The reaction of the hexathiapyrazinophane ligand, 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane, with copper(II) dibromide lead to the formation of a binuclear complex. Reaction with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer.
Keywords: crystal structure, pyrazinophane, hexathiapyrazinophane, copper(II), copper(I), binuclear complex, two-dimensional coordination polymer, supramolecular network
Abstract
The reaction of the hexathiapyrazinophane ligand, 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [μ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide, [Cu2Br2(C16H24N2S6)]Br2, (I). The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. The ligand coordinates to the copper(II) atom in a bis-tetradentate manner and the copper atom has a fivefold NS3Br coordination environment with a distorted shape. The reaction of ligand L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly[[μ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-μ-iodido-tetracopper(I)], [Cu4I4(C16H24N2S6)]n, (II). The binuclear unit possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. The two independent copper(I) atoms are both fourfold coordinate. That coordinating to the ligand L1 in a bis-tridentate manner has an NS2I coordination environment and an irregular shape, while the second copper(I) atom, where L1 coordinates in a bis-monodentate manner, has an SI3 coordination environment with an almost perfect tetrahedral geometry. In the crystal of I, the cations and Br− anions are linked by a number of C—H⋯S and C—H⋯Br hydrogen bonds, forming a supramolecular network. In the crystal of II, the two-dimensional coordination polymers lie parallel to the ab plane and there are no significant inter-layer contacts present.
Chemical context
Tetrasubstituted pyrazines are interesting ligands for the formation of multi-dimensional coordination polymers and metal-organic frameworks: for example, tetra-2-pyridylpyrazine (Ouellette et al., 2004 ▸; Nawrot et al., 2015 ▸) and pyrazinetetracarboxylic acid (Masci & Thuéry, 2008 ▸; Zhang et al., 2014 ▸). In recent years a new ligand, 2,3,5,6-(4-carboxyl-tetraphenyl)pyrazine, has been used successfully to form a number of metal–organic frameworks (Wang et al., 2019 ▸).
A number of such ligands involving Npyrazine and S coordination sites have been synthesized and their coordination behaviour with transition metals investigated (Assoumatine, 1999 ▸). The title ligand, L1 (Assoumatine & Stoeckli-Evans, 2020a
▸), is the third in a series of pyrazinethiophane ligands that have been shown to form chains, networks and frameworks with copper halides (Assoumatine, 1999 ▸), especially with CuI. For example, ligand L2, 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine, when reacted with CuI formed a two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine]di-iodido-dicopper(I)] (Fig. 1 ▸
a; Assoumatine & Stoeckli-Evans, 2020b
▸). Ligand L3, 5,7-dihydro-1H,3H-dithieno[3,4-b:30,40-e]pyrazine, when reacted with CuI formed a three-dimensional coordination polymer, poly[(μ4-5,7-dihydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine-κ4N:N′:S:S′)tetra-μ3-iodidotetracopper] (Fig. 1 ▸
b; Assoumatine & Stoeckli-Evans, 2020c
▸). Interestingly, in compound CuI-L2 the copper atom does not coordinate to the pyrazine N atom, whereas in compound CuI-L3 one of the two independent copper atoms does coordinate to the pyrazine N atom. Herein, we report on the results of the reactions of ligand L1 with CuBr2 and CuI, where in both cases the pyrazine N atom is involved in coordination to the copper(II) and copper(I) atoms, respectively.
Figure 1.
Chemical drawings of the complexes involving CuI and ligands L2 and L3.
Structural commentary
The reaction of the hexathiapyrazinophane ligand, 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), with copper(II) dibromide led to the formation of a binuclear complex, [(μ2-L1)dibromodo dicopper(II)] dibromide, (I); see Fig. 2 ▸. The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. Selected bond distances and angles are given in Table 1 ▸. The ligand coordinates to the copper(II) atoms in a bis-tetradentate manner. The symmetry related Cu atoms have a fivefold NS3Br coordination environment with a distorted shape, as indicated by the fivefold index parameter τ5 of 0.38 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984 ▸). There are four five-membered chelate rings; Cu1/N1/C2/C3/S1 and Cu1/N1/C1/C8/S3 which are inclined by ca 90° to chelate rings Cu1/S1/C4/C5/S2 and Cu1/S2/C6/C7/S3 (Fig. 2 ▸).
Figure 2.
A view of the molecular structure of complex I, with atom labelling for the asymmetric unit; symmetry code: (i) −x + 1, −y + 1, −z. Displacement ellipsoids are drawn at the 50% probability level.
Table 1. Selected geometric parameters (Å, °) for I .
| Cu1—N1 | 2.046 (6) | Cu1—S3 | 2.333 (2) |
| Cu1—S1 | 2.346 (2) | Cu1—Br1 | 2.3672 (11) |
| Cu1—S2 | 2.4549 (18) | ||
| N1—Cu1—S1 | 85.26 (18) | S3—Cu1—Br1 | 94.97 (6) |
| N1—Cu1—S3 | 85.38 (18) | N1—Cu1—S2 | 104.48 (15) |
| S3—Cu1—S1 | 168.54 (7) | S1—Cu1—S2 | 88.79 (7) |
| N1—Cu1—Br1 | 145.45 (15) | S3—Cu1—S2 | 87.17 (7) |
| S1—Cu1—Br1 | 96.48 (6) | Br1—Cu1—S2 | 110.05 (6) |
Reaction of L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu2I2 unit to form a two-dimensional coordination polymer, poly-[(μ2-L1)diiodidodicopper(I)di(μ-iodido)dicopper(I)], (II); see Fig. 3 ▸. The binuclear complex possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu2I2 unit is also located about an inversion center. Selected bond distances and angles are given in Table 2 ▸. The two independent copper(I) atoms, Cu1 and Cu2, are both fourfold coordinate. Atom Cu1 coordinates to the ligand L1 in a tridentate fashion and has an NS2I coordination environment. The fourfold index parameter τ4 is 0.77 indicating a very irregular shape (τ4 = 1 for a perfect tetrahedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang et al., 2007 ▸). There are three chelate rings, two of which are five-membered (Cu1/N1/C2/C3/S1 and Cu1/S1/C4/C5/S2) and one eight-membered (Cu1/N1/C1/C8/S3/C7/C6/S2). The second copper(I) atom, Cu2, coordinates to L1 in a monodentate fashion and has an SI3 environment with an almost perfect tetrahedral geometry; here the fourfold index parameter τ4 is 0.91.
Figure 3.
A view of the molecular structure of complex II, with atom labelling for the asymmetric unit; symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y + 1, −z; (iii) x − 1, y, z. Displacement ellipsoids are drawn at the 50% probability level. (Atom Cu1 is green, while atom Cu2 is orange.)
Table 2. Selected geometric parameters (Å, °) for II .
| Cu1—N1 | 2.095 (10) | Cu2—I1 | 2.665 (2) |
| Cu1—S1 | 2.342 (4) | Cu2—I2 | 2.6166 (19) |
| Cu1—S2 | 2.331 (4) | I1—Cu2ii | 2.675 (2) |
| Cu1—I2i | 2.5193 (18) | Cu2—Cu2ii | 2.663 (4) |
| Cu2—S3 | 2.359 (4) | ||
| N1—Cu1—S2 | 110.2 (3) | S3—Cu2—I1ii | 99.22 (11) |
| N1—Cu1—S1 | 85.3 (3) | I2—Cu2—I1ii | 112.01 (7) |
| S2—Cu1—S1 | 91.74 (14) | I1—Cu2—I1ii | 120.18 (7) |
| N1—Cu1—I2i | 121.1 (3) | Cu2—I1—Cu2ii | 59.82 (7) |
| S2—Cu1—I2i | 112.48 (12) | Cu1iii—I2—Cu2 | 94.93 (7) |
| S1—Cu1—I2i | 130.61 (10) | Cu2ii—Cu2—I1 | 60.27 (7) |
| S3—Cu2—I2 | 109.54 (11) | Cu2ii—Cu2—I1ii | 59.91 (7) |
| S3—Cu2—I1 | 105.86 (10) | S3—Cu2—Cu2ii | 115.75 (13) |
| I2—Cu2—I1 | 109.04 (8) | I2—Cu2—Cu2ii | 134.68 (11) |
Symmetry codes: (i)
; (ii)
; (iii)
.
The Cu1—N1 bond lengths in the two complexes, 2.046 (6) Å in I and 2.095 (10) Å in II, are significantly different (Linden, 2020 ▸). They have a difference of 0.049 (12) Å so differ by 4.1σ (i.e., 0.049 Å = 0.012 Å × 4.1). In I, the bond length Cu1—S2 of 2.455 (2) Å is significantly longer than bond lengths Cu1—S1 [2.346 (2) Å] and Cu1—S3 [2.333 (2) Å]. In II, bond lengths Cu1—S1 and Cu1—S2, involving the five-membered chelate rings, viz. 2.342 (4) and 2.331 (4) Å, respectively, are similar to those in I, while bond length Cu2—S3 [2.359 (4) Å] is only slightly longer. The bridging Cu2—Cu2i distance in the Cu2I2 unit in II is 2.663 (4) Å (Table 2 ▸), considerably shorter than the same distance observed in complex CuI-L2 [2.776 (1) Å] [Fig. 1 ▸ a; Assoumatine & Stoeckli-Evans, 2020b ▸].
Supramolecular features
In the crystal of I, the cations are linked by pairs of C6—H6B⋯S1i hydrogen bonds to form chains along the a-axis direction. Chains are also formed along the b-axis direction via C5—H5A⋯S3ii hydrogen bonds (Table 3 ▸). These interactions result in the formation of a supramolecular network that lies parallel to the ab plane (Fig. 4 ▸). There are also a large number of C—H⋯Br contacts present involving the anion, Br2−, strengthening the supramolecular network (Fig. 5 ▸ and Table 3 ▸). There are no significant inter-layer contacts present in the crystal.
Table 3. Hydrogen-bond geometry (Å, °) for I .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C6—H6B⋯S1i | 0.98 | 2.85 | 3.753 (9) | 154 |
| C5—H5A⋯S3ii | 0.98 | 2.81 | 3.634 (8) | 143 |
| C3—H3A⋯Br2iii | 0.98 | 2.86 | 3.814 (8) | 165 |
| C3—H3B⋯Br2ii | 0.98 | 2.83 | 3.770 (7) | 160 |
| C5—H5B⋯Br2iv | 0.98 | 2.87 | 3.821 (7) | 164 |
| C7—H7B⋯Br2i | 0.98 | 2.82 | 3.646 (8) | 142 |
| C8—H8A⋯Br2i | 0.98 | 2.84 | 3.769 (9) | 159 |
| C8—H8B⋯Br2v | 0.98 | 2.89 | 3.713 (7) | 142 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 4.
A view along the c axis of the crystal packing of I. The C—H⋯S hydrogen bonds are shown as dashed lines (see Table 3 ▸). For clarity, the Br− anion and the H atoms not involved in these intermolecular interactions have been omitted.
Figure 5.
A view along the b axis of the crystal packing of I. The C—H⋯S and C—H⋯Br− hydrogen bonds (Table 3 ▸) are shown as dashed lines (see Table 3 ▸). For clarity, only the H atoms involved in these intermolecular interactions have been included.
In the crystal of II, the two-dimensional coordination polymers lie parallel to the (001) plane, as shown in Fig. 6 ▸. There are no significant inter-layer contacts present in the crystal (Fig. 7 ▸).
Figure 6.
A view along the c axis of the two-dimensional structure of complex II. For clarity, H atoms have been omitted.
Figure 7.
A view along the a axis of the crystal packing of complex II. For clarity, H atoms have been omitted.
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016 ▸) for tri- or hexa-thiabenzenophane ligands gave only three hits. They include the trithiabenzenophane ligand, 2,5,8-trithia(9)-m-benzenophane (CSD refcode VEYNES; Groot & Loeb, 1990 ▸), and a palladium and a silver complex of the same ligand, viz. dichloro[2,5,8-trithia(9)-m-benzenophane]palladium(II) (KOMNOP; Groot et al., 1991 ▸), a mononuclear complex, and poly[[2,5,8-trithia(9)-m-cyclophane-S,S′,S′′]silver(I) trifluoromethylsulfonate acetonitrile solvate] (ZIDPEH; Casabo et al., 1995 ▸), a two-dimensional coordination polymer. In KOMNOP, the ligand coordinates in a bidentate manner. The palladium(II) atom is fourfold S2Cl2 coordinate with a square-planar environment (index parameter τ4 is 0.04), In ZIDPEH, the ligand coordinates in a bridging μ3-monodentate manner. The silver(I) atom is fivefold NOS3 coordinate with an irregular shape (index parameter τ5 is 0.56).
A search for benzenophane ligands similar to L2 and L3 gave zero hits for L2 and ten hits for L3. The latter compounds have been compared in a recent article (Assoumatine & Stoeckli-Evans, 2020d ▸), which also describes the syntheses and crystal structures of both L2 and L3.
Synthesis and crystallization
The synthesis and crystal structure of the ligand 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), have been reported (Assoumatine & Stoeckli-Evans, 2020a ▸).
Synthesis of complex [(μ2-L1)dibromodo dicopper(II)] dibromide (I): A solution of L1 (15 mg, 0.03 mmol) in CHCl3 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuBr2 (7 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least 3 weeks, whereupon brown crystals of complex I were isolated in the buffer zone.
Synthesis of complex poly-[(μ2-L1)diiodido-dicopper(I)-di(μ-iodido)-dicopper(I)] (II): A solution of L1 (15 mg, 0.03 mmol) in CH2Cl2 (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. A solution of CuI (6 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitrogen and left in the dark at room temperature for at least 3 weeks, whereupon small orange crystals of complex II were isolated in the buffer zone.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The C-bound H atoms were included in calculated positions and treated as riding on their parent atoms: C—H = 0.98 Å for I and 0.97 Å for II, with U iso(H) = 1.2U eq(C).
Table 4. Experimental details.
| I | II | |
|---|---|---|
| Crystal data | ||
| Chemical formula | [Cu2Br2(C16H24N2S6)]Br2 | [Cu4I4(C16H24N2S6)] |
| M r | 883.45 | 1198.49 |
| Crystal system, space group | Triclinic, P
|
Triclinic, P
|
| Temperature (K) | 223 | 293 |
| a, b, c (Å) | 7.2090 (7), 8.1422 (8), 12.3904 (14) | 7.7713 (8), 8.9456 (9), 11.2464 (14) |
| α, β, γ (°) | 71.842 (12), 74.702 (12), 72.694 (12) | 106.839 (13), 104.644 (13), 93.412 (12) |
| V (Å3) | 647.93 (13) | 716.53 (15) |
| Z | 1 | 1 |
| Radiation type | Mo Kα | Mo Kα |
| μ (mm−1) | 8.30 | 7.69 |
| Crystal size (mm) | 0.20 × 0.20 × 0.03 | 0.30 × 0.20 × 0.05 |
| Data collection | ||
| Diffractometer | Stoe IPDS 1 | Stoe IPDS 1 |
| Absorption correction | Multi-scan (MULABS; Spek, 2020 ▸) | Multi-scan (MULABS; Spek, 2020 ▸) |
| T min, T max | 0.421, 1.000 | 0.435, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 5057, 2320, 1843 | 5260, 2505, 1698 |
| R int | 0.076 | 0.100 |
| (sin θ/λ)max (Å−1) | 0.613 | 0.606 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.060, 0.153, 1.01 | 0.070, 0.183, 0.95 |
| No. of reflections | 2320 | 2505 |
| No. of parameters | 106 | 127 |
| H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.65, −1.67 | 2.25, −2.58 |
Intensity data were measured using a STOE IPDS-1 one-circle diffractometer. For the triclinic system often only 93% of the Ewald sphere is accessible, which explains why the alerts diffrn_reflns_laue_measured_fraction_full value (0.94) below minimum (0.95) for both compounds I and II are given. This involves 145 random reflections out of the expected 2336 for the IUCr cutoff limit of sin θ/λ = 0.60 for I, and 155 random reflections out of the expected 2600 reflections for II. The residual electron-density peaks are approximately 1Å from the halogen atoms in both structures.
Supplementary Material
Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989020007161/pk2634sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007161/pk2634Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007161/pk2634IIsup3.hkl
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
HSE is grateful to the University of Neuchâtel for their support over the years.
supplementary crystallographic information
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Crystal data
| [Cu2Br2(C16H24N2S6)]Br2 | Z = 1 |
| Mr = 883.45 | F(000) = 428 |
| Triclinic, P1 | Dx = 2.264 Mg m−3 |
| a = 7.2090 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.1422 (8) Å | Cell parameters from 5000 reflections |
| c = 12.3904 (14) Å | θ = 2.7–25.8° |
| α = 71.842 (12)° | µ = 8.30 mm−1 |
| β = 74.702 (12)° | T = 223 K |
| γ = 72.694 (12)° | Plate, brown |
| V = 647.93 (13) Å3 | 0.20 × 0.20 × 0.03 mm |
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Data collection
| STOE IPDS 1 diffractometer | 2320 independent reflections |
| Radiation source: fine-focus sealed tube | 1843 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.076 |
| φ rotation scans | θmax = 25.8°, θmin = 2.7° |
| Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −8→8 |
| Tmin = 0.421, Tmax = 1.000 | k = −9→9 |
| 5057 measured reflections | l = −15→15 |
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.153 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.1019P)2] where P = (Fo2 + 2Fc2)/3 |
| 2320 reflections | (Δ/σ)max < 0.001 |
| 106 parameters | Δρmax = 1.65 e Å−3 |
| 0 restraints | Δρmin = −1.67 e Å−3 |
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.19307 (12) | 0.19827 (12) | 0.45400 (7) | 0.0328 (3) | |
| Cu1 | 0.38840 (13) | 0.35871 (11) | 0.29477 (7) | 0.0163 (3) | |
| S1 | 0.1670 (3) | 0.6379 (2) | 0.28528 (15) | 0.0215 (4) | |
| S2 | 0.6115 (3) | 0.4639 (2) | 0.36310 (15) | 0.0197 (4) | |
| S3 | 0.6481 (3) | 0.1120 (2) | 0.27313 (15) | 0.0175 (4) | |
| N1 | 0.4546 (9) | 0.4439 (7) | 0.1184 (5) | 0.0156 (7) | |
| C1 | 0.5922 (11) | 0.3381 (9) | 0.0573 (6) | 0.0156 (7) | |
| C2 | 0.3618 (10) | 0.6046 (9) | 0.0628 (6) | 0.0156 (7) | |
| C3 | 0.2054 (11) | 0.7229 (9) | 0.1295 (6) | 0.0202 (16) | |
| H3A | 0.080095 | 0.744824 | 0.104611 | 0.024* | |
| H3B | 0.240502 | 0.837592 | 0.109580 | 0.024* | |
| C4 | 0.3042 (11) | 0.7561 (10) | 0.3270 (6) | 0.0213 (9) | |
| H4A | 0.262709 | 0.883424 | 0.290981 | 0.026* | |
| H4B | 0.267942 | 0.739951 | 0.411020 | 0.026* | |
| C5 | 0.5303 (11) | 0.6978 (9) | 0.2940 (6) | 0.0156 (7) | |
| H5A | 0.592228 | 0.768345 | 0.318918 | 0.019* | |
| H5B | 0.570091 | 0.717761 | 0.209820 | 0.019* | |
| C6 | 0.8280 (12) | 0.3836 (9) | 0.2624 (6) | 0.0213 (9) | |
| H6A | 0.808898 | 0.438922 | 0.182395 | 0.026* | |
| H6B | 0.945536 | 0.410333 | 0.272072 | 0.026* | |
| C7 | 0.8506 (11) | 0.1809 (9) | 0.2918 (7) | 0.0223 (16) | |
| H7A | 0.867485 | 0.130400 | 0.372431 | 0.027* | |
| H7B | 0.971846 | 0.130109 | 0.243159 | 0.027* | |
| C8 | 0.6904 (12) | 0.1574 (9) | 0.1173 (6) | 0.0213 (9) | |
| H8A | 0.833237 | 0.139237 | 0.087755 | 0.026* | |
| H8B | 0.644904 | 0.070380 | 0.097392 | 0.026* | |
| Br2 | 0.21653 (11) | 0.20772 (10) | 0.02398 (7) | 0.0267 (3) |
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0270 (5) | 0.0335 (5) | 0.0267 (5) | −0.0116 (4) | −0.0043 (3) | 0.0114 (3) |
| Cu1 | 0.0194 (5) | 0.0085 (5) | 0.0194 (5) | −0.0036 (4) | −0.0032 (4) | −0.0013 (3) |
| S1 | 0.0215 (10) | 0.0172 (10) | 0.0201 (9) | 0.0018 (8) | −0.0013 (7) | −0.0053 (7) |
| S2 | 0.0281 (10) | 0.0115 (9) | 0.0223 (9) | −0.0028 (8) | −0.0095 (8) | −0.0060 (7) |
| S3 | 0.0270 (10) | 0.0051 (8) | 0.0195 (8) | −0.0025 (8) | −0.0085 (7) | 0.0005 (6) |
| N1 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
| C1 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
| C2 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
| C3 | 0.029 (4) | 0.012 (4) | 0.014 (3) | 0.008 (3) | −0.007 (3) | −0.006 (3) |
| C4 | 0.031 (3) | 0.011 (2) | 0.022 (2) | −0.002 (2) | −0.0101 (19) | −0.0047 (17) |
| C5 | 0.0223 (18) | 0.0065 (15) | 0.0219 (16) | −0.0034 (14) | −0.0088 (13) | −0.0053 (12) |
| C6 | 0.031 (3) | 0.011 (2) | 0.022 (2) | −0.002 (2) | −0.0101 (19) | −0.0047 (17) |
| C7 | 0.024 (4) | 0.011 (4) | 0.035 (4) | 0.002 (3) | −0.020 (3) | −0.004 (3) |
| C8 | 0.031 (3) | 0.011 (2) | 0.022 (2) | −0.002 (2) | −0.0101 (19) | −0.0047 (17) |
| Br2 | 0.0247 (4) | 0.0210 (4) | 0.0385 (5) | −0.0073 (4) | −0.0041 (3) | −0.0127 (3) |
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Geometric parameters (Å, º)
| Cu1—N1 | 2.046 (6) | C2—C3 | 1.497 (9) |
| Cu1—S1 | 2.346 (2) | C3—H3A | 0.9800 |
| Cu1—S2 | 2.4549 (18) | C3—H3B | 0.9800 |
| Cu1—S3 | 2.333 (2) | C4—C5 | 1.536 (10) |
| Cu1—Br1 | 2.3672 (11) | C4—H4A | 0.9800 |
| S1—C3 | 1.811 (7) | C4—H4B | 0.9800 |
| S1—C4 | 1.822 (7) | C5—H5A | 0.9800 |
| S2—C6 | 1.815 (8) | C5—H5B | 0.9800 |
| S2—C5 | 1.814 (7) | C6—C7 | 1.542 (9) |
| S3—C7 | 1.802 (7) | C6—H6A | 0.9800 |
| S3—C8 | 1.808 (7) | C6—H6B | 0.9800 |
| N1—C1 | 1.342 (9) | C7—H7A | 0.9800 |
| N1—C2 | 1.340 (9) | C7—H7B | 0.9800 |
| C1—C2i | 1.394 (10) | C8—H8A | 0.9800 |
| C1—C8 | 1.482 (11) | C8—H8B | 0.9800 |
| N1—Cu1—S1 | 85.26 (18) | S1—C3—H3B | 108.4 |
| N1—Cu1—S3 | 85.38 (18) | H3A—C3—H3B | 107.5 |
| S3—Cu1—S1 | 168.54 (7) | C5—C4—S1 | 115.1 (5) |
| N1—Cu1—Br1 | 145.45 (15) | C5—C4—H4A | 108.5 |
| S1—Cu1—Br1 | 96.48 (6) | S1—C4—H4A | 108.5 |
| S3—Cu1—Br1 | 94.97 (6) | C5—C4—H4B | 108.5 |
| N1—Cu1—S2 | 104.48 (15) | S1—C4—H4B | 108.5 |
| S1—Cu1—S2 | 88.79 (7) | H4A—C4—H4B | 107.5 |
| S3—Cu1—S2 | 87.17 (7) | C4—C5—S2 | 109.4 (4) |
| Br1—Cu1—S2 | 110.05 (6) | C4—C5—H5A | 109.8 |
| C3—S1—C4 | 102.4 (3) | S2—C5—H5A | 109.8 |
| C3—S1—Cu1 | 98.5 (2) | C4—C5—H5B | 109.8 |
| C4—S1—Cu1 | 101.4 (3) | S2—C5—H5B | 109.8 |
| C6—S2—C5 | 104.4 (3) | H5A—C5—H5B | 108.3 |
| C6—S2—Cu1 | 93.8 (2) | C7—C6—S2 | 105.4 (5) |
| C5—S2—Cu1 | 96.5 (2) | C7—C6—H6A | 110.7 |
| C7—S3—C8 | 100.9 (4) | S2—C6—H6A | 110.7 |
| C7—S3—Cu1 | 101.0 (2) | C7—C6—H6B | 110.7 |
| C8—S3—Cu1 | 97.8 (3) | S2—C6—H6B | 110.7 |
| C1—N1—C2 | 119.4 (6) | H6A—C6—H6B | 108.8 |
| C1—N1—Cu1 | 119.9 (5) | C6—C7—S3 | 115.5 (5) |
| C2—N1—Cu1 | 120.7 (5) | C6—C7—H7A | 108.4 |
| N1—C1—C2i | 120.2 (7) | S3—C7—H7A | 108.4 |
| N1—C1—C8 | 119.9 (6) | C6—C7—H7B | 108.4 |
| C2i—C1—C8 | 119.9 (6) | S3—C7—H7B | 108.4 |
| N1—C2—C1i | 120.4 (6) | H7A—C7—H7B | 107.5 |
| N1—C2—C3 | 120.1 (6) | C1—C8—S3 | 115.4 (5) |
| C1i—C2—C3 | 119.5 (7) | C1—C8—H8A | 108.4 |
| C2—C3—S1 | 115.3 (5) | S3—C8—H8A | 108.4 |
| C2—C3—H3A | 108.4 | C1—C8—H8B | 108.4 |
| S1—C3—H3A | 108.4 | S3—C8—H8B | 108.4 |
| C2—C3—H3B | 108.4 | H8A—C8—H8B | 107.5 |
| C2—N1—C1—C2i | 0.2 (10) | Cu1—S1—C4—C5 | 30.4 (6) |
| Cu1—N1—C1—C2i | −179.9 (4) | S1—C4—C5—S2 | −59.9 (6) |
| C2—N1—C1—C8 | −177.6 (5) | C6—S2—C5—C4 | 148.0 (5) |
| Cu1—N1—C1—C8 | 2.3 (8) | Cu1—S2—C5—C4 | 52.4 (4) |
| C1—N1—C2—C1i | −0.2 (10) | C5—S2—C6—C7 | −158.1 (5) |
| Cu1—N1—C2—C1i | 179.9 (4) | Cu1—S2—C6—C7 | −60.3 (5) |
| C1—N1—C2—C3 | 178.9 (6) | S2—C6—C7—S3 | 62.3 (6) |
| Cu1—N1—C2—C3 | −1.0 (8) | C8—S3—C7—C6 | 74.9 (6) |
| N1—C2—C3—S1 | 3.6 (8) | Cu1—S3—C7—C6 | −25.4 (6) |
| C1i—C2—C3—S1 | −177.3 (5) | N1—C1—C8—S3 | −11.6 (8) |
| C4—S1—C3—C2 | 99.9 (5) | C2i—C1—C8—S3 | 170.6 (5) |
| Cu1—S1—C3—C2 | −3.8 (5) | C7—S3—C8—C1 | −89.9 (6) |
| C3—S1—C4—C5 | −71.0 (6) | Cu1—S3—C8—C1 | 13.0 (5) |
Symmetry code: (i) −x+1, −y+1, −z.
[µ2-2,5,8,11,14,17-Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H6B···S1ii | 0.98 | 2.85 | 3.753 (9) | 154 |
| C5—H5A···S3iii | 0.98 | 2.81 | 3.634 (8) | 143 |
| C3—H3A···Br2iv | 0.98 | 2.86 | 3.814 (8) | 165 |
| C3—H3B···Br2iii | 0.98 | 2.83 | 3.770 (7) | 160 |
| C5—H5B···Br2i | 0.98 | 2.87 | 3.821 (7) | 164 |
| C7—H7B···Br2ii | 0.98 | 2.82 | 3.646 (8) | 142 |
| C8—H8A···Br2ii | 0.98 | 2.84 | 3.769 (9) | 159 |
| C8—H8B···Br2v | 0.98 | 2.89 | 3.713 (7) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) −x, −y+1, −z; (v) −x+1, −y, −z.
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Crystal data
| [Cu4I4(C16H24N2S6)] | Z = 1 |
| Mr = 1198.49 | F(000) = 558 |
| Triclinic, P1 | Dx = 2.777 Mg m−3 |
| a = 7.7713 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.9456 (9) Å | Cell parameters from 4652 reflections |
| c = 11.2464 (14) Å | θ = 2.0–25.8° |
| α = 106.839 (13)° | µ = 7.69 mm−1 |
| β = 104.644 (13)° | T = 293 K |
| γ = 93.412 (12)° | Plate, orange |
| V = 716.53 (15) Å3 | 0.30 × 0.20 × 0.05 mm |
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Data collection
| STOE IPDS 1 diffractometer | 2505 independent reflections |
| Radiation source: fine-focus sealed tube | 1698 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.100 |
| φ rotation scans | θmax = 25.5°, θmin = 2.4° |
| Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −9→9 |
| Tmin = 0.435, Tmax = 1.000 | k = −10→10 |
| 5260 measured reflections | l = −13→13 |
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.183 | H-atom parameters constrained |
| S = 0.95 | w = 1/[σ2(Fo2) + (0.110P)2] where P = (Fo2 + 2Fc2)/3 |
| 2505 reflections | (Δ/σ)max < 0.001 |
| 127 parameters | Δρmax = 2.25 e Å−3 |
| 0 restraints | Δρmin = −2.58 e Å−3 |
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| I1 | 0.73534 (12) | 0.70224 (11) | 0.11663 (9) | 0.0396 (3) | |
| I2 | 0.34990 (12) | 0.56223 (11) | 0.29340 (9) | 0.0370 (3) | |
| Cu1 | 1.2404 (2) | 0.2890 (2) | 0.28830 (16) | 0.0332 (4) | |
| Cu2 | 0.5027 (2) | 0.4653 (2) | 0.10778 (18) | 0.0415 (5) | |
| S1 | 1.3999 (4) | 0.0851 (4) | 0.3255 (3) | 0.0326 (8) | |
| S2 | 1.1079 (5) | 0.2923 (4) | 0.4531 (3) | 0.0349 (8) | |
| S3 | 0.6749 (4) | 0.2663 (4) | 0.1450 (3) | 0.0296 (7) | |
| N1 | 1.0914 (12) | 0.1189 (12) | 0.1149 (10) | 0.025 (2) | |
| C1 | 0.9371 (16) | 0.1373 (15) | 0.0368 (12) | 0.0238 (18) | |
| C2 | 1.1538 (15) | −0.0213 (15) | 0.0762 (11) | 0.0238 (18) | |
| C3 | 1.3271 (19) | −0.0448 (18) | 0.1606 (13) | 0.038 (3) | |
| H3A | 1.421167 | −0.033142 | 0.120089 | 0.046* | |
| H3B | 1.314897 | −0.152610 | 0.162526 | 0.046* | |
| C4 | 1.2385 (17) | 0.0077 (18) | 0.3947 (13) | 0.035 (3) | |
| H4A | 1.126049 | −0.037376 | 0.327911 | 0.042* | |
| H4B | 1.284935 | −0.075140 | 0.427765 | 0.042* | |
| C5 | 1.206 (2) | 0.1374 (18) | 0.5023 (14) | 0.039 (2) | |
| H5A | 1.319763 | 0.181893 | 0.567821 | 0.047* | |
| H5B | 1.127970 | 0.092387 | 0.541897 | 0.047* | |
| C6 | 0.8751 (19) | 0.2106 (18) | 0.3709 (14) | 0.039 (2) | |
| H6A | 0.868179 | 0.113955 | 0.301594 | 0.047* | |
| H6B | 0.817806 | 0.185297 | 0.431304 | 0.047* | |
| C7 | 0.7789 (16) | 0.3263 (16) | 0.3162 (12) | 0.030 (2) | |
| H7A | 0.864140 | 0.420800 | 0.338968 | 0.036* | |
| H7B | 0.686666 | 0.355435 | 0.359299 | 0.036* | |
| C8 | 0.8623 (16) | 0.2892 (16) | 0.0814 (13) | 0.030 (2) | |
| H8A | 0.824277 | 0.329504 | 0.008985 | 0.036* | |
| H8B | 0.956964 | 0.366690 | 0.147795 | 0.036* |
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| I1 | 0.0407 (5) | 0.0292 (6) | 0.0494 (6) | 0.0003 (4) | 0.0136 (4) | 0.0134 (4) |
| I2 | 0.0437 (5) | 0.0156 (5) | 0.0585 (6) | 0.0031 (4) | 0.0271 (4) | 0.0110 (4) |
| Cu1 | 0.0348 (8) | 0.0176 (10) | 0.0487 (10) | 0.0019 (7) | 0.0144 (7) | 0.0110 (7) |
| Cu2 | 0.0424 (10) | 0.0387 (12) | 0.0546 (12) | 0.0177 (8) | 0.0220 (8) | 0.0219 (9) |
| S1 | 0.0277 (15) | 0.030 (2) | 0.0386 (18) | 0.0065 (13) | 0.0051 (13) | 0.0109 (15) |
| S2 | 0.0374 (17) | 0.025 (2) | 0.042 (2) | 0.0028 (14) | 0.0146 (14) | 0.0084 (15) |
| S3 | 0.0284 (15) | 0.0216 (19) | 0.045 (2) | 0.0109 (13) | 0.0161 (14) | 0.0138 (14) |
| N1 | 0.025 (5) | 0.013 (6) | 0.042 (6) | 0.005 (4) | 0.017 (5) | 0.009 (4) |
| C1 | 0.029 (4) | 0.014 (5) | 0.031 (5) | 0.007 (3) | 0.011 (4) | 0.009 (3) |
| C2 | 0.029 (4) | 0.014 (5) | 0.031 (5) | 0.007 (3) | 0.011 (4) | 0.009 (3) |
| C3 | 0.052 (8) | 0.022 (8) | 0.038 (8) | 0.021 (6) | 0.014 (6) | 0.002 (6) |
| C4 | 0.030 (6) | 0.038 (9) | 0.046 (8) | 0.005 (6) | 0.012 (6) | 0.028 (7) |
| C5 | 0.050 (6) | 0.027 (6) | 0.044 (6) | 0.005 (5) | 0.012 (5) | 0.018 (5) |
| C6 | 0.050 (6) | 0.027 (6) | 0.044 (6) | 0.005 (5) | 0.012 (5) | 0.018 (5) |
| C7 | 0.029 (5) | 0.024 (6) | 0.042 (5) | 0.013 (4) | 0.018 (4) | 0.011 (4) |
| C8 | 0.029 (5) | 0.024 (6) | 0.042 (5) | 0.013 (4) | 0.018 (4) | 0.011 (4) |
Poly[[µ2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)] (II) . Geometric parameters (Å, º)
| Cu1—N1 | 2.095 (10) | C1—C2iii | 1.373 (17) |
| Cu1—S1 | 2.342 (4) | C1—C8 | 1.511 (18) |
| Cu1—S2 | 2.331 (4) | C2—C3 | 1.504 (19) |
| Cu1—I2i | 2.5193 (18) | C3—H3A | 0.9700 |
| Cu2—S3 | 2.359 (4) | C3—H3B | 0.9700 |
| Cu2—I1 | 2.665 (2) | C4—C5 | 1.50 (2) |
| Cu2—I2 | 2.6166 (19) | C4—H4A | 0.9700 |
| I1—Cu2ii | 2.675 (2) | C4—H4B | 0.9700 |
| Cu2—Cu2ii | 2.663 (4) | C5—H5A | 0.9700 |
| S1—C3 | 1.803 (13) | C5—H5B | 0.9700 |
| S1—C4 | 1.834 (13) | C6—C7 | 1.50 (2) |
| S2—C5 | 1.779 (16) | C6—H6A | 0.9700 |
| S2—C6 | 1.808 (14) | C6—H6B | 0.9700 |
| S3—C7 | 1.793 (13) | C7—H7A | 0.9700 |
| S3—C8 | 1.803 (12) | C7—H7B | 0.9700 |
| N1—C1 | 1.346 (16) | C8—H8A | 0.9700 |
| N1—C2 | 1.364 (16) | C8—H8B | 0.9700 |
| N1—Cu1—S2 | 110.2 (3) | C2—C3—S1 | 116.7 (10) |
| N1—Cu1—S1 | 85.3 (3) | C2—C3—H3A | 108.1 |
| S2—Cu1—S1 | 91.74 (14) | S1—C3—H3A | 108.1 |
| N1—Cu1—I2i | 121.1 (3) | C2—C3—H3B | 108.1 |
| S2—Cu1—I2i | 112.48 (12) | S1—C3—H3B | 108.1 |
| S1—Cu1—I2i | 130.61 (10) | H3A—C3—H3B | 107.3 |
| S3—Cu2—I2 | 109.54 (11) | C5—C4—S1 | 110.1 (10) |
| S3—Cu2—I1 | 105.86 (10) | C5—C4—H4A | 109.6 |
| I2—Cu2—I1 | 109.04 (8) | S1—C4—H4A | 109.6 |
| S3—Cu2—I1ii | 99.22 (11) | C5—C4—H4B | 109.6 |
| I2—Cu2—I1ii | 112.01 (7) | S1—C4—H4B | 109.6 |
| I1—Cu2—I1ii | 120.18 (7) | H4A—C4—H4B | 108.2 |
| Cu2—I1—Cu2ii | 59.82 (7) | C4—C5—S2 | 114.4 (10) |
| Cu1iv—I2—Cu2 | 94.93 (7) | C4—C5—H5A | 108.7 |
| Cu2ii—Cu2—I1 | 60.27 (7) | S2—C5—H5A | 108.7 |
| Cu2ii—Cu2—I1ii | 59.91 (7) | C4—C5—H5B | 108.7 |
| S3—Cu2—Cu2ii | 115.75 (13) | S2—C5—H5B | 108.7 |
| I2—Cu2—Cu2ii | 134.68 (11) | H5A—C5—H5B | 107.6 |
| C3—S1—C4 | 100.9 (7) | C7—C6—S2 | 110.2 (10) |
| C3—S1—Cu1 | 96.4 (5) | C7—C6—H6A | 109.6 |
| C4—S1—Cu1 | 94.5 (5) | S2—C6—H6A | 109.6 |
| C5—S2—C6 | 104.7 (7) | C7—C6—H6B | 109.6 |
| C5—S2—Cu1 | 98.8 (5) | S2—C6—H6B | 109.6 |
| C6—S2—Cu1 | 105.0 (5) | H6A—C6—H6B | 108.1 |
| C7—S3—C8 | 102.8 (6) | C6—C7—S3 | 117.8 (10) |
| C7—S3—Cu2 | 106.0 (4) | C6—C7—H7A | 107.9 |
| C8—S3—Cu2 | 105.2 (5) | S3—C7—H7A | 107.9 |
| C1—N1—C2 | 116.6 (10) | C6—C7—H7B | 107.9 |
| C1—N1—Cu1 | 124.9 (9) | S3—C7—H7B | 107.9 |
| C2—N1—Cu1 | 118.5 (8) | H7A—C7—H7B | 107.2 |
| N1—C1—C2iii | 122.1 (12) | C1—C8—S3 | 113.2 (9) |
| N1—C1—C8 | 117.1 (11) | C1—C8—H8A | 108.9 |
| C2iii—C1—C8 | 120.8 (11) | S3—C8—H8A | 108.9 |
| N1—C2—C1iii | 121.3 (11) | C1—C8—H8B | 108.9 |
| N1—C2—C3 | 117.9 (11) | S3—C8—H8B | 108.9 |
| C1iii—C2—C3 | 120.7 (12) | H8A—C8—H8B | 107.7 |
| C2—N1—C1—C2iii | 0.0 (19) | Cu1—S1—C4—C5 | −52.9 (10) |
| Cu1—N1—C1—C2iii | 179.6 (9) | S1—C4—C5—S2 | 62.8 (12) |
| C2—N1—C1—C8 | 177.4 (10) | C6—S2—C5—C4 | 74.9 (11) |
| Cu1—N1—C1—C8 | −3.0 (15) | Cu1—S2—C5—C4 | −33.3 (10) |
| C1—N1—C2—C1iii | 0.0 (19) | C5—S2—C6—C7 | −176.2 (10) |
| Cu1—N1—C2—C1iii | −179.6 (9) | Cu1—S2—C6—C7 | −72.6 (10) |
| C1—N1—C2—C3 | 179.3 (11) | S2—C6—C7—S3 | 121.3 (9) |
| Cu1—N1—C2—C3 | −0.3 (15) | C8—S3—C7—C6 | −78.8 (11) |
| N1—C2—C3—S1 | 18.3 (17) | Cu2—S3—C7—C6 | 171.0 (9) |
| C1iii—C2—C3—S1 | −162.3 (10) | N1—C1—C8—S3 | −103.2 (11) |
| C4—S1—C3—C2 | 72.6 (13) | C2iii—C1—C8—S3 | 74.2 (14) |
| Cu1—S1—C3—C2 | −23.2 (12) | C7—S3—C8—C1 | 96.8 (10) |
| C3—S1—C4—C5 | −150.3 (10) | Cu2—S3—C8—C1 | −152.4 (8) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+2, −y, −z; (iv) x−1, y, z.
Funding Statement
This work was funded by Swiss National Science Foundation and the University of Neuchâtel grant .
References
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.
- Assoumatine, T. & Stoeckli-Evans, H. (2020a). Acta Cryst. E76, 977–983. [DOI] [PMC free article] [PubMed]
- Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467. [DOI] [PMC free article] [PubMed]
- Assoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401. [DOI] [PMC free article] [PubMed]
- Assoumatine, T. & Stoeckli-Evans, H. (2020d). Acta Cryst. E76, 539–546. [DOI] [PMC free article] [PubMed]
- Casabo, J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. & Teixidor, F. (1995). Inorg. Chem. 34, 5410–5415.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Groot, B. de, Hanan, G. S. & Loeb, S. J. (1991). Inorg. Chem. 30, 4644–4647.
- Groot, B. de & Loeb, S. J. (1990). Inorg. Chem. 29, 4084–4090.
- Linden, A. (2020). Acta Cryst. E76, 765–775. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Masci, B. & Thuéry, P. (2008). Cryst. Growth Des. 8, 1689–1696.
- Nawrot, I., Machura, B. & Kruszynski, R. (2015). CrystEngComm, 17, 830–845.
- Ouellette, W., Burkholder, E., Manzar, S., Bewley, L., Rarig, R. S. & Zubieta, J. (2004). Solid State Sci. 6, 77–84.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (1997). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
- Wang, T., Huang, K., Peng, M., Li, X., Han, D., Jing, L. & Qin, D. (2019). CrystEngComm, 21, 494–501.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
- Zhang, F., Yan, P., Li, H., Zou, X., Hou, G. & Li, G. (2014). Dalton Trans. 43, 12574–12581. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989020007161/pk2634sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007161/pk2634Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007161/pk2634IIsup3.hkl
Additional supporting information: crystallographic information; 3D view; checkCIF report








