances and angles are given in Table 1. The ligand coordinates to the copper(II) atoms in a bis-tetra­dentate manner. The symmetry related Cu atoms have a fivefold NS3Br coordination environment with a distorted shape, as indicated by the fivefold index parameter τ5 of 0.38 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984). There are four five-membered chelate rings; Cu1/N1/C2/C3/S1 and Cu1/N1/C1/C8/S3 which are inclined by ca 90° to chelate rings Cu1/S1/C4/C5/S2 and Cu1/S2/C6/C7/S3 (Fig. 2).

Figure 2.

Figure 2

A view of the mol­ecular structure of complex I, with atom labelling for the asymmetric unit; symmetry code: (i) −x + 1, −y + 1, −z. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °) for I .

Cu1—N1 2.046 (6) Cu1—S3 2.333 (2)
Cu1—S1 2.346 (2) Cu1—Br1 2.3672 (11)
Cu1—S2 2.4549 (18)    
       
N1—Cu1—S1 85.26 (18) S3—Cu1—Br1 94.97 (6)
N1—Cu1—S3 85.38 (18) N1—Cu1—S2 104.48 (15)
S3—Cu1—S1 168.54 (7) S1—Cu1—S2 88.79 (7)
N1—Cu1—Br1 145.45 (15) S3—Cu1—S2 87.17 (7)
S1—Cu1—Br1 96.48 (6) Br1—Cu1—S2 110.05 (6)

Reaction of L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly-[(μ2-L1)di­iodido­dicopper(I)di(μ-iodido)­dicopper(I)], (II); see Fig. 3. The binuclear complex possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. Selected bond distances and angles are given in Table 2. The two independent copper(I) atoms, Cu1 and Cu2, are both fourfold coordinate. Atom Cu1 coordinates to the ligand L1 in a tridentate fashion and has an NS2I coordination environment. The fourfold index parameter τ4 is 0.77 indicating a very irregular shape (τ4 = 1 for a perfect tetra­hedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang et al., 2007). There are three chelate rings, two of which are five-membered (Cu1/N1/C2/C3/S1 and Cu1/S1/C4/C5/S2) and one eight-membered (Cu1/N1/C1/C8/S3/C7/C6/S2). The second copper(I) atom, Cu2, coordinates to L1 in a monodentate fashion and has an SI3 environment with an almost perfect tetra­hedral geometry; here the fourfold index parameter τ4 is 0.91.

Figure 3.

Figure 3

A view of the mol­ecular structure of complex II, with atom labelling for the asymmetric unit; symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y + 1, −z; (iii) x − 1, y, z. Displacement ellipsoids are drawn at the 50% probability level. (Atom Cu1 is green, while atom Cu2 is orange.)

Table 2. Selected geometric parameters (Å, °) for II .

Cu1—N1 2.095 (10) Cu2—I1 2.665 (2)
Cu1—S1 2.342 (4) Cu2—I2 2.6166 (19)
Cu1—S2 2.331 (4) I1—Cu2ii 2.675 (2)
Cu1—I2i 2.5193 (18) Cu2—Cu2ii 2.663 (4)
Cu2—S3 2.359 (4)    
       
N1—Cu1—S2 110.2 (3) S3—Cu2—I1ii 99.22 (11)
N1—Cu1—S1 85.3 (3) I2—Cu2—I1ii 112.01 (7)
S2—Cu1—S1 91.74 (14) I1—Cu2—I1ii 120.18 (7)
N1—Cu1—I2i 121.1 (3) Cu2—I1—Cu2ii 59.82 (7)
S2—Cu1—I2i 112.48 (12) Cu1iii—I2—Cu2 94.93 (7)
S1—Cu1—I2i 130.61 (10) Cu2ii—Cu2—I1 60.27 (7)
S3—Cu2—I2 109.54 (11) Cu2ii—Cu2—I1ii 59.91 (7)
S3—Cu2—I1 105.86 (10) S3—Cu2—Cu2ii 115.75 (13)
I2—Cu2—I1 109.04 (8) I2—Cu2—Cu2ii 134.68 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The Cu1—N1 bond lengths in the two complexes, 2.046 (6) Å in I and 2.095 (10) Å in II, are significantly different (Linden, 2020). They have a difference of 0.049 (12) Å so differ by 4.1σ (i.e., 0.049 Å = 0.012 Å × 4.1). In I, the bond length Cu1—S2 of 2.455 (2) Å is significantly longer than bond lengths Cu1—S1 [2.346 (2) Å] and Cu1—S3 [2.333 (2) Å]. In II, bond lengths Cu1—S1 and Cu1—S2, involving the five-membered chelate rings, viz. 2.342 (4) and 2.331 (4) Å, respectively, are similar to those in I, while bond length Cu2—S3 [2.359 (4) Å] is only slightly longer. The bridging Cu2—Cu2i distance in the Cu2I2 unit in II is 2.663 (4) Å (Table 2), considerably shorter than the same distance observed in complex CuI-L2 [2.776 (1) Å] [Fig. 1 a; Assoumatine & Stoeckli-Evans, 2020b ].

Supra­molecular features  

In the crystal of I, the cations are linked by pairs of C6—H6B⋯S1i hydrogen bonds to form chains along the a-axis direction. Chains are also formed along the b-axis direction via C5—H5A⋯S3ii hydrogen bonds (Table 3). These inter­actions result in the formation of a supra­molecular network that lies parallel to the ab plane (Fig. 4). There are also a large number of C—H⋯Br contacts present involving the anion, Br2, strengthening the supra­molecular network (Fig. 5 and Table 3). There are no significant inter-layer contacts present in the crystal.

Table 3. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯S1i 0.98 2.85 3.753 (9) 154
C5—H5A⋯S3ii 0.98 2.81 3.634 (8) 143
C3—H3A⋯Br2iii 0.98 2.86 3.814 (8) 165
C3—H3B⋯Br2ii 0.98 2.83 3.770 (7) 160
C5—H5B⋯Br2iv 0.98 2.87 3.821 (7) 164
C7—H7B⋯Br2i 0.98 2.82 3.646 (8) 142
C8—H8A⋯Br2i 0.98 2.84 3.769 (9) 159
C8—H8B⋯Br2v 0.98 2.89 3.713 (7) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 4.

Figure 4

A view along the c axis of the crystal packing of I. The C—H⋯S hydrogen bonds are shown as dashed lines (see Table 3). For clarity, the Br anion and the H atoms not involved in these inter­molecular inter­actions have been omitted.

Figure 5.

Figure 5

A view along the b axis of the crystal packing of I. The C—H⋯S and C—H⋯Br hydrogen bonds (Table 3) are shown as dashed lines (see Table 3). For clarity, only the H atoms involved in these inter­molecular inter­actions have been included.

In the crystal of II, the two-dimensional coordination polymers lie parallel to the (001) plane, as shown in Fig. 6. There are no significant inter-layer contacts present in the crystal (Fig. 7).

Figure 6.

Figure 6

A view along the c axis of the two-dimensional structure of complex II. For clarity, H atoms have been omitted.

Figure 7.

Figure 7

A view along the a axis of the crystal packing of complex II. For clarity, H atoms have been omitted.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for tri- or hexa-thia­benzeno­phane ligands gave only three hits. They include the tri­thia­benzeno­phane ligand, 2,5,8-tri­thia­(9)-m-benzeno­phane (CSD refcode VEYNES; Groot & Loeb, 1990), and a palladium and a silver complex of the same ligand, viz. di­chloro­[2,5,8-tri­thia­(9)-m-benzeno­phane]palladium(II) (KOMNOP; Groot et al., 1991), a mononuclear complex, and poly[[2,5,8-tri­thia­(9)-m-cyclo­phane-S,S′,S′′]silver(I) tri­fluoro­methyl­sulfonate aceto­nitrile solvate] (ZIDPEH; Casabo et al., 1995), a two-dimensional coordination polymer. In KOMNOP, the ligand coordinates in a bidentate manner. The palladium(II) atom is fourfold S2Cl2 coordinate with a square-planar environment (index parameter τ4 is 0.04), In ZIDPEH, the ligand coordinates in a bridging μ3-monodentate manner. The silver(I) atom is fivefold NOS3 coordinate with an irregular shape (index parameter τ5 is 0.56).

A search for benzeno­phane ligands similar to L2 and L3 gave zero hits for L2 and ten hits for L3. The latter compounds have been compared in a recent article (Assoumatine & Stoeckli-Evans, 2020d ), which also describes the syntheses and crystal structures of both L2 and L3.

Synthesis and crystallization  

The synthesis and crystal structure of the ligand 2,5,8,11,14,17-hexa­thia-[9.9](2,6,3,5)-pyrazino­phane (L1), have been reported (Assoumatine & Stoeckli-Evans, 2020a ).

Synthesis of complex [(μ2-L1)di­bromodo dicopper(II)] dibromide (I): A solution of L1 (15 mg, 0.03 mmol) in CHCl3 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuBr2 (7 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least 3 weeks, whereupon brown crystals of complex I were isolated in the buffer zone.

Synthesis of complex poly-[(μ2-L1)di­iodido-dicopper(I)-di(μ-iodido)-dicopper(I)] (II): A solution of L1 (15 mg, 0.03 mmol) in CH2Cl2 (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. A solution of CuI (6 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitro­gen and left in the dark at room temperature for at least 3 weeks, whereupon small orange crystals of complex II were isolated in the buffer zone.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were included in calculated positions and treated as riding on their parent atoms: C—H = 0.98 Å for I and 0.97 Å for II, with U iso(H) = 1.2U eq(C).

Table 4. Experimental details.

  I II
Crystal data
Chemical formula [Cu2Br2(C16H24N2S6)]Br2 [Cu4I4(C16H24N2S6)]
M r 883.45 1198.49
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 223 293
a, b, c (Å) 7.2090 (7), 8.1422 (8), 12.3904 (14) 7.7713 (8), 8.9456 (9), 11.2464 (14)
α, β, γ (°) 71.842 (12), 74.702 (12), 72.694 (12) 106.839 (13), 104.644 (13), 93.412 (12)
V3) 647.93 (13) 716.53 (15)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.30 7.69
Crystal size (mm) 0.20 × 0.20 × 0.03 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020) Multi-scan (MULABS; Spek, 2020)
T min, T max 0.421, 1.000 0.435, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5057, 2320, 1843 5260, 2505, 1698
R int 0.076 0.100
(sin θ/λ)max−1) 0.613 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.060, 0.153, 1.01 0.070, 0.183, 0.95
No. of reflections 2320 2505
No. of parameters 106 127
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.65, −1.67 2.25, −2.58

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2020), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Intensity data were measured using a STOE IPDS-1 one-circle diffractometer. For the triclinic system often only 93% of the Ewald sphere is accessible, which explains why the alerts diffrn_reflns_laue_measured_fraction_full value (0.94) below minimum (0.95) for both compounds I and II are given. This involves 145 random reflections out of the expected 2336 for the IUCr cutoff limit of sin θ/λ = 0.60 for I, and 155 random reflections out of the expected 2600 reflections for II. The residual electron-density peaks are approximately 1Å from the halogen atoms in both structures.

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989020007161/pk2634sup1.cif

e-76-00984-sup1.cif (337.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007161/pk2634Isup2.hkl

e-76-00984-Isup2.hkl (185.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007161/pk2634IIsup3.hkl

e-76-00984-IIsup3.hkl (200.5KB, hkl)

CCDC references: 2006571, 2006572

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE is grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Crystal data

[Cu2Br2(C16H24N2S6)]Br2 Z = 1
Mr = 883.45 F(000) = 428
Triclinic, P1 Dx = 2.264 Mg m3
a = 7.2090 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1422 (8) Å Cell parameters from 5000 reflections
c = 12.3904 (14) Å θ = 2.7–25.8°
α = 71.842 (12)° µ = 8.30 mm1
β = 74.702 (12)° T = 223 K
γ = 72.694 (12)° Plate, brown
V = 647.93 (13) Å3 0.20 × 0.20 × 0.03 mm

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Data collection

STOE IPDS 1 diffractometer 2320 independent reflections
Radiation source: fine-focus sealed tube 1843 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.076
φ rotation scans θmax = 25.8°, θmin = 2.7°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −8→8
Tmin = 0.421, Tmax = 1.000 k = −9→9
5057 measured reflections l = −15→15

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1019P)2] where P = (Fo2 + 2Fc2)/3
2320 reflections (Δ/σ)max < 0.001
106 parameters Δρmax = 1.65 e Å3
0 restraints Δρmin = −1.67 e Å3

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.19307 (12) 0.19827 (12) 0.45400 (7) 0.0328 (3)
Cu1 0.38840 (13) 0.35871 (11) 0.29477 (7) 0.0163 (3)
S1 0.1670 (3) 0.6379 (2) 0.28528 (15) 0.0215 (4)
S2 0.6115 (3) 0.4639 (2) 0.36310 (15) 0.0197 (4)
S3 0.6481 (3) 0.1120 (2) 0.27313 (15) 0.0175 (4)
N1 0.4546 (9) 0.4439 (7) 0.1184 (5) 0.0156 (7)
C1 0.5922 (11) 0.3381 (9) 0.0573 (6) 0.0156 (7)
C2 0.3618 (10) 0.6046 (9) 0.0628 (6) 0.0156 (7)
C3 0.2054 (11) 0.7229 (9) 0.1295 (6) 0.0202 (16)
H3A 0.080095 0.744824 0.104611 0.024*
H3B 0.240502 0.837592 0.109580 0.024*
C4 0.3042 (11) 0.7561 (10) 0.3270 (6) 0.0213 (9)
H4A 0.262709 0.883424 0.290981 0.026*
H4B 0.267942 0.739951 0.411020 0.026*
C5 0.5303 (11) 0.6978 (9) 0.2940 (6) 0.0156 (7)
H5A 0.592228 0.768345 0.318918 0.019*
H5B 0.570091 0.717761 0.209820 0.019*
C6 0.8280 (12) 0.3836 (9) 0.2624 (6) 0.0213 (9)
H6A 0.808898 0.438922 0.182395 0.026*
H6B 0.945536 0.410333 0.272072 0.026*
C7 0.8506 (11) 0.1809 (9) 0.2918 (7) 0.0223 (16)
H7A 0.867485 0.130400 0.372431 0.027*
H7B 0.971846 0.130109 0.243159 0.027*
C8 0.6904 (12) 0.1574 (9) 0.1173 (6) 0.0213 (9)
H8A 0.833237 0.139237 0.087755 0.026*
H8B 0.644904 0.070380 0.097392 0.026*
Br2 0.21653 (11) 0.20772 (10) 0.02398 (7) 0.0267 (3)

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0270 (5) 0.0335 (5) 0.0267 (5) −0.0116 (4) −0.0043 (3) 0.0114 (3)
Cu1 0.0194 (5) 0.0085 (5) 0.0194 (5) −0.0036 (4) −0.0032 (4) −0.0013 (3)
S1 0.0215 (10) 0.0172 (10) 0.0201 (9) 0.0018 (8) −0.0013 (7) −0.0053 (7)
S2 0.0281 (10) 0.0115 (9) 0.0223 (9) −0.0028 (8) −0.0095 (8) −0.0060 (7)
S3 0.0270 (10) 0.0051 (8) 0.0195 (8) −0.0025 (8) −0.0085 (7) 0.0005 (6)
N1 0.0223 (18) 0.0065 (15) 0.0219 (16) −0.0034 (14) −0.0088 (13) −0.0053 (12)
C1 0.0223 (18) 0.0065 (15) 0.0219 (16) −0.0034 (14) −0.0088 (13) −0.0053 (12)
C2 0.0223 (18) 0.0065 (15) 0.0219 (16) −0.0034 (14) −0.0088 (13) −0.0053 (12)
C3 0.029 (4) 0.012 (4) 0.014 (3) 0.008 (3) −0.007 (3) −0.006 (3)
C4 0.031 (3) 0.011 (2) 0.022 (2) −0.002 (2) −0.0101 (19) −0.0047 (17)
C5 0.0223 (18) 0.0065 (15) 0.0219 (16) −0.0034 (14) −0.0088 (13) −0.0053 (12)
C6 0.031 (3) 0.011 (2) 0.022 (2) −0.002 (2) −0.0101 (19) −0.0047 (17)
C7 0.024 (4) 0.011 (4) 0.035 (4) 0.002 (3) −0.020 (3) −0.004 (3)
C8 0.031 (3) 0.011 (2) 0.022 (2) −0.002 (2) −0.0101 (19) −0.0047 (17)
Br2 0.0247 (4) 0.0210 (4) 0.0385 (5) −0.0073 (4) −0.0041 (3) −0.0127 (3)

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Geometric parameters (Å, º)

Cu1—N1 2.046 (6) C2—C3 1.497 (9)
Cu1—S1 2.346 (2) C3—H3A 0.9800
Cu1—S2 2.4549 (18) C3—H3B 0.9800
Cu1—S3 2.333 (2) C4—C5 1.536 (10)
Cu1—Br1 2.3672 (11) C4—H4A 0.9800
S1—C3 1.811 (7) C4—H4B 0.9800
S1—C4 1.822 (7) C5—H5A 0.9800
S2—C6 1.815 (8) C5—H5B 0.9800
S2—C5 1.814 (7) C6—C7 1.542 (9)
S3—C7 1.802 (7) C6—H6A 0.9800
S3—C8 1.808 (7) C6—H6B 0.9800
N1—C1 1.342 (9) C7—H7A 0.9800
N1—C2 1.340 (9) C7—H7B 0.9800
C1—C2i 1.394 (10) C8—H8A 0.9800
C1—C8 1.482 (11) C8—H8B 0.9800
N1—Cu1—S1 85.26 (18) S1—C3—H3B 108.4
N1—Cu1—S3 85.38 (18) H3A—C3—H3B 107.5
S3—Cu1—S1 168.54 (7) C5—C4—S1 115.1 (5)
N1—Cu1—Br1 145.45 (15) C5—C4—H4A 108.5
S1—Cu1—Br1 96.48 (6) S1—C4—H4A 108.5
S3—Cu1—Br1 94.97 (6) C5—C4—H4B 108.5
N1—Cu1—S2 104.48 (15) S1—C4—H4B 108.5
S1—Cu1—S2 88.79 (7) H4A—C4—H4B 107.5
S3—Cu1—S2 87.17 (7) C4—C5—S2 109.4 (4)
Br1—Cu1—S2 110.05 (6) C4—C5—H5A 109.8
C3—S1—C4 102.4 (3) S2—C5—H5A 109.8
C3—S1—Cu1 98.5 (2) C4—C5—H5B 109.8
C4—S1—Cu1 101.4 (3) S2—C5—H5B 109.8
C6—S2—C5 104.4 (3) H5A—C5—H5B 108.3
C6—S2—Cu1 93.8 (2) C7—C6—S2 105.4 (5)
C5—S2—Cu1 96.5 (2) C7—C6—H6A 110.7
C7—S3—C8 100.9 (4) S2—C6—H6A 110.7
C7—S3—Cu1 101.0 (2) C7—C6—H6B 110.7
C8—S3—Cu1 97.8 (3) S2—C6—H6B 110.7
C1—N1—C2 119.4 (6) H6A—C6—H6B 108.8
C1—N1—Cu1 119.9 (5) C6—C7—S3 115.5 (5)
C2—N1—Cu1 120.7 (5) C6—C7—H7A 108.4
N1—C1—C2i 120.2 (7) S3—C7—H7A 108.4
N1—C1—C8 119.9 (6) C6—C7—H7B 108.4
C2i—C1—C8 119.9 (6) S3—C7—H7B 108.4
N1—C2—C1i 120.4 (6) H7A—C7—H7B 107.5
N1—C2—C3 120.1 (6) C1—C8—S3 115.4 (5)
C1i—C2—C3 119.5 (7) C1—C8—H8A 108.4
C2—C3—S1 115.3 (5) S3—C8—H8A 108.4
C2—C3—H3A 108.4 C1—C8—H8B 108.4
S1—C3—H3A 108.4 S3—C8—H8B 108.4
C2—C3—H3B 108.4 H8A—C8—H8B 107.5
C2—N1—C1—C2i 0.2 (10) Cu1—S1—C4—C5 30.4 (6)
Cu1—N1—C1—C2i −179.9 (4) S1—C4—C5—S2 −59.9 (6)
C2—N1—C1—C8 −177.6 (5) C6—S2—C5—C4 148.0 (5)
Cu1—N1—C1—C8 2.3 (8) Cu1—S2—C5—C4 52.4 (4)
C1—N1—C2—C1i −0.2 (10) C5—S2—C6—C7 −158.1 (5)
Cu1—N1—C2—C1i 179.9 (4) Cu1—S2—C6—C7 −60.3 (5)
C1—N1—C2—C3 178.9 (6) S2—C6—C7—S3 62.3 (6)
Cu1—N1—C2—C3 −1.0 (8) C8—S3—C7—C6 74.9 (6)
N1—C2—C3—S1 3.6 (8) Cu1—S3—C7—C6 −25.4 (6)
C1i—C2—C3—S1 −177.3 (5) N1—C1—C8—S3 −11.6 (8)
C4—S1—C3—C2 99.9 (5) C2i—C1—C8—S3 170.6 (5)
Cu1—S1—C3—C2 −3.8 (5) C7—S3—C8—C1 −89.9 (6)
C3—S1—C4—C5 −71.0 (6) Cu1—S3—C8—C1 13.0 (5)

Symmetry code: (i) −x+1, −y+1, −z.

2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6B···S1ii 0.98 2.85 3.753 (9) 154
C5—H5A···S3iii 0.98 2.81 3.634 (8) 143
C3—H3A···Br2iv 0.98 2.86 3.814 (8) 165
C3—H3B···Br2iii 0.98 2.83 3.770 (7) 160
C5—H5B···Br2i 0.98 2.87 3.821 (7) 164
C7—H7B···Br2ii 0.98 2.82 3.646 (8) 142
C8—H8A···Br2ii 0.98 2.84 3.769 (9) 159
C8—H8B···Br2v 0.98 2.89 3.713 (7) 142

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) −x, −y+1, −z; (v) −x+1, −y, −z.

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Crystal data

[Cu4I4(C16H24N2S6)] Z = 1
Mr = 1198.49 F(000) = 558
Triclinic, P1 Dx = 2.777 Mg m3
a = 7.7713 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9456 (9) Å Cell parameters from 4652 reflections
c = 11.2464 (14) Å θ = 2.0–25.8°
α = 106.839 (13)° µ = 7.69 mm1
β = 104.644 (13)° T = 293 K
γ = 93.412 (12)° Plate, orange
V = 716.53 (15) Å3 0.30 × 0.20 × 0.05 mm

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Data collection

STOE IPDS 1 diffractometer 2505 independent reflections
Radiation source: fine-focus sealed tube 1698 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.100
φ rotation scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −9→9
Tmin = 0.435, Tmax = 1.000 k = −10→10
5260 measured reflections l = −13→13

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.110P)2] where P = (Fo2 + 2Fc2)/3
2505 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 2.25 e Å3
0 restraints Δρmin = −2.58 e Å3

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.73534 (12) 0.70224 (11) 0.11663 (9) 0.0396 (3)
I2 0.34990 (12) 0.56223 (11) 0.29340 (9) 0.0370 (3)
Cu1 1.2404 (2) 0.2890 (2) 0.28830 (16) 0.0332 (4)
Cu2 0.5027 (2) 0.4653 (2) 0.10778 (18) 0.0415 (5)
S1 1.3999 (4) 0.0851 (4) 0.3255 (3) 0.0326 (8)
S2 1.1079 (5) 0.2923 (4) 0.4531 (3) 0.0349 (8)
S3 0.6749 (4) 0.2663 (4) 0.1450 (3) 0.0296 (7)
N1 1.0914 (12) 0.1189 (12) 0.1149 (10) 0.025 (2)
C1 0.9371 (16) 0.1373 (15) 0.0368 (12) 0.0238 (18)
C2 1.1538 (15) −0.0213 (15) 0.0762 (11) 0.0238 (18)
C3 1.3271 (19) −0.0448 (18) 0.1606 (13) 0.038 (3)
H3A 1.421167 −0.033142 0.120089 0.046*
H3B 1.314897 −0.152610 0.162526 0.046*
C4 1.2385 (17) 0.0077 (18) 0.3947 (13) 0.035 (3)
H4A 1.126049 −0.037376 0.327911 0.042*
H4B 1.284935 −0.075140 0.427765 0.042*
C5 1.206 (2) 0.1374 (18) 0.5023 (14) 0.039 (2)
H5A 1.319763 0.181893 0.567821 0.047*
H5B 1.127970 0.092387 0.541897 0.047*
C6 0.8751 (19) 0.2106 (18) 0.3709 (14) 0.039 (2)
H6A 0.868179 0.113955 0.301594 0.047*
H6B 0.817806 0.185297 0.431304 0.047*
C7 0.7789 (16) 0.3263 (16) 0.3162 (12) 0.030 (2)
H7A 0.864140 0.420800 0.338968 0.036*
H7B 0.686666 0.355435 0.359299 0.036*
C8 0.8623 (16) 0.2892 (16) 0.0814 (13) 0.030 (2)
H8A 0.824277 0.329504 0.008985 0.036*
H8B 0.956964 0.366690 0.147795 0.036*

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0407 (5) 0.0292 (6) 0.0494 (6) 0.0003 (4) 0.0136 (4) 0.0134 (4)
I2 0.0437 (5) 0.0156 (5) 0.0585 (6) 0.0031 (4) 0.0271 (4) 0.0110 (4)
Cu1 0.0348 (8) 0.0176 (10) 0.0487 (10) 0.0019 (7) 0.0144 (7) 0.0110 (7)
Cu2 0.0424 (10) 0.0387 (12) 0.0546 (12) 0.0177 (8) 0.0220 (8) 0.0219 (9)
S1 0.0277 (15) 0.030 (2) 0.0386 (18) 0.0065 (13) 0.0051 (13) 0.0109 (15)
S2 0.0374 (17) 0.025 (2) 0.042 (2) 0.0028 (14) 0.0146 (14) 0.0084 (15)
S3 0.0284 (15) 0.0216 (19) 0.045 (2) 0.0109 (13) 0.0161 (14) 0.0138 (14)
N1 0.025 (5) 0.013 (6) 0.042 (6) 0.005 (4) 0.017 (5) 0.009 (4)
C1 0.029 (4) 0.014 (5) 0.031 (5) 0.007 (3) 0.011 (4) 0.009 (3)
C2 0.029 (4) 0.014 (5) 0.031 (5) 0.007 (3) 0.011 (4) 0.009 (3)
C3 0.052 (8) 0.022 (8) 0.038 (8) 0.021 (6) 0.014 (6) 0.002 (6)
C4 0.030 (6) 0.038 (9) 0.046 (8) 0.005 (6) 0.012 (6) 0.028 (7)
C5 0.050 (6) 0.027 (6) 0.044 (6) 0.005 (5) 0.012 (5) 0.018 (5)
C6 0.050 (6) 0.027 (6) 0.044 (6) 0.005 (5) 0.012 (5) 0.018 (5)
C7 0.029 (5) 0.024 (6) 0.042 (5) 0.013 (4) 0.018 (4) 0.011 (4)
C8 0.029 (5) 0.024 (6) 0.042 (5) 0.013 (4) 0.018 (4) 0.011 (4)

Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Geometric parameters (Å, º)

Cu1—N1 2.095 (10) C1—C2iii 1.373 (17)
Cu1—S1 2.342 (4) C1—C8 1.511 (18)
Cu1—S2 2.331 (4) C2—C3 1.504 (19)
Cu1—I2i 2.5193 (18) C3—H3A 0.9700
Cu2—S3 2.359 (4) C3—H3B 0.9700
Cu2—I1 2.665 (2) C4—C5 1.50 (2)
Cu2—I2 2.6166 (19) C4—H4A 0.9700
I1—Cu2ii 2.675 (2) C4—H4B 0.9700
Cu2—Cu2ii 2.663 (4) C5—H5A 0.9700
S1—C3 1.803 (13) C5—H5B 0.9700
S1—C4 1.834 (13) C6—C7 1.50 (2)
S2—C5 1.779 (16) C6—H6A 0.9700
S2—C6 1.808 (14) C6—H6B 0.9700
S3—C7 1.793 (13) C7—H7A 0.9700
S3—C8 1.803 (12) C7—H7B 0.9700
N1—C1 1.346 (16) C8—H8A 0.9700
N1—C2 1.364 (16) C8—H8B 0.9700
N1—Cu1—S2 110.2 (3) C2—C3—S1 116.7 (10)
N1—Cu1—S1 85.3 (3) C2—C3—H3A 108.1
S2—Cu1—S1 91.74 (14) S1—C3—H3A 108.1
N1—Cu1—I2i 121.1 (3) C2—C3—H3B 108.1
S2—Cu1—I2i 112.48 (12) S1—C3—H3B 108.1
S1—Cu1—I2i 130.61 (10) H3A—C3—H3B 107.3
S3—Cu2—I2 109.54 (11) C5—C4—S1 110.1 (10)
S3—Cu2—I1 105.86 (10) C5—C4—H4A 109.6
I2—Cu2—I1 109.04 (8) S1—C4—H4A 109.6
S3—Cu2—I1ii 99.22 (11) C5—C4—H4B 109.6
I2—Cu2—I1ii 112.01 (7) S1—C4—H4B 109.6
I1—Cu2—I1ii 120.18 (7) H4A—C4—H4B 108.2
Cu2—I1—Cu2ii 59.82 (7) C4—C5—S2 114.4 (10)
Cu1iv—I2—Cu2 94.93 (7) C4—C5—H5A 108.7
Cu2ii—Cu2—I1 60.27 (7) S2—C5—H5A 108.7
Cu2ii—Cu2—I1ii 59.91 (7) C4—C5—H5B 108.7
S3—Cu2—Cu2ii 115.75 (13) S2—C5—H5B 108.7
I2—Cu2—Cu2ii 134.68 (11) H5A—C5—H5B 107.6
C3—S1—C4 100.9 (7) C7—C6—S2 110.2 (10)
C3—S1—Cu1 96.4 (5) C7—C6—H6A 109.6
C4—S1—Cu1 94.5 (5) S2—C6—H6A 109.6
C5—S2—C6 104.7 (7) C7—C6—H6B 109.6
C5—S2—Cu1 98.8 (5) S2—C6—H6B 109.6
C6—S2—Cu1 105.0 (5) H6A—C6—H6B 108.1
C7—S3—C8 102.8 (6) C6—C7—S3 117.8 (10)
C7—S3—Cu2 106.0 (4) C6—C7—H7A 107.9
C8—S3—Cu2 105.2 (5) S3—C7—H7A 107.9
C1—N1—C2 116.6 (10) C6—C7—H7B 107.9
C1—N1—Cu1 124.9 (9) S3—C7—H7B 107.9
C2—N1—Cu1 118.5 (8) H7A—C7—H7B 107.2
N1—C1—C2iii 122.1 (12) C1—C8—S3 113.2 (9)
N1—C1—C8 117.1 (11) C1—C8—H8A 108.9
C2iii—C1—C8 120.8 (11) S3—C8—H8A 108.9
N1—C2—C1iii 121.3 (11) C1—C8—H8B 108.9
N1—C2—C3 117.9 (11) S3—C8—H8B 108.9
C1iii—C2—C3 120.7 (12) H8A—C8—H8B 107.7
C2—N1—C1—C2iii 0.0 (19) Cu1—S1—C4—C5 −52.9 (10)
Cu1—N1—C1—C2iii 179.6 (9) S1—C4—C5—S2 62.8 (12)
C2—N1—C1—C8 177.4 (10) C6—S2—C5—C4 74.9 (11)
Cu1—N1—C1—C8 −3.0 (15) Cu1—S2—C5—C4 −33.3 (10)
C1—N1—C2—C1iii 0.0 (19) C5—S2—C6—C7 −176.2 (10)
Cu1—N1—C2—C1iii −179.6 (9) Cu1—S2—C6—C7 −72.6 (10)
C1—N1—C2—C3 179.3 (11) S2—C6—C7—S3 121.3 (9)
Cu1—N1—C2—C3 −0.3 (15) C8—S3—C7—C6 −78.8 (11)
N1—C2—C3—S1 18.3 (17) Cu2—S3—C7—C6 171.0 (9)
C1iii—C2—C3—S1 −162.3 (10) N1—C1—C8—S3 −103.2 (11)
C4—S1—C3—C2 72.6 (13) C2iii—C1—C8—S3 74.2 (14)
Cu1—S1—C3—C2 −23.2 (12) C7—S3—C8—C1 96.8 (10)
C3—S1—C4—C5 −150.3 (10) Cu2—S3—C8—C1 −152.4 (8)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+2, −y, −z; (iv) x−1, y, z.

Funding Statement

This work was funded by Swiss National Science Foundation and the University of Neuchâtel grant .

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.
  3. Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 977–983. [DOI] [PMC free article] [PubMed]
  4. Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467. [DOI] [PMC free article] [PubMed]
  5. Assoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401. [DOI] [PMC free article] [PubMed]
  6. Assoumatine, T. & Stoeckli-Evans, H. (2020d). Acta Cryst. E76, 539–546. [DOI] [PMC free article] [PubMed]
  7. Casabo, J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. & Teixidor, F. (1995). Inorg. Chem. 34, 5410–5415.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Groot, B. de, Hanan, G. S. & Loeb, S. J. (1991). Inorg. Chem. 30, 4644–4647.
  10. Groot, B. de & Loeb, S. J. (1990). Inorg. Chem. 29, 4084–4090.
  11. Linden, A. (2020). Acta Cryst. E76, 765–775. [DOI] [PMC free article] [PubMed]
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Masci, B. & Thuéry, P. (2008). Cryst. Growth Des. 8, 1689–1696.
  14. Nawrot, I., Machura, B. & Kruszynski, R. (2015). CrystEngComm, 17, 830–845.
  15. Ouellette, W., Burkholder, E., Manzar, S., Bewley, L., Rarig, R. S. & Zubieta, J. (2004). Solid State Sci. 6, 77–84.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Stoe & Cie (1997). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
  20. Wang, T., Huang, K., Peng, M., Li, X., Han, D., Jing, L. & Qin, D. (2019). CrystEngComm, 21, 494–501.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  23. Zhang, F., Yan, P., Li, H., Zou, X., Hou, G. & Li, G. (2014). Dalton Trans. 43, 12574–12581. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989020007161/pk2634sup1.cif

e-76-00984-sup1.cif (337.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007161/pk2634Isup2.hkl

e-76-00984-Isup2.hkl (185.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007161/pk2634IIsup3.hkl

e-76-00984-IIsup3.hkl (200.5KB, hkl)

CCDC references: 2006571, 2006572

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES