Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 19;76(Pt 7):1096–1100. doi: 10.1107/S2056989020007793

Crystal structure of 5-[(benzo­yloxy)meth­yl]-5,6-dihy­droxy-4-oxo­cyclo­hex-2-en-1-yl benzoate

Theerachart Leepasert a, Patchreenart Saparpakorn a, Kittipong Chainok b, Tanwawan Duangthongyou a,*
PMCID: PMC7336786  PMID: 32695459

The crystal structure 5-[(benzo­yloxy)meth­yl]-5,6-dihy­droxy-4-oxo­cyclo­hex-2-en-1-yl benzoate a natural product from Pipers griffithii leaves known as zeylenone has been determined.

Keywords: crystal structure, Pipers griffithii, zeylenone, hydrogen bonds

Abstract

The crystal structure of the natural product zeylenone, C21H18O7, was confirmed by single-crystal X-ray diffraction. The crystal structure has three chiral centers at positions C1, C5 and C6 of the cyclo­hexa­none ring, but the absolute configuration could not be determined reliably. The methyl benzoate and benzo­yloxy substituents at positions C1 and C5 of the cyclo­hexenone ring are on the same side of the ring with the dihedral angle between their mean planes being 16.25 (10)°. These rings are almost perpendicular to the cyclo­hexenone ring. The benzoate groups and two hydroxyl groups on the cyclo­hexenone ring form strong hydrogen bonds to consolidate the crystal structure. In addition, weak C—H⋯O hydrogen bonds also contribute to the packing of the structure.

Chemical context  

Zeylenone is a naturally occurring polyoxygenated cyclo­hexene derived from the shikimate pathway. It has been found in a few plant families such as Piperaceae and Annona­ceae. The biological activity of zeylenone was reported as inducing apoptosis in the mitochondria of gastric cancer cells (Yang et al., 2018) and cervical carcinoma cells (Zhang et al., 2017). The absolute configuration of natural zeylenone was determined by CD spectroscopy to be (−)-zeylenone (Takeuchi et al., 2001).graphic file with name e-76-01096-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound (I) is shown in Fig. 1. It has three chiral centers at positions C1, C5 and C6 of the cyclo­hexa­none ring. However, the absolute configuration (probably 1S, 5R and 6S) could not be deduced from the X-ray data because of the large standard deviation of the Flack parameter [0.0 (3)]. The two main substituents are methyl benzoate and benzo­yloxy at positions C1 and C5, and positioned at the same side of the cyclo­hexenone ring. The dihedral angle between the methyl benzoate and benzo­yloxy mean planes is 16.24 (10)°, indicating that the rings are almost coplanar. The dihedral angle between the cyclo­hexenone ring and the methyl benzoate and benzo­yloxy rings are 74.92 (9) and 69.23 (10)°, respectively, indicating that the aromatic and cyclo­hexenone rings are almost perpendicular. The conformation of the cyclo­hexenone ring, the core structure of (−)-zeylenone, is described as a half-chair based on the torsion angles H4—C4—C3—C2 [−178.7 (3)°, almost planar] and C5—C6—C1—C2 [−60.65 (16)°, perfectly staggered] and the puckering parameters [Q = 0.4989 (17) Å, θ = 130.8 (2)° and Φ = 143.9 (3)°].

Figure 1.

Figure 1

The mol­ecular structure of compound (I) with the atom labelling and 50% probability displacement ellipsoids.

Supra­molecular features  

The crystal packing is characterized by both strong and weak hydrogen bonds and also by partial π–π inter­actions. The strong hydrogen bonds are formed between hydroxyl groups on the cyclo­hexenone ring and the uncoordinated oxygen atom of methyl benzoate and benzo­yloxy substituents (O2—H2⋯O7i and O1—H1⋯O5ii, Fig. 2 a, Table 1). These inter­actions form a layer parallel to the bc plane (Fig. 2 b). In addition, the crystal packing features weak C—H⋯O hydrogen-bonding inter­actions (C13—H13⋯O2iii, Table 1) and contacts between the aromatic rings [the shortest centroid–centroid distance between phenyl rings is 4.641 (2) Å], as shown in Fig. 3.

Figure 2.

Figure 2

(a) O—H⋯O hydrogen bond formation in (I) and (b) the crystal packing viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O7i 0.82 1.93 (1) 2.7029 (17) 157 (1)
O1—H1⋯O5ii 0.82 1.89 (1) 2.7112 (17) 177 (2)
C13—H13⋯O2iii 0.93 (1) 2.53 (1) 3.221 (3) 132 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

(a) C—H⋯O hydrogen bonds and (b) the crystal packing viewed along the b axis. Blue dashed lines represent O—H⋯O hydrogen bonds and black dashed lines represent the C—H⋯O and the weak π–π inter­actions.

Computational calculations  

The structure of the title compound was optimized using density functional theory (DFT) calculations at the M062X/6-31G(d) level using GAUSSIAN 09 (Frisch et al., 2016). The optimized structure was then used for the analysis of the highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO) using the same level of theory in order to determine the reactivity of the compound via the energy gap.

The DFT-optimized geometry was compared with the geometry obtained from the crystal structure using the mol­ecular overlay module based on 50% steric and 50% electrostatic similarities in the Discovery Studio visualizer (Dassault, 2018), as shown in Fig. 4. The overlay similarity, which is calculated based on the steric and electrostatic overlaps, is high with a value of 0.86 and the r.m.s.d. of the heavy atoms (non-H atoms) is 0.67 Å. Geometrical parameters (i.e. bond lengths, bond angles and torsion angles) of the experimental and optimized structures are given in Table 2.

Figure 4.

Figure 4

Superposition of the experimental (ball-and-stick model) and optimized (stick model) structures.

Table 2. Comparison of geometric parameters (Å, °) between the experimental and optimized structures.

Parameter Exp. Calc. Parameter Exp. Calc.
O1—C1 1.425 (2) 1.43 C5—C6 1.512 (2) 1.53
O2—C6 1.403 (2) 1.40 C8—C9 1.480 (2) 1.49
O3—C2 1.211 (2) 1.21 C9—C10 1.372 (3) 1.40
O4—C7 1.446 (2) 1.43 C9—C14 1.384 (2) 1.40
O4—C8 1.327 (2) 1.35 C10—C11 1.385 (3) 1.39
O5—C8 1.196 (2) 1.21 C11—C12 1.382 (3) 1.39
O6—C5 1.455 (2) 1.43 C12—C13 1.346 (3) 1.39
O6—C15 1.334 (2) 1.35 C13—C14 1.378 (3) 1.39
O7—C15 1.206 (2) 1.21 C15—C16 1.476 (2) 1.49
C1—C2 1.534 (2) 1.54 C16—C17 1.392 (2) 1.40
C1—C6 1.530 (2) 1.53 C16—C21 1.382 (3) 1.40
C1—C7 1.509 (2) 1.52 C17—C18 1.376 (3) 1.39
C2—C3 1.456 (3) 1.47 C18—C19 1.364 (3) 1.39
C3—C4 1.322 (3) 1.34 C19—C20 1.377 (3) 1.39
C4—C5 1.489 (3) 1.50 C20—C21 1.381 (3) 1.39
           
O1—C1—C7 108.46 (13) 108.9 C2—C1—C6 108.75 (13) 113.5
O4—C8—C9 113.45 (13) 113.1 C3—C4—C5 123.74 (19) 122.6
O6—C5—C6 106.27 (11) 106.4 C4—C5—C6 112.53 (15) 111.9
O6—C15—C16 113.40 (14) 112.5 C5—O6—C15 116.55 (12) 115.8
C1—O1—H1 109.5 108.0 C6—O2—H2 109.5 106.4
C1—C2—C3 115.64 (16) 118.1 C8—O4—C7 116.34 (13) 114.4
C1—C6—C5 108.92 (12) 110.1 C8—C9—C10 122.49 (14) 112.7
C1—C7—O4 108.20 (12) 107.2 C15—C16—C21 122.2 (2) 122.19 (15)
           
O6—C15—C16—C21 −0.4 (3) 3.5 C8—O4—C7—C1 175.99 (13) 179.9
C5—O6—C15—C16 −179.95 (15) −175.2 C9—C8—O4—C7 173.83 (14) 179.6
C6—C1—C2—C3 43.70 (19) 19.5 C10—C9—C8—O4 −11.7 (2) 3.0
C6—C5—C4—C3 −19.8 (3) −29.8      

Finally, the mol­ecular orbitals of zeylenone were calculated. The HOMO and LUMO plots are shown in Fig. 5. At the HOMO level, the orbitals are located on the phenyl ring of the methyl­ene benzoate group and the orbitals are shifted to the cyclo­hexenone ring at the LUMO level. The energy gap (E HOMO − E LUMO) is 7.61 eV. The large energy gap indicates the stability of the title compound.

Figure 5.

Figure 5

The HOMO–LUMO plot for the title compound (I).

Database survey  

In the first reported total synthesis of zeylenone from shikimic acid, the absolute configuration was assigned as 1R, 5S, 6R. A circular dichroism study of the synthesized product gave (+)-zeylenone (Liu et al., 2004). The first total synthesis of (−)-zeylenone was also achieved from shikimic acid (Zhang et al., 2006). Similar structures to (−)-zeylenone are (−)-zeylenol and an alcohol form, (−)-zeylenone, from Piper cubeba (Taneja et al., 1991).

The closest related structure is that of Cherrevenone, a polyoxygenated cyclo­hexene derivative from Uvaria cherrevensis. Here, the absolute configuration could again not be determined from the X-ray data, but was confirmed by an electronic circular dichroism analysis (CCDC refcode WOJLIT; Jaipetch et al., 2019).

Other reported crystal structures containing a cyclo­hexenone ring as a core structure include URIPUH (Mayekar et al., 2010), KADROW (Lynch et al., 1989), WINTUI (Sondossi et al., 1995) and CEZXUD (Atioğlu et al., 2018). In all of these, the cyclo­hexenone ring adopts a half-chair conformation, as observed in the title compound.

Synthesis and crystallization  

Pipers griffithii leaves, collected from Kanchanaburi province in Easten Thailand, were dried in air and then powdered with a grinder. Piper powder (400 g) was macerated at room temperature in hexane for a week and then filtered. This was repeated with the remaining Piper powder using ethyl acetate. The filtrate was evaporated to yield about 2.60 g crude extract from ethyl acetate, which was dissolved again in ethyl acetate and mixed with silica gel. The mixture was evaporated by rotary evaporator, loaded on the column and eluted by gradient elution using 20–50% EtOAc in hexane. The fractions were collected and combined, monitoring with thin layer chromatography, to provide eleven fractions. The sixth fraction was separated by column chromatography using MeOH:EtOAc:Hexane (1:4:5) as eluents, yielding a pale-yellow solid (0.60 g), which was recrystallized from di­chloro­methane and hexane (1:1), giving colourless in CIF crystals, m.p. 423–424 K.

1H NMR (400 MHz, CDCl3): δ 3.22 (1H, s, br), 4.11 (1H, s, br), 4.38 (1H, d, J = 4 Hz), 4.60 (1H, d, J = 12 Hz), 4.85 (1H, d, J = 8 Hz), 5.96 (1H, d, J = 4 Hz), 6.34 (1H, dd, J = 8, 8 Hz), 6.96 (1H, dd, J = 4, 8 Hz), 7.38–7.44 (4H, m), 7.56 (2H, dd, J = 8, 16 Hz), 7.94 (2H, dd, J = 4, 8 Hz), 8.02 (2H, dd, J = 4, 8 Hz). 13C NMR (CDCl3): δ 65.4, 69.2, 71.6, 77.2, 128.4, 128.5, 128.6, 128.7, 129.1, 129.7, 129.78, 133.4, 133.7, 142.6, 165.3, 166.1, 196.2. Mass spectroscopy m/z 383.1125 (M + 1)+. IR (KBr, cm−1): 712 cm−1 (s, C—H bending); 1103 cm−1 (s, C—O stretching); 1277 cm−1 (s, C—O stretching); 1593 cm−1 (w, C=C aromatic ring); 1705 cm−1 (s, C=O) ; 2933 cm−1 (w, C=C—H stretching aromatic ring); 3423 cm−1 (s, O—H stretching).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms, ternary C(H), secondary C(H,H), aromatic H and tetra­hedral OH, were placed in calculated positions (C—H = 0.98, 0.97, 0.93 and 0.82 Å, respectively). They are refined using a riding model with U iso(H) = 1.5U eq(C) or 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula C21H18O7
M r 382.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.4958 (11), 12.422 (2), 20.325 (4)
V3) 1892.4 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.24 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.708, 0.745
No. of measured, independent and observed [I ≥ 2u(I)] reflections 36963, 3587, 3199
R int 0.045
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.082, 1.10
No. of reflections 3587
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.10
Absolute structure Flack x determined using 1259 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.0 (3)

Computer programs: APEX3 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020007793/vm2234sup1.cif

e-76-01096-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007793/vm2234Isup2.hkl

e-76-01096-Isup2.hkl (172.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020007793/vm2234Isup3.cml

CCDC reference: 2008756

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank Kasetsart University Research and Development Institute, Department of Chemistry, Faculty of Science, Kasetsart University, for support to facilitate our research.

supplementary crystallographic information

Crystal data

C21H18O7 Dx = 1.342 Mg m3
Mr = 382.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9916 reflections
a = 7.4958 (11) Å θ = 2.6–24.7°
b = 12.422 (2) Å µ = 0.10 mm1
c = 20.325 (4) Å T = 296 K
V = 1892.4 (6) Å3 Plate, colourless
Z = 4 0.24 × 0.08 × 0.04 mm
F(000) = 800.5281

Data collection

Bruker APEX2 D8 QUEST CMOS diffractometer 3199 reflections with I≥ 2u(I)
ω and φ scans Rint = 0.045
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.7°, θmin = 2.9°
Tmin = 0.708, Tmax = 0.745 h = −9→9
36963 measured reflections k = −15→15
3587 independent reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1967P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max = 0.0003
S = 1.10 Δρmax = 0.12 e Å3
3587 reflections Δρmin = −0.10 e Å3
255 parameters Absolute structure: Flack x determined using 1259 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.0 (3)
35 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O6 0.48269 (18) 0.70917 (9) 0.38884 (5) 0.0630 (3)
O2 0.20328 (14) 0.56656 (10) 0.43093 (5) 0.0586 (3)
H2 0.1932 (6) 0.5895 (17) 0.4686 (4) 0.0879 (4)*
O1 0.43371 (18) 0.46452 (9) 0.52550 (5) 0.0637 (3)
H1 0.477 (3) 0.4158 (8) 0.54749 (17) 0.0956 (5)*
O4 0.25100 (18) 0.33708 (9) 0.38037 (5) 0.0649 (3)
O5 0.0902 (2) 0.19256 (12) 0.40208 (7) 0.0929 (5)
O7 0.5956 (3) 0.82489 (11) 0.46087 (7) 0.1010 (6)
O3 0.6515 (2) 0.30383 (12) 0.42569 (8) 0.0923 (5)
C8 0.1399 (2) 0.25864 (12) 0.36344 (9) 0.0586 (4)
C6 0.3807 (2) 0.53548 (12) 0.41980 (7) 0.0452 (3)
H6 0.3924 (2) 0.51900 (12) 0.37285 (7) 0.0542 (4)*
C15 0.5290 (3) 0.80813 (13) 0.40783 (9) 0.0655 (5)
C1 0.4302 (2) 0.43358 (12) 0.45798 (7) 0.0511 (4)
C2 0.6172 (3) 0.39738 (15) 0.43677 (8) 0.0639 (5)
C16 0.4927 (2) 0.89129 (13) 0.35772 (9) 0.0605 (4)
C10 0.1230 (2) 0.34822 (16) 0.25339 (9) 0.0660 (5)
H10 0.1836 (2) 0.40757 (16) 0.27012 (9) 0.0793 (5)*
C7 0.2932 (3) 0.34568 (14) 0.44959 (8) 0.0637 (4)
H7a 0.1864 (3) 0.36290 (14) 0.47445 (8) 0.0764 (5)*
H7b 0.3402 (3) 0.27786 (14) 0.46567 (8) 0.0764 (5)*
C5 0.5144 (2) 0.62285 (13) 0.43577 (8) 0.0567 (4)
H5 0.4933 (2) 0.64941 (13) 0.48050 (8) 0.0681 (5)*
C9 0.0875 (2) 0.26165 (13) 0.29324 (8) 0.0560 (4)
C21 0.4190 (3) 0.86669 (15) 0.29726 (9) 0.0651 (4)
H21 0.3903 (3) 0.79577 (15) 0.28711 (9) 0.0781 (5)*
C12 −0.0180 (3) 0.2577 (2) 0.16356 (11) 0.0823 (6)
H12 −0.0545 (3) 0.2567 (2) 0.11984 (11) 0.0988 (7)*
C11 0.0688 (3) 0.3472 (2) 0.18828 (10) 0.0775 (5)
H11 0.0905 (3) 0.4063 (2) 0.16137 (10) 0.0930 (6)*
C3 0.7495 (3) 0.4826 (2) 0.43087 (11) 0.0824 (6)
H3 0.8696 (3) 0.4646 (2) 0.42780 (11) 0.0989 (7)*
C4 0.7022 (3) 0.58513 (18) 0.42980 (11) 0.0776 (6)
H4 0.7913 (3) 0.63662 (18) 0.42504 (11) 0.0931 (7)*
C13 −0.0499 (3) 0.1720 (2) 0.20235 (13) 0.0959 (7)
H13 −0.1063 (3) 0.1117 (2) 0.18499 (13) 0.1150 (9)*
C19 0.4324 (3) 1.05213 (18) 0.26647 (13) 0.0881 (7)
H19 0.4110 (3) 1.10627 (18) 0.23586 (13) 0.1057 (8)*
C20 0.3877 (3) 0.94726 (18) 0.25191 (11) 0.0797 (6)
H20 0.3365 (3) 0.93070 (18) 0.21149 (11) 0.0957 (7)*
C14 0.0004 (3) 0.17290 (16) 0.26754 (11) 0.0831 (6)
H14 −0.0243 (3) 0.11396 (16) 0.29425 (11) 0.0997 (7)*
C18 0.5079 (4) 1.07685 (15) 0.32565 (14) 0.0927 (7)
H18 0.5396 (4) 1.14762 (15) 0.33491 (14) 0.1112 (9)*
C17 0.5372 (3) 0.99762 (15) 0.37173 (11) 0.0815 (6)
H17 0.5869 (3) 1.01515 (15) 0.41227 (11) 0.0978 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O6 0.0899 (8) 0.0477 (6) 0.0515 (6) −0.0112 (6) −0.0152 (6) 0.0009 (5)
O2 0.0561 (6) 0.0730 (7) 0.0468 (6) 0.0150 (6) −0.0037 (5) 0.0023 (5)
O1 0.0901 (9) 0.0632 (7) 0.0378 (5) 0.0172 (6) −0.0117 (5) 0.0021 (5)
O4 0.0891 (8) 0.0562 (6) 0.0493 (6) −0.0231 (6) −0.0050 (6) 0.0057 (5)
O5 0.1161 (12) 0.0786 (9) 0.0841 (10) −0.0411 (9) 0.0108 (9) 0.0159 (8)
O7 0.1583 (16) 0.0694 (9) 0.0753 (9) −0.0311 (10) −0.0384 (10) −0.0099 (7)
O3 0.1188 (12) 0.0758 (9) 0.0822 (9) 0.0425 (9) 0.0007 (8) −0.0066 (8)
C8 0.0596 (9) 0.0467 (8) 0.0694 (10) −0.0101 (7) 0.0105 (8) −0.0016 (8)
C6 0.0513 (8) 0.0480 (7) 0.0362 (7) 0.0027 (6) −0.0048 (6) −0.0007 (6)
C15 0.0818 (12) 0.0530 (9) 0.0616 (10) −0.0123 (9) −0.0062 (9) −0.0082 (8)
C1 0.0647 (9) 0.0509 (8) 0.0377 (7) 0.0075 (7) −0.0067 (7) 0.0028 (6)
C2 0.0741 (11) 0.0695 (11) 0.0479 (9) 0.0199 (9) −0.0099 (8) 0.0000 (8)
C16 0.0651 (10) 0.0499 (8) 0.0665 (10) −0.0060 (8) 0.0097 (8) −0.0026 (7)
C10 0.0619 (10) 0.0719 (11) 0.0643 (10) −0.0136 (9) 0.0003 (8) −0.0089 (9)
C7 0.0871 (12) 0.0570 (9) 0.0470 (8) −0.0092 (9) −0.0014 (8) 0.0097 (8)
C5 0.0712 (10) 0.0528 (8) 0.0461 (8) −0.0060 (8) −0.0139 (8) 0.0019 (7)
C9 0.0475 (8) 0.0561 (9) 0.0645 (10) −0.0053 (7) 0.0034 (7) −0.0114 (8)
C21 0.0688 (11) 0.0619 (10) 0.0646 (10) −0.0105 (9) 0.0071 (9) 0.0044 (8)
C12 0.0619 (11) 0.1141 (17) 0.0710 (13) 0.0022 (12) −0.0114 (9) −0.0289 (12)
C11 0.0674 (11) 0.0993 (15) 0.0658 (11) −0.0051 (11) 0.0001 (9) −0.0011 (11)
C3 0.0533 (10) 0.1045 (16) 0.0894 (14) 0.0110 (11) −0.0122 (10) 0.0037 (12)
C4 0.0609 (11) 0.0900 (15) 0.0819 (13) −0.0174 (10) −0.0138 (10) 0.0071 (11)
C13 0.0948 (16) 0.0893 (16) 0.1035 (17) −0.0167 (14) −0.0265 (14) −0.0284 (14)
C19 0.0926 (15) 0.0704 (13) 0.1013 (17) 0.0091 (12) 0.0195 (14) 0.0237 (12)
C20 0.0843 (13) 0.0831 (14) 0.0718 (12) −0.0052 (11) 0.0082 (10) 0.0185 (11)
C14 0.0847 (13) 0.0656 (12) 0.0991 (16) −0.0195 (11) −0.0116 (12) −0.0095 (11)
C18 0.1104 (17) 0.0476 (10) 0.120 (2) 0.0003 (12) 0.0186 (16) 0.0019 (11)
C17 0.1022 (16) 0.0524 (10) 0.0900 (14) −0.0077 (10) 0.0053 (12) −0.0104 (9)

Geometric parameters (Å, º)

O6—C15 1.3344 (19) C7—H7a 0.9700
O6—C5 1.4545 (19) C7—H7b 0.9700
O2—H2 0.8200 C5—H5 0.9800
O2—C6 1.4033 (18) C5—C4 1.489 (3)
O1—H1 0.8200 C9—C14 1.384 (2)
O1—C1 1.4253 (17) C21—H21 0.9300
O4—C8 1.3270 (19) C21—C20 1.381 (3)
O4—C7 1.4460 (19) C12—H12 0.9300
O5—C8 1.196 (2) C12—C11 1.382 (3)
O7—C15 1.206 (2) C12—C13 1.346 (3)
O3—C2 1.211 (2) C11—H11 0.9300
C8—C9 1.480 (2) C3—H3 0.9300
C6—H6 0.9800 C3—C4 1.322 (3)
C6—C1 1.530 (2) C4—H4 0.9300
C6—C5 1.512 (2) C13—H13 0.9300
C15—C16 1.476 (2) C13—C14 1.378 (3)
C1—C2 1.534 (2) C19—H19 0.9300
C1—C7 1.509 (2) C19—C20 1.377 (3)
C2—C3 1.456 (3) C19—C18 1.364 (3)
C16—C21 1.382 (3) C20—H20 0.9300
C16—C17 1.392 (2) C14—H14 0.9300
C10—H10 0.9300 C18—H18 0.9300
C10—C9 1.372 (3) C18—C17 1.376 (3)
C10—C11 1.385 (3) C17—H17 0.9300
C5—O6—C15 116.55 (12) C4—C5—O6 109.45 (15)
C6—O2—H2 109.5 C4—C5—C6 112.53 (15)
C1—O1—H1 109.5 C4—C5—H5 109.51 (11)
C7—O4—C8 116.34 (13) C10—C9—C8 122.49 (14)
O5—C8—O4 121.95 (17) C14—C9—C8 117.97 (17)
C9—C8—O4 113.45 (13) C14—C9—C10 119.54 (18)
C9—C8—O5 124.59 (16) H21—C21—C16 119.96 (10)
H6—C6—O2 107.42 (7) C20—C21—C16 120.09 (18)
C1—C6—O2 112.06 (13) C20—C21—H21 119.96 (13)
C1—C6—H6 107.42 (8) C11—C12—H12 119.78 (14)
C5—C6—O2 113.32 (13) C13—C12—H12 119.78 (13)
C5—C6—H6 107.42 (8) C13—C12—C11 120.4 (2)
C5—C6—C1 108.92 (12) C12—C11—C10 119.5 (2)
O7—C15—O6 121.68 (16) H11—C11—C10 120.23 (13)
C16—C15—O6 113.40 (14) H11—C11—C12 120.23 (14)
C16—C15—O7 124.92 (16) H3—C3—C2 119.37 (11)
C6—C1—O1 105.64 (12) C4—C3—C2 121.27 (19)
C2—C1—O1 109.44 (13) C4—C3—H3 119.37 (13)
C2—C1—C6 108.75 (13) C3—C4—C5 123.74 (19)
C7—C1—O1 108.46 (13) H4—C4—C5 118.13 (10)
C7—C1—C6 112.11 (13) H4—C4—C3 118.13 (13)
C7—C1—C2 112.22 (14) H13—C13—C12 119.73 (13)
C1—C2—O3 121.86 (19) C14—C13—C12 120.5 (2)
C3—C2—O3 122.50 (19) C14—C13—H13 119.73 (14)
C3—C2—C1 115.64 (16) C20—C19—H19 119.90 (14)
C21—C16—C15 122.19 (15) C18—C19—H19 119.90 (12)
C17—C16—C15 118.61 (18) C18—C19—C20 120.2 (2)
C17—C16—C21 119.19 (18) C19—C20—C21 120.1 (2)
C9—C10—H10 120.00 (10) H20—C20—C21 119.96 (13)
C11—C10—H10 120.00 (13) H20—C20—C19 119.96 (14)
C11—C10—C9 120.00 (18) C13—C14—C9 119.9 (2)
C1—C7—O4 108.20 (12) H14—C14—C9 120.04 (13)
H7a—C7—O4 110.06 (10) H14—C14—C13 120.04 (14)
H7a—C7—C1 110.06 (10) H18—C18—C19 119.82 (13)
H7b—C7—O4 110.06 (9) C17—C18—C19 120.4 (2)
H7b—C7—C1 110.06 (9) C17—C18—H18 119.82 (14)
H7b—C7—H7a 108.4 C18—C17—C16 120.1 (2)
C6—C5—O6 106.27 (11) H17—C17—C16 119.96 (13)
H5—C5—O6 109.51 (8) H17—C17—C18 119.96 (14)
H5—C5—C6 109.51 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O7i 0.82 1.93 (1) 2.7029 (17) 157 (1)
O1—H1···O5ii 0.82 1.89 (1) 2.7112 (17) 177 (2)
C13—H13···O2iii 0.93 (1) 2.53 (1) 3.221 (3) 132 (1)

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x, y−1/2, −z+1/2.

References

  1. Atioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035–1038. [DOI] [PMC free article] [PubMed]
  2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  3. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dassault (2018). Discovery Studio. Dassault Systèmes, San Diego, USA.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA.
  7. Jaipetch, T., Hongthong, S., Kuhakarn, C., Pailee, P., Piyachaturawat, P., Suksen, K., Kongsaeree, P., Prabpai, S., Nuntasaen, N. & Reutrakul, V. (2019). Fitoterapia, 137, 104182. [DOI] [PubMed]
  8. Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N., (2010). Int. J. Chem. Canada 2(2), 114–123.
  9. Liu, A., Liu, Z. Z., Zou, Z. M., Chen, S. Z., Xu, L. Z. & Yang, S. L. (2004). Tetrahedron, 60, 3689–3694.
  10. Lynch, V. M., Thomas, S. N., Simonsen, S. H., Rao, T. V., Trivedi, G. K. & Arora, S. K. (1989). Acta Cryst. C45, 169–171.
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Sondossi, M., Lloyd, B. A., Bariault, D., Sylvestre, M. & Simard, M. (1995). Acta Cryst. C51, 491–494.
  14. Takeuchi, Y., Cheng, Q., Shi, Q., Sugiyama, T. & Oritani, T. (2001). Biosci. Biotechnol. Biochem. 65, 1395–1398. [DOI] [PubMed]
  15. Taneja, S. C., Koul, S. K., Pushpangadan, K., Dhar, L., Daniewski, W. M. & Schilf, W. (1991). Phytochemistry, 30, 871–874.
  16. Yang, S., Liao, Y., Li, L., Xu, X. & Cao, L. (2018). Molecules, 23, 2149–2163. [DOI] [PMC free article] [PubMed]
  17. Zhang, L., Huo, X., Liao, Y., Yang, F., Gao, L. & Cao, L. (2017). Sci. Rep. 7, 1669–1681. [DOI] [PMC free article] [PubMed]
  18. Zhang, Y., Liu, A., Ye, Z. G., Lin, J., Xu, L. Z. & Yang, S. L. (2006). Chem. Pharm. Bull. 54, 1459–1461. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020007793/vm2234sup1.cif

e-76-01096-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007793/vm2234Isup2.hkl

e-76-01096-Isup2.hkl (172.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020007793/vm2234Isup3.cml

CCDC reference: 2008756

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES