Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 9;76(Pt 7):1042–1046. doi: 10.1107/S2056989020004557

Comparison of two MnIVMnIV-bis-μ-oxo complexes {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ and {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+

Michael K Coggins a, Alexandra N Downing a, Werner Kaminsky a,, Julie A Kovacs a,*
PMCID: PMC7336796  PMID: 32695449

The addition of tert-butyl hydro­peroxide (tBuOOH) to two MnII complexes, differing by a small synthetic alteration from an ethyl to a propyl linker in the ligand scaffold, results in the formation of the high-valent bis-oxo complexes {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ (1) and {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+ (2).

Keywords: manganese, high-valent, metal-oxo, transition metal, crystal structure

Abstract

The addition of tert-butyl hydro­peroxide (tBuOOH) to two structurally related MnII complexes containing N,N-bis­(6-methyl-2-pyridyl­meth­yl)ethane-1,2-di­amine (6-Me-DPEN) and N,N-bis­(6-methyl-2-pyridyl­meth­yl)propane-1,2-di­amine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis­{[N,N-bis­(6-methyl-2-pyridylmeth­yl)ethane-1,2-di­amine]­manganese(II)}(MnMn) bis­(tetra­phenyl­borate) dihydrate, [Mn(C16H22N4)2O2](C24H20B)2·2H2O or {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}(2BPh4)(2H2O) (1) and di-μ-oxido-bis­{[N,N-bis­(6-methyl-2-pyridylmeth­yl)propane-1,3-di­amine]­manganese(II)}(MnMn) bis­(tetra­phenyl­borate) diethyl ether disolvate, [Mn(C17H24N4)2O2](C24H20B)2·2C4H10O or {[MnIV(N4(6-MeDPPN))]2(μ-O)2}(2BPh4)(2Et2O) (2). Complexes 1 and 2 both contain the ‘diamond core’ motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2, as compared to that of the ethyl linker in 1, results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an MnIV oxidation state assignment for the Mn ions in both 1 and 2. The angles around the Mn centers are consistent with the local pseudo-octa­hedral geometry.

Chemical context  

A heterometallic cubane cluster, MndangCaMn3O5, referred to as the oxygen-evolving complex (OEC), is involved in photosynthetic catalytic water oxidation (Umena et al., 2011). The cluster is housed in the enzyme photosystem II (PSII) and consists of high-valent MnIII/IV ions linked by oxo bridges and one dangling MnIV/V ion. Water oxidation is thermodynamically unfavorable, and requires an energy input of 359 kJ mol−1 that is provided by sunlight (Yano & Yachandra, 2014). Although the exact details of the mechanism for water oxidation are unknown, two water mol­ecules are thought to bind to the cluster to produce one equivalent of di­oxy­gen, four electrons, and four protons (Kok et al., 1970). Sequential oxidation of the cluster, starting with the CaIIMnIVMn3 IIIO5 core, generates partially oxidized states, Si (where i = number of stored oxidizing equivalents), which store oxidizing equivalents in preparation for O—O bond formation and O2 release (Hatakeyama et al., 2016; Lohmiller et al., 2017; Renger, 2011; Yano & Yachandra, 2014). Very little is known about the key OEC-catalyzed O—O bond-forming step, because it occurs following the rate-determining step (Retegan et al., 2016). Proposed mechanisms for O—O bond formation involve either nucleophilic attack by an M—OH group (M = Mn or Ca) at an electrophilic MnV≡O site, or radical coupling between two MnIV oxyl radicals to afford an unobserved peroxo inter­mediate (Hatakeyama et al., 2016; Lohmiller et al., 2017; Renger, 2011; Yano & Yachandra, 2014). Developing a wide base of chemical information on a variety of Mn—O species similar to the fragments implicated in the key O—O bond-forming step should aid the development of a detailed understanding of photosynthetic water oxidation. Fundamental concepts obtained from these studies can then be applied towards the maintenance of stable energy reserves and improve the world’s energy economy by storing solar energy in chemical bonds (Lewis, 2016).graphic file with name e-76-01042-scheme1.jpg

A key step in OEC-catalyzed water oxidation involves the formation of a peroxo O—O bond prior to di­oxy­gen evolution. Previous work by the Kovacs group has facilitated an understanding of the metal-ion properties that favor peroxo O—O bond formation versus cleavage, and O2 binding versus release (Coggins et al., 2012, 2013a,b,c ; Coggins & Kovacs, 2011; Poon et al., 2019). Reversible di­oxy­gen binding and release was shown to strongly correlate with metal-ion Lewis acidity. Superoxo, peroxo, and reactive mixed-valent MnIIIMnIV bis-oxo inter­mediates were shown to form. In addition, thiol­ate ligands were shown to increase the HAT (hydrogen-atom transfer) reactivity of putative MnIVMnIV dimer inter­mediates, precluding their isolation (Poon et al., 2019). In contrast, alkoxide derivatives [MnIII(OMe2N4(6-Me-DPEN))](BPh4) (3) and [MnIII(OMe2N4(6-Me-DPPN))](BPh4)⋯Et2O (4) (Coggins et al., 2020) react with tBuOOH to form ultimately the high-valent complexes described herein: {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ (1) and {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+ (2). The isolation and crystallographic characterization of the bis-oxo complexes 1 and 2 (Figs. 1 and 2, formed via alkyl­peroxo Mn—OOtBu inter­mediates (Coggins et al., 2020), further expands the available library of high-valent Mn–oxo dimers (Mullins & Pecoraro, 2008), demonstrating the stability of the metal–oxo diamond core described previously (Que & Tolman, 2002).

Figure 1.

Figure 1

Ellipsoid plot of {[MnIV(N4(6-Me-DPEN))]2(μ-O)2}2+ (1) showing the atom-labeling scheme. The anions and all hydrogen atoms have been removed for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for primed atoms -x, −y + 1, −z + 1.

Figure 2.

Figure 2

Ellipsoid plot of {[MnIV(N4(6-Me-DPPN))]2(μ-O)2}2+ (2) showing the atom-labeling scheme. The anions, solvent, disorder, and hydrogen atoms have been removed for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for primed atoms: -x + 1, −y + 2, −z + 1.

Structural Commentary  

Complex 1  

Complex 1 possesses a non-crystallographic C 2 rotation axis and the two Mn centers are crystallographically equivalent across an inversion center (−x, 1 − y, 1 − z). The Mn ion of 1 is in a pseudo-octa­hedral environment, with small deviations in the O—Mn—N angles relative to an ideal octa­hedral geometry: O1—Mn1—N1 = 93.76 (12), O1—Mn1—N2 = 92.13 (12), O1—Mn1—N3 = 174.90 (12), and O1—Mn1—N4 = 95.77 (12)°. As is true for all diamond cores, the O1—Mn1—O1′ angle is slightly compressed at 85.53 (12)°. Metrical parameters, Mn1—O1 = 1.829 (3) Å and Mn1—O1′= 1.835 (3) Å (Table 1) fall within the reported range (1.8 to 1.9 Å) for oxo-bridged MnIV complexes (Krewald et al., 2013; Mullins & Pecoraro, 2008; Torayama et al., 1998). The pyridine nitro­gen atoms are outside the typical bonding range, but are oriented towards the Mn ion at distances of Mn1—N1= 2.348 (3) Å and Mn1—N4 = 2.368 (3) Å. Unfavorable steric inter­actions involving the methyl group at the 6-position of the pyridine arm are likely to be responsible for the longer Mn—N(1,4) distances. Manganese–nitro­gen distances involving the amine arms fall within the normal Mn—N range (1.9 to 2.1 Å) for MnIV. The bond involving the tertiary amine [Mn1—N2 = 2.123 (3) Å] is slightly longer than that involving the secondary amine [Mn1—N3 = 2.111 (4) Å]. The Mn1⋯Mn1′ separation of 2.6899 (15) Å, falls within the normal range (2.6 to 2.8 Å) for bis-oxo-bridged MnIVMnIV dimers containing a diamond core. Complex 1 crystallizes with two crystallographically equivalent tetra­phenyl­borate counter-ions and two crystallographically equivalent water mol­ecules. The water mol­ecule is disordered over two sites with site occupancies refined to 0.870 (12) and 0.130 (12) for O2 and O2B respectively, with the applied constraint that both together give 100% occupancy.

Table 1. Comparison of key bond lengths and angles (Å, °) for complexes 1 and 2 .

  Complex 1 Complex 2
Mn1—O1 1.829 (3) 1.8325 (15)
Mn1—O1′ 1.835 (2) 1.8350 (15)
Mn1—N1 2.348 (3) 2.3251 (18)
Mn1—N2 2.123 (3) 2.1828 (18)
Mn1—N3 2.111 (4) 2.133 (6)
Mn1—N4 2.368 (3) 2.3522 (18)
Mn1—Mn1′ 2.6899 (15) 2.6825 (7)
     
O1—Mn1—N1 93.76 (12) 106.39 (7)
O1—Mn1—N2 92.13 (12) 174.90 (7)
O1—Mn1—N3 174.90 (12) 89.11 (13)
O1—Mn1—N4 95.77 (12) 103.70 (6)
O1—Mn1—O1′ 85.53 (3) 85.98 (7)

Symmetry codes for primed atoms are −x, 1 − y, 1 − z for 1 and 1 − x, 2 − y, 1 − z for 2.

Complex 2  

Complex 2 also sits on an inversion center (1 − x, 2 − y, 1 − z), making the two Mn atoms crystallographically equivalent. There is disorder in the position of the propyl linker carbon atoms (C1, C2, C3). The site occupancies of N3, C1–C3 and N3B, C1B–C3B refined to 0.804 (5) and 0.196 (5), respectively, with the constraint of both together giving 100% occupancy. The Mn ion of 2 is again in a pseudo-octa­hedral environment, with small deviations in O—Mn—N angles relative to ideal octa­hedral geometry: O1—Mn1—N1 = 106.39 (7), O1—Mn1—N2 = 174.90 (7), O1—Mn1—N3 = 89.11 (13), and O1—Mn1—N4 = 103.70 (6)°. Again, as is true for all diamond cores, the O1—Mn1—O1′ angle of 2 is slightly compressed at 85.98 (7)°, and is similar to that in 1. Metrical parameters, Mn—O1 = 1.8325 (15) and Mn—O1′ = 1.8349 (15) Å, are also similar to those found in 1, and fall within the reported range (1.8 to 1.9 Å) for oxo-bridged MnIV complexes. The pyridine nitro­gen atoms are once again further from the Mn ions than expected for a formal Mn—N bond, but are oriented towards Mn at distances of Mn1—N1 = 2.3251 (18) Å and Mn1—N4 = 2.3522 (18) Å. This bond elongation is likely to be due to steric inter­ference from the methyl groups at the 6-position of the pyridine rings. The nitro­gens on the amine arms are much closer to the Mn center, and fall within the normal Mn—N range (1.9 to 2.1 Å) for MnIV. The Mn—N distance involving the tertiary amine [Mn1—N2 = 2.1828 (18) Å] is noticeably longer than that involving the secondary amine [Mn1—N3= 2.133 (6) Å]. The large difference between these bond lengths in 2, relative to those of 1, likely reflects the increased flexibility of the propyl linker in 2. The Mn1—Mn1′ distance [2.6825 (7) Å] in 2 is essentially the same as that found in 1, and falls within the normal range (2.6 to 2.8 Å) for bis-oxo-bridged MnIVMnIV dimers containing a diamond core. Complex 2 crystallizes with two tetra­phenyl­borate counter-ions and two diethyl ether mol­ecules per cation.

Database survey  

The structures of 1 and 2 are analogous to other reported MnIVMnIV(μ-O)2 dimers. The Mn1—Mn1′ distances of 2.6899 (15) Å in 1 and 2.6825 (7) Å in 2 are comparable to other literature examples (Krewald et al., 2013; Mullins & Pecoraro, 2008; Torayama, et al., 1998). The Mn—O bond lengths of 1.829 (3) and 1.835 (2) Å for 1 and 1.8350 (15) and 1.8325 (15) Å for 2 are also similar to literature reported values for MnIVMnIV(μ-O)2 dimers (Krewald et al., 2013; Mullins & Pecoraro, 2008; Torayama et al., 1998). The octa­hedral geometry of the Mn centers of both structures are very similar in terms of bond angles, all of which are close to the ideal 90 and 180°. The similarities in bond lengths and angles show that 1 and 2 contain a metal–oxo diamond core motif, previously observed in manganese, iron and copper complexes (Que & Tolman, 2002).

Synthesis and crystallization  

General methods  

All syntheses were performed using Schlenk-line tech­niques or under an N2 atmosphere in a glovebox. Reagents and solvents were purchased from commercial vendors, were of highest available purity and were used without further purification unless otherwise noted. MeOH (Na), MeCN (CaH2), and CH2Cl2 (CaH2) were dried and distilled prior to use. Et2O was rigorously degassed and purified using solvent purification columns housed in a custom stainless steel cabinet and dispensed by a stainless steel Schlenk-line (GlassContour). Complexes 3 and 4 were synthesized as described by Coggins et al. (2020).

Synthesis of 1 and 2  

The addition of 1.5 equivalents of tBuOOH to CH2Cl2 solutions of alkoxide-ligated 3 and 4 in an anaerobic cell at room temperature results in the formation of 1 and 2, respectively. Single crystals of the isolated compounds in the form of brown plates for 1 and purple plates for 2 were obtained in up to 40% yield via slow evaporation and crystallization from CH2Cl2. Both reactions result in the loss of the Schiff-base arm present in the starting MnII complexes 3 and 4, most probably because the reactions were performed in moist air (Coggins et al., 2020).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Scattering factors are taken from Waasmaier & Kirfel (1995). Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. Isotropic displacement parameters U eq were fixed at 1.2U eq(C) or 1.5U eq(C-meth­yl). For the disordered water mol­ecule in complex 1, the water was set-up as a rigid group free to rotate and move during refinement, with DFIX restraints between O and H and between both H per water. The displacement parameters of O2 and O2B were made the same with the EADP constraint. Hydrogen-atom isotropic displacement parameters were fixed at 1.5 times that of the water oxygen atoms. For the disorder in complex 2, the geometry of both groups was set to be similar with the ‘SAME’ option. Displacement parameters of N3-N3B, C1-C1B, C2-C2B, and C3-C3B were restrained with the SIMU command at 0.005 strength.

Table 2. Experimental details.

  Complex 1 Complex 2
Crystal data
Chemical formula [Mn(C16H22N4)2O2](C24H20B)2·2H2O [Mn(C17H24N4)2O2](C24H20B)2·2C4H10O
M r 1357.08 1497.34
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 12.169 (3), 12.404 (4), 13.845 (4) 15.9472 (16), 13.8380 (14), 17.5219 (17)
α, β, γ (°) 69.752 (7), 67.355 (8), 68.725 (7) 90, 91.123 (5), 90
V3) 1744.7 (8) 3865.9 (7)
Z 1 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.42 0.39
Crystal size (mm) 0.15 × 0.05 × 0.05 0.1 × 0.05 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area-detector Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2007) Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.940, 0.979 0.915, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 22505, 8374, 3541 138191, 9679, 7420
R int 0.099 0.068
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.073, 0.163, 0.97 0.049, 0.134, 1.05
No. of reflections 8374 9679
No. of parameters 439 517
No. of restraints 6 29
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.46 0.66, −1.01

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, Complex1, Complex2. DOI: 10.1107/S2056989020004557/cq2034sup1.cif

e-76-01042-sup1.cif (4.6MB, cif)

Structure factors: contains datablock(s) Complex1. DOI: 10.1107/S2056989020004557/cq2034Complex1sup4.hkl

Structure factors: contains datablock(s) Complex2. DOI: 10.1107/S2056989020004557/cq2034Complex2sup5.hkl

CCDC references: 1994292, 1994291

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Crystal data

[Mn(C16H22N4)2O2](C24H20B)2·2H2O Z = 1
Mr = 1357.08 F(000) = 716
Triclinic, P1 Dx = 1.292 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 12.169 (3) Å Cell parameters from 123 reflections
b = 12.404 (4) Å θ = 3–20°
c = 13.845 (4) Å µ = 0.42 mm1
α = 69.752 (7)° T = 100 K
β = 67.355 (8)° Plate, brown
γ = 68.725 (7)° 0.15 × 0.05 × 0.05 mm
V = 1744.7 (8) Å3

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Data collection

Bruker APEXII CCD area-detector diffractometer 8374 independent reflections
Radiation source: fine-focus sealed tube 3541 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.099
φ and ω scans θmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −16→16
Tmin = 0.940, Tmax = 0.979 k = −16→16
22505 measured reflections l = −18→18

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: mixed
wR(F2) = 0.163 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0563P)2] where P = (Fo2 + 2Fc2)/3
8374 reflections (Δ/σ)max < 0.001
439 parameters Δρmax = 0.42 e Å3
6 restraints Δρmin = −0.46 e Å3

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Special details

Experimental. 20 seconds exposure, 0.5 degree steps
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.0240 (4) 0.1880 (4) 0.5092 (3) 0.0284 (10)
C2 −0.1120 (3) 0.2320 (4) 0.5589 (3) 0.0329 (11)
H2A −0.1332 0.3172 0.5553 0.049*
H2D −0.1354 0.188 0.6344 0.049*
H2C −0.1567 0.2197 0.5196 0.049*
C3 0.0849 (4) 0.0675 (4) 0.5299 (3) 0.0327 (11)
H3 0.0406 0.0116 0.5799 0.039*
C4 0.2083 (4) 0.0281 (4) 0.4788 (3) 0.0346 (11)
H4 0.2497 −0.0544 0.4924 0.042*
C5 0.2707 (4) 0.1112 (4) 0.4074 (3) 0.0327 (11)
H5 0.3557 0.0861 0.3694 0.039*
C6 0.2102 (4) 0.2291 (4) 0.3915 (3) 0.0285 (10)
C7 0.2745 (3) 0.3250 (3) 0.3235 (3) 0.0309 (11)
H7A 0.3089 0.3441 0.3678 0.037*
H7B 0.3441 0.2953 0.2639 0.037*
C8 0.1587 (4) 0.4141 (4) 0.1926 (3) 0.0348 (11)
H8A 0.1694 0.3277 0.2061 0.042*
H8B 0.2171 0.4391 0.1215 0.042*
C9 0.0271 (4) 0.4810 (4) 0.1887 (3) 0.0362 (11)
H9A 0.0215 0.5666 0.1544 0.043*
H9B 0.0036 0.4487 0.1455 0.043*
C10 0.2493 (3) 0.5339 (3) 0.2369 (3) 0.0320 (11)
H10A 0.316 0.5237 0.169 0.038*
H10B 0.2873 0.53 0.2901 0.038*
C11 0.1599 (4) 0.6545 (3) 0.2166 (3) 0.0284 (10)
C12 0.2000 (4) 0.7490 (4) 0.1419 (3) 0.0329 (11)
H12 0.2838 0.739 0.0987 0.039*
C13 0.1151 (4) 0.8603 (4) 0.1305 (3) 0.0373 (12)
H13 0.1399 0.928 0.0798 0.045*
C14 −0.0053 (4) 0.8701 (4) 0.1941 (3) 0.0367 (12)
H14 −0.0641 0.9457 0.1883 0.044*
C15 −0.0415 (4) 0.7715 (4) 0.2660 (3) 0.0325 (11)
C16 −0.1737 (3) 0.7774 (4) 0.3317 (3) 0.0386 (12)
H16A −0.1767 0.7173 0.4002 0.058*
H16B −0.2154 0.7618 0.2918 0.058*
H16C −0.2151 0.8568 0.3458 0.058*
C17 −0.3193 (4) 0.4439 (4) 0.1848 (3) 0.0298 (10)
C18 −0.4283 (4) 0.5241 (4) 0.2286 (3) 0.0341 (11)
H18 −0.4957 0.494 0.2792 0.041*
C19 −0.4418 (5) 0.6461 (4) 0.2008 (4) 0.0457 (13)
H19 −0.518 0.6977 0.2312 0.055*
C20 −0.3444 (5) 0.6927 (4) 0.1289 (4) 0.0451 (13)
H20 −0.352 0.7756 0.1116 0.054*
C21 −0.2375 (5) 0.6174 (4) 0.0834 (4) 0.0447 (13)
H21 −0.1705 0.6484 0.033 0.054*
C22 −0.2254 (4) 0.4967 (4) 0.1096 (3) 0.0359 (11)
H22 −0.1502 0.4469 0.0753 0.043*
C23 −0.1523 (4) 0.2334 (3) 0.1934 (3) 0.0264 (10)
C24 −0.0855 (4) 0.2006 (3) 0.2661 (3) 0.0302 (10)
H24 −0.1288 0.2086 0.3379 0.036*
C25 0.0425 (4) 0.1567 (4) 0.2370 (3) 0.0336 (11)
H25 0.0847 0.1352 0.2888 0.04*
C26 0.1079 (4) 0.1444 (4) 0.1341 (3) 0.0349 (11)
H26 0.1954 0.1161 0.1139 0.042*
C27 0.0451 (4) 0.1735 (4) 0.0602 (4) 0.0364 (11)
H27 0.0893 0.1643 −0.0112 0.044*
C28 −0.0825 (4) 0.2163 (3) 0.0902 (3) 0.0322 (11)
H28 −0.1241 0.2346 0.0385 0.039*
C29 −0.3729 (3) 0.2624 (3) 0.3513 (3) 0.0270 (10)
C30 −0.4455 (4) 0.1817 (4) 0.4011 (3) 0.0315 (11)
H30 −0.4562 0.1443 0.3571 0.038*
C31 −0.5026 (3) 0.1534 (4) 0.5111 (3) 0.0332 (11)
H31 −0.5502 0.0972 0.5407 0.04*
C32 −0.4909 (4) 0.2062 (4) 0.5778 (4) 0.0346 (11)
H32 −0.5306 0.1877 0.6532 0.042*
C33 −0.4207 (4) 0.2862 (4) 0.5334 (3) 0.0353 (11)
H33 −0.4107 0.3229 0.5783 0.042*
C34 −0.3642 (4) 0.3138 (4) 0.4228 (3) 0.0321 (11)
H34 −0.3172 0.3705 0.3942 0.038*
C35 −0.3633 (3) 0.2597 (4) 0.1567 (3) 0.0283 (10)
C36 −0.3433 (4) 0.1403 (4) 0.1619 (3) 0.0354 (11)
H36 −0.2868 0.0826 0.1985 0.042*
C37 −0.4004 (4) 0.1000 (4) 0.1170 (3) 0.0379 (12)
H37 −0.384 0.0171 0.1242 0.046*
C38 −0.4817 (4) 0.1818 (4) 0.0615 (3) 0.0385 (12)
H38 −0.5229 0.1559 0.0312 0.046*
C39 −0.5019 (4) 0.3019 (4) 0.0509 (3) 0.0349 (11)
H39 −0.556 0.3592 0.0116 0.042*
C40 −0.4439 (3) 0.3389 (4) 0.0972 (3) 0.0289 (10)
H40 −0.4593 0.422 0.0883 0.035*
N1 0.0866 (3) 0.2692 (3) 0.4410 (3) 0.0294 (8)
N2 0.1900 (3) 0.4352 (3) 0.2776 (3) 0.0259 (8)
N3 −0.0579 (3) 0.4664 (3) 0.3011 (3) 0.0391 (10)
H3A −0.0747 0.3944 0.3236 0.047*
H3B −0.1303 0.5243 0.3031 0.047*
N4 0.0413 (3) 0.6636 (3) 0.2796 (2) 0.0280 (8)
O1 0.1119 (2) 0.4845 (2) 0.4840 (2) 0.0298 (7)
B1 −0.3033 (4) 0.2995 (4) 0.2217 (4) 0.0271 (12)
Mn1 0.02600 (6) 0.47824 (6) 0.40381 (5) 0.0301 (2)
O2 0.3085 (5) 0.4792 (4) 0.5293 (7) 0.095 (3) 0.870 (12)
H2O 0.2516 0.4701 0.5198 0.143* 0.870 (12)
H2P 0.362 0.4187 0.5228 0.143* 0.870 (12)
O2B 0.347 (4) 0.485 (3) 0.442 (5) 0.095 (3) 0.130 (12)
H2Q 0.2976 0.4569 0.4412 0.143* 0.130 (12)
H2R 0.4128 0.4381 0.4254 0.143* 0.130 (12)

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.031 (2) 0.033 (3) 0.022 (2) −0.010 (2) −0.008 (2) −0.007 (2)
C2 0.026 (2) 0.036 (3) 0.030 (3) −0.011 (2) 0.002 (2) −0.009 (2)
C3 0.032 (2) 0.027 (2) 0.035 (3) −0.012 (2) −0.007 (2) −0.001 (2)
C4 0.027 (2) 0.030 (2) 0.041 (3) −0.005 (2) −0.010 (2) −0.005 (2)
C5 0.025 (2) 0.028 (3) 0.040 (3) −0.001 (2) −0.009 (2) −0.010 (2)
C6 0.021 (2) 0.031 (2) 0.028 (2) −0.0078 (19) −0.0009 (19) −0.0061 (19)
C7 0.023 (2) 0.034 (3) 0.024 (2) −0.003 (2) 0.001 (2) −0.0071 (19)
C8 0.030 (2) 0.036 (3) 0.030 (3) −0.006 (2) −0.003 (2) −0.008 (2)
C9 0.033 (3) 0.038 (3) 0.033 (3) −0.009 (2) −0.008 (2) −0.006 (2)
C10 0.021 (2) 0.032 (3) 0.032 (2) −0.0058 (19) 0.002 (2) −0.006 (2)
C11 0.028 (2) 0.026 (2) 0.023 (2) −0.005 (2) 0.001 (2) −0.0075 (19)
C12 0.028 (2) 0.032 (3) 0.028 (2) −0.008 (2) 0.003 (2) −0.008 (2)
C13 0.043 (3) 0.030 (3) 0.027 (3) −0.012 (2) 0.004 (2) −0.007 (2)
C14 0.040 (3) 0.031 (3) 0.022 (2) −0.003 (2) 0.001 (2) −0.006 (2)
C15 0.027 (2) 0.037 (3) 0.025 (2) −0.004 (2) −0.002 (2) −0.008 (2)
C16 0.025 (2) 0.036 (3) 0.040 (3) 0.001 (2) −0.004 (2) −0.008 (2)
C17 0.032 (2) 0.031 (2) 0.025 (2) −0.006 (2) −0.013 (2) −0.004 (2)
C18 0.038 (3) 0.034 (3) 0.027 (2) −0.009 (2) −0.009 (2) −0.005 (2)
C19 0.062 (3) 0.039 (3) 0.033 (3) 0.001 (3) −0.019 (3) −0.014 (2)
C20 0.073 (4) 0.030 (3) 0.042 (3) −0.017 (3) −0.027 (3) −0.005 (2)
C21 0.051 (3) 0.039 (3) 0.047 (3) −0.018 (3) −0.019 (3) −0.001 (2)
C22 0.036 (3) 0.032 (3) 0.036 (3) −0.013 (2) −0.011 (2) −0.001 (2)
C23 0.028 (2) 0.023 (2) 0.027 (2) −0.0116 (19) −0.006 (2) −0.0006 (19)
C24 0.026 (2) 0.028 (2) 0.028 (2) −0.008 (2) −0.003 (2) −0.002 (2)
C25 0.034 (3) 0.030 (2) 0.031 (3) −0.011 (2) −0.009 (2) 0.001 (2)
C26 0.025 (2) 0.035 (3) 0.037 (3) −0.012 (2) −0.001 (2) −0.005 (2)
C27 0.032 (3) 0.035 (3) 0.033 (3) −0.013 (2) 0.002 (2) −0.008 (2)
C28 0.032 (2) 0.032 (3) 0.028 (3) −0.008 (2) −0.008 (2) −0.004 (2)
C29 0.020 (2) 0.027 (2) 0.028 (2) 0.0006 (18) −0.007 (2) −0.006 (2)
C30 0.024 (2) 0.031 (2) 0.032 (3) −0.005 (2) −0.008 (2) −0.002 (2)
C31 0.020 (2) 0.033 (3) 0.034 (3) −0.0029 (19) −0.003 (2) −0.004 (2)
C32 0.021 (2) 0.040 (3) 0.029 (3) −0.003 (2) 0.002 (2) −0.009 (2)
C33 0.029 (2) 0.042 (3) 0.027 (3) −0.003 (2) −0.001 (2) −0.012 (2)
C34 0.024 (2) 0.035 (3) 0.031 (3) −0.007 (2) −0.004 (2) −0.006 (2)
C35 0.018 (2) 0.033 (3) 0.022 (2) −0.0097 (19) 0.0077 (19) −0.0051 (19)
C36 0.031 (2) 0.035 (3) 0.037 (3) −0.011 (2) −0.010 (2) −0.003 (2)
C37 0.039 (3) 0.032 (3) 0.039 (3) −0.010 (2) −0.010 (2) −0.006 (2)
C38 0.036 (3) 0.052 (3) 0.033 (3) −0.022 (2) 0.000 (2) −0.017 (2)
C39 0.025 (2) 0.046 (3) 0.025 (2) −0.005 (2) −0.001 (2) −0.010 (2)
C40 0.024 (2) 0.030 (2) 0.023 (2) −0.003 (2) 0.002 (2) −0.009 (2)
N1 0.0274 (19) 0.029 (2) 0.0246 (19) −0.0081 (16) −0.0014 (17) −0.0049 (16)
N2 0.0218 (18) 0.0237 (19) 0.0247 (19) −0.0028 (15) −0.0039 (16) −0.0040 (16)
N3 0.027 (2) 0.028 (2) 0.044 (2) −0.0044 (16) 0.0006 (19) −0.0038 (17)
N4 0.0206 (18) 0.031 (2) 0.0209 (19) −0.0032 (16) 0.0021 (16) −0.0062 (16)
O1 0.0189 (14) 0.0322 (17) 0.0293 (16) −0.0051 (13) 0.0014 (13) −0.0084 (13)
B1 0.024 (3) 0.029 (3) 0.025 (3) −0.007 (2) −0.005 (2) −0.005 (2)
Mn1 0.0197 (3) 0.0288 (4) 0.0290 (4) −0.0030 (3) 0.0022 (3) −0.0064 (3)
O2 0.063 (3) 0.082 (3) 0.163 (8) 0.007 (3) −0.046 (4) −0.068 (4)
O2B 0.063 (3) 0.082 (3) 0.163 (8) 0.007 (3) −0.046 (4) −0.068 (4)

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) dihydrate (Complex1) . Geometric parameters (Å, º)

C1—N1 1.353 (5) C22—H22 0.95
C1—C3 1.389 (5) C23—C24 1.396 (5)
C1—C2 1.496 (5) C23—C28 1.397 (5)
C2—H2A 0.98 C23—B1 1.666 (6)
C2—H2D 0.98 C24—C25 1.392 (5)
C2—H2C 0.98 C24—H24 0.95
C3—C4 1.371 (5) C25—C26 1.369 (6)
C3—H3 0.95 C25—H25 0.95
C4—C5 1.379 (5) C26—C27 1.381 (6)
C4—H4 0.95 C26—H26 0.95
C5—C6 1.361 (5) C27—C28 1.387 (5)
C5—H5 0.95 C27—H27 0.95
C6—N1 1.370 (5) C28—H28 0.95
C6—C7 1.499 (5) C29—C30 1.398 (5)
C7—N2 1.487 (5) C29—C34 1.401 (6)
C7—H7A 0.99 C29—B1 1.640 (6)
C7—H7B 0.99 C30—C31 1.386 (5)
C8—N2 1.493 (5) C30—H30 0.95
C8—C9 1.525 (5) C31—C32 1.374 (6)
C8—H8A 0.99 C31—H31 0.95
C8—H8B 0.99 C32—C33 1.372 (5)
C9—N3 1.492 (5) C32—H32 0.95
C9—H9A 0.99 C33—C34 1.389 (5)
C9—H9B 0.99 C33—H33 0.95
C10—N2 1.479 (5) C34—H34 0.95
C10—C11 1.504 (5) C35—C36 1.392 (5)
C10—H10A 0.99 C35—C40 1.403 (5)
C10—H10B 0.99 C35—B1 1.631 (6)
C11—N4 1.356 (4) C36—C37 1.385 (6)
C11—C12 1.368 (5) C36—H36 0.95
C12—C13 1.391 (5) C37—C38 1.384 (6)
C12—H12 0.95 C37—H37 0.95
C13—C14 1.374 (5) C38—C39 1.382 (6)
C13—H13 0.95 C38—H38 0.95
C14—C15 1.376 (5) C39—C40 1.382 (6)
C14—H14 0.95 C39—H39 0.95
C15—N4 1.354 (5) C40—H40 0.95
C15—C16 1.501 (5) N1—Mn1 2.348 (3)
C16—H16A 0.98 N2—Mn1 2.123 (3)
C16—H16B 0.98 N3—Mn1 2.111 (4)
C16—H16C 0.98 N3—H3A 0.91
C17—C18 1.399 (5) N3—H3B 0.91
C17—C22 1.405 (5) N4—Mn1 2.368 (3)
C17—B1 1.642 (6) O1—Mn1 1.829 (3)
C18—C19 1.390 (6) O1—Mn1i 1.835 (2)
C18—H18 0.95 Mn1—O1i 1.835 (2)
C19—C20 1.385 (6) Mn1—Mn1i 2.6899 (15)
C19—H19 0.95 O2—H2O 0.8037
C20—C21 1.362 (6) O2—H2P 0.8012
C20—H20 0.95 O2B—H2Q 0.8011
C21—C22 1.378 (6) O2B—H2R 0.8066
C21—H21 0.95
N1—C1—C3 120.3 (4) C25—C26—C27 119.2 (4)
N1—C1—C2 118.0 (4) C25—C26—H26 120.4
C3—C1—C2 121.7 (4) C27—C26—H26 120.4
C1—C2—H2A 109.5 C26—C27—C28 119.9 (4)
C1—C2—H2D 109.5 C26—C27—H27 120
H2A—C2—H2D 109.5 C28—C27—H27 120
C1—C2—H2C 109.5 C27—C28—C23 122.7 (4)
H2A—C2—H2C 109.5 C27—C28—H28 118.7
H2D—C2—H2C 109.5 C23—C28—H28 118.7
C4—C3—C1 120.8 (4) C30—C29—C34 113.9 (4)
C4—C3—H3 119.6 C30—C29—B1 125.5 (4)
C1—C3—H3 119.6 C34—C29—B1 120.6 (4)
C3—C4—C5 118.4 (4) C31—C30—C29 123.4 (4)
C3—C4—H4 120.8 C31—C30—H30 118.3
C5—C4—H4 120.8 C29—C30—H30 118.3
C6—C5—C4 119.7 (4) C32—C31—C30 120.4 (4)
C6—C5—H5 120.2 C32—C31—H31 119.8
C4—C5—H5 120.2 C30—C31—H31 119.8
C5—C6—N1 122.2 (4) C33—C32—C31 118.8 (4)
C5—C6—C7 122.7 (4) C33—C32—H32 120.6
N1—C6—C7 115.0 (3) C31—C32—H32 120.6
N2—C7—C6 112.1 (3) C32—C33—C34 120.1 (4)
N2—C7—H7A 109.2 C32—C33—H33 119.9
C6—C7—H7A 109.2 C34—C33—H33 119.9
N2—C7—H7B 109.2 C33—C34—C29 123.5 (4)
C6—C7—H7B 109.2 C33—C34—H34 118.3
H7A—C7—H7B 107.9 C29—C34—H34 118.3
N2—C8—C9 113.1 (3) C36—C35—C40 114.1 (4)
N2—C8—H8A 108.9 C36—C35—B1 121.4 (4)
C9—C8—H8A 108.9 C40—C35—B1 124.4 (4)
N2—C8—H8B 108.9 C37—C36—C35 124.2 (4)
C9—C8—H8B 108.9 C37—C36—H36 117.9
H8A—C8—H8B 107.8 C35—C36—H36 117.9
N3—C9—C8 108.6 (3) C38—C37—C36 119.3 (4)
N3—C9—H9A 110 C38—C37—H37 120.4
C8—C9—H9A 110 C36—C37—H37 120.4
N3—C9—H9B 110 C39—C38—C37 118.9 (4)
C8—C9—H9B 110 C39—C38—H38 120.6
H9A—C9—H9B 108.3 C37—C38—H38 120.6
N2—C10—C11 112.7 (3) C40—C39—C38 120.3 (4)
N2—C10—H10A 109 C40—C39—H39 119.9
C11—C10—H10A 109 C38—C39—H39 119.9
N2—C10—H10B 109 C39—C40—C35 123.2 (4)
C11—C10—H10B 109 C39—C40—H40 118.4
H10A—C10—H10B 107.8 C35—C40—H40 118.4
N4—C11—C12 123.2 (4) C1—N1—C6 118.4 (3)
N4—C11—C10 116.1 (3) C1—N1—Mn1 130.7 (3)
C12—C11—C10 120.6 (4) C6—N1—Mn1 110.5 (2)
C11—C12—C13 118.5 (4) C10—N2—C7 108.6 (3)
C11—C12—H12 120.8 C10—N2—C8 113.0 (3)
C13—C12—H12 120.8 C7—N2—C8 109.7 (3)
C14—C13—C12 118.6 (4) C10—N2—Mn1 107.9 (2)
C14—C13—H13 120.7 C7—N2—Mn1 108.2 (2)
C12—C13—H13 120.7 C8—N2—Mn1 109.3 (2)
C13—C14—C15 120.6 (4) C9—N3—Mn1 109.4 (3)
C13—C14—H14 119.7 C9—N3—H3A 109.8
C15—C14—H14 119.7 Mn1—N3—H3A 109.8
N4—C15—C14 121.0 (4) C9—N3—H3B 109.8
N4—C15—C16 116.9 (4) Mn1—N3—H3B 109.8
C14—C15—C16 122.1 (4) H3A—N3—H3B 108.2
C15—C16—H16A 109.5 C15—N4—C11 118.0 (3)
C15—C16—H16B 109.5 C15—N4—Mn1 132.6 (3)
H16A—C16—H16B 109.5 C11—N4—Mn1 109.3 (2)
C15—C16—H16C 109.5 Mn1—O1—Mn1i 94.47 (12)
H16A—C16—H16C 109.5 C35—B1—C29 109.0 (3)
H16B—C16—H16C 109.5 C35—B1—C17 111.5 (4)
C18—C17—C22 114.7 (4) C29—B1—C17 108.8 (3)
C18—C17—B1 121.9 (4) C35—B1—C23 109.3 (3)
C22—C17—B1 123.4 (4) C29—B1—C23 111.2 (3)
C19—C18—C17 122.5 (4) C17—B1—C23 107.1 (3)
C19—C18—H18 118.7 O1—Mn1—O1i 85.53 (12)
C17—C18—H18 118.7 O1—Mn1—N3 174.90 (12)
C20—C19—C18 120.2 (4) O1i—Mn1—N3 99.56 (13)
C20—C19—H19 119.9 O1—Mn1—N2 92.13 (12)
C18—C19—H19 119.9 O1i—Mn1—N2 177.66 (13)
C21—C20—C19 118.8 (4) N3—Mn1—N2 82.78 (13)
C21—C20—H20 120.6 O1—Mn1—N1 93.76 (12)
C19—C20—H20 120.6 O1i—Mn1—N1 105.29 (11)
C20—C21—C22 120.7 (4) N3—Mn1—N1 84.68 (12)
C20—C21—H21 119.6 N2—Mn1—N1 74.79 (11)
C22—C21—H21 119.6 O1—Mn1—N4 95.77 (12)
C21—C22—C17 123.0 (4) O1i—Mn1—N4 104.76 (11)
C21—C22—H22 118.5 N3—Mn1—N4 83.23 (12)
C17—C22—H22 118.5 N2—Mn1—N4 75.49 (11)
C24—C23—C28 115.5 (4) N1—Mn1—N4 149.05 (11)
C24—C23—B1 123.3 (4) O1—Mn1—Mn1i 42.86 (8)
C28—C23—B1 121.0 (4) O1i—Mn1—Mn1i 42.67 (9)
C25—C24—C23 122.3 (4) N3—Mn1—Mn1i 142.23 (10)
C25—C24—H24 118.9 N2—Mn1—Mn1i 134.99 (10)
C23—C24—H24 118.9 N1—Mn1—Mn1i 102.97 (9)
C26—C25—C24 120.4 (4) N4—Mn1—Mn1i 104.02 (9)
C26—C25—H25 119.8 H2O—O2—H2P 104.8
C24—C25—H25 119.8 H2Q—O2B—H2R 105

Symmetry code: (i) −x, −y+1, −z+1.

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Crystal data

[Mn(C17H24N4)2O2](C24H20B)2·2C4H10O F(000) = 1592
Mr = 1497.34 Dx = 1.286 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 110 reflections
a = 15.9472 (16) Å θ = 3–20°
b = 13.8380 (14) Å µ = 0.39 mm1
c = 17.5219 (17) Å T = 100 K
β = 91.123 (5)° Plate, purple
V = 3865.9 (7) Å3 0.1 × 0.05 × 0.05 mm
Z = 2

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Data collection

Bruker APEXII CCD area-detector diffractometer 9679 independent reflections
Radiation source: fine-focus sealed tube 7420 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.068
φ and ω scans θmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −21→21
Tmin = 0.915, Tmax = 0.947 k = −18→18
138191 measured reflections l = −23→23

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 5.0764P] where P = (Fo2 + 2Fc2)/3
9679 reflections (Δ/σ)max = 0.004
517 parameters Δρmax = 0.66 e Å3
29 restraints Δρmin = −1.01 e Å3

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Special details

Experimental. 20 seconds exposure, 0.5 degree steps, 40mm distance
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N3 0.5515 (5) 0.7880 (5) 0.4465 (3) 0.0164 (8) 0.804 (5)
H1A 0.498717 0.771071 0.431004 0.02* 0.804 (5)
H1B 0.580243 0.803082 0.403801 0.02* 0.804 (5)
C1 0.5915 (2) 0.7006 (3) 0.4806 (2) 0.0218 (8) 0.804 (5)
H1C 0.603548 0.65384 0.439551 0.026* 0.804 (5)
H1D 0.55183 0.669739 0.515896 0.026* 0.804 (5)
C2 0.67233 (16) 0.72410 (19) 0.52387 (16) 0.0205 (6) 0.804 (5)
H2A 0.705893 0.664216 0.529238 0.025* 0.804 (5)
H2B 0.705093 0.770383 0.493344 0.025* 0.804 (5)
C3 0.6596 (7) 0.7667 (5) 0.6026 (4) 0.0194 (10) 0.804 (5)
H3A 0.714296 0.766217 0.630293 0.023* 0.804 (5)
H3B 0.621377 0.723634 0.630579 0.023* 0.804 (5)
N3B 0.552 (2) 0.791 (2) 0.4623 (14) 0.020 (3) 0.196 (5)
H1B1 0.501206 0.761127 0.468206 0.024* 0.196 (5)
H1B2 0.555456 0.803809 0.411561 0.024* 0.196 (5)
C1B 0.6166 (11) 0.7148 (15) 0.4790 (9) 0.023 (3) 0.196 (5)
H1B3 0.600277 0.653562 0.453674 0.028* 0.196 (5)
H1B4 0.671279 0.735517 0.458779 0.028* 0.196 (5)
C2B 0.6246 (7) 0.6993 (8) 0.5636 (6) 0.023 (2) 0.196 (5)
H2B1 0.656439 0.638984 0.573199 0.028* 0.196 (5)
H2B2 0.567863 0.690589 0.584478 0.028* 0.196 (5)
C3B 0.668 (3) 0.781 (3) 0.6058 (19) 0.018 (3) 0.196 (5)
H3B1 0.677929 0.761392 0.659468 0.021* 0.196 (5)
H3B2 0.723357 0.792265 0.582827 0.021* 0.196 (5)
C4 0.69163 (14) 0.94311 (17) 0.60980 (12) 0.0214 (4)
H4A 0.736762 0.920165 0.644915 0.026*
H4B 0.668641 1.003576 0.631168 0.026*
C5 0.72837 (13) 0.96430 (15) 0.53303 (12) 0.0184 (4)
C6 0.80978 (13) 0.99839 (16) 0.52841 (13) 0.0214 (4)
H6 0.844797 1.003335 0.57273 0.026*
C7 0.83877 (14) 1.02508 (18) 0.45742 (13) 0.0256 (5)
H7 0.894135 1.049312 0.452456 0.031*
C8 0.78671 (14) 1.01622 (18) 0.39401 (13) 0.0251 (5)
H8 0.805983 1.033676 0.344935 0.03*
C9 0.70530 (14) 0.98125 (16) 0.40284 (12) 0.0199 (4)
C10 0.64684 (14) 0.97137 (18) 0.33522 (12) 0.0239 (5)
H10A 0.657755 0.910092 0.309193 0.036*
H10B 0.655828 1.025123 0.299904 0.036*
H10C 0.588727 0.972421 0.352384 0.036*
C11 0.57251 (13) 0.87692 (16) 0.67526 (12) 0.0198 (4)
H11A 0.561089 0.945784 0.686312 0.024*
H11B 0.603786 0.849279 0.719476 0.024*
C12 0.49079 (13) 0.82365 (16) 0.66401 (12) 0.0199 (4)
C13 0.45371 (14) 0.77419 (17) 0.72304 (13) 0.0248 (5)
H13 0.481183 0.768084 0.7714 0.03*
C14 0.37523 (15) 0.73375 (18) 0.70960 (14) 0.0280 (5)
H14 0.347712 0.699918 0.749089 0.034*
C15 0.33745 (14) 0.74296 (17) 0.63861 (14) 0.0254 (5)
H15 0.283211 0.716622 0.62923 0.03*
C16 0.37914 (13) 0.79116 (15) 0.58043 (13) 0.0206 (4)
C17 0.34223 (14) 0.79910 (17) 0.50155 (13) 0.0237 (5)
H17A 0.368006 0.853577 0.475041 0.036*
H17B 0.281614 0.809664 0.50447 0.036*
H17C 0.352892 0.73926 0.473439 0.036*
C18 0.4398 (3) 0.8992 (4) 0.9245 (2) 0.0780 (13)
H18A 0.460819 0.84242 0.897422 0.117*
H18B 0.473517 0.909603 0.971087 0.117*
H18C 0.381116 0.888576 0.93787 0.117*
C19 0.4452 (3) 0.9794 (3) 0.8780 (2) 0.0687 (11)
H19A 0.411612 0.969258 0.830579 0.082*
H19B 0.504297 0.99035 0.863897 0.082*
O2 0.4151 (2) 1.0594 (3) 0.9173 (2) 0.0911 (10)
C20 0.4051 (2) 1.1363 (3) 0.87248 (19) 0.0541 (8)
H20A 0.356626 1.127091 0.837118 0.065*
H20B 0.455934 1.147018 0.841994 0.065*
C21 0.3904 (3) 1.2211 (5) 0.9244 (3) 0.0941 (18)
H21A 0.382645 1.279793 0.89372 0.141*
H21B 0.339989 1.209485 0.954214 0.141*
H21C 0.438815 1.229316 0.959066 0.141*
C22 0.09092 (13) 1.17753 (16) 0.28704 (13) 0.0211 (4)
C23 0.11769 (14) 1.26414 (17) 0.25359 (14) 0.0260 (5)
H23 0.120968 1.267259 0.199567 0.031*
C24 0.13964 (14) 1.34558 (18) 0.29605 (16) 0.0299 (5)
H24 0.157021 1.402795 0.270913 0.036*
C25 0.13615 (15) 1.34325 (18) 0.37494 (16) 0.0312 (6)
H25 0.15186 1.39828 0.404316 0.037*
C26 0.10935 (15) 1.25932 (18) 0.41053 (15) 0.0287 (5)
H26 0.106439 1.256713 0.464594 0.034*
C27 0.08681 (14) 1.17918 (17) 0.36692 (14) 0.0243 (5)
H27 0.067748 1.122939 0.392392 0.029*
C28 0.11586 (13) 1.07869 (15) 0.15746 (12) 0.0193 (4)
C29 0.08354 (14) 1.05345 (16) 0.08536 (13) 0.0214 (4)
H29 0.024784 1.043898 0.079414 0.026*
C30 0.13412 (15) 1.04168 (17) 0.02163 (13) 0.0243 (5)
H30 0.109362 1.025021 −0.026343 0.029*
C31 0.21998 (15) 1.05422 (16) 0.02824 (14) 0.0254 (5)
H31 0.25469 1.045107 −0.014614 0.03*
C32 0.25456 (14) 1.08035 (16) 0.09852 (14) 0.0240 (5)
H32 0.313397 1.089679 0.103891 0.029*
C33 0.20347 (14) 1.09291 (17) 0.16106 (13) 0.0231 (4)
H33 0.228616 1.111901 0.208321 0.028*
C34 −0.04087 (13) 1.09627 (15) 0.21570 (12) 0.0187 (4)
C35 −0.08489 (13) 1.18282 (17) 0.22570 (13) 0.0220 (4)
H35 −0.054865 1.23814 0.243101 0.026*
C36 −0.17108 (14) 1.19132 (18) 0.21119 (14) 0.0260 (5)
H36 −0.198487 1.251277 0.219402 0.031*
C37 −0.21652 (14) 1.11247 (18) 0.18487 (13) 0.0252 (5)
H37 −0.275004 1.117859 0.174366 0.03*
C38 −0.17535 (14) 1.02566 (17) 0.17411 (12) 0.0227 (5)
H38 −0.205828 0.97085 0.156357 0.027*
C39 −0.08937 (14) 1.01809 (16) 0.18916 (12) 0.0203 (4)
H39 −0.062612 0.957703 0.181142 0.024*
C40 0.07372 (13) 0.98213 (15) 0.28312 (12) 0.0178 (4)
C41 0.01626 (13) 0.95352 (16) 0.33934 (12) 0.0202 (4)
H41 −0.032073 0.992264 0.346761 0.024*
C42 0.02706 (14) 0.87168 (17) 0.38412 (12) 0.0231 (5)
H42 −0.013144 0.855906 0.42143 0.028*
C43 0.09664 (15) 0.81266 (17) 0.37452 (13) 0.0243 (5)
H43 0.105179 0.757155 0.405609 0.029*
C44 0.15325 (14) 0.83664 (17) 0.31857 (13) 0.0241 (5)
H44 0.200508 0.796391 0.310476 0.029*
C45 0.14154 (13) 0.91924 (16) 0.27402 (12) 0.0209 (4)
H45 0.181262 0.933416 0.235902 0.025*
N2 0.62427 (11) 0.86938 (13) 0.60570 (10) 0.0177 (3)
N4 0.67697 (11) 0.95591 (13) 0.47178 (10) 0.0174 (3)
N1 0.45540 (11) 0.83090 (13) 0.59378 (10) 0.0186 (4)
O1 0.47256 (9) 0.96773 (10) 0.43771 (8) 0.0173 (3)
B1 0.06033 (14) 1.08398 (18) 0.23509 (14) 0.0183 (4)
Mn1 0.54141 (2) 0.91694 (2) 0.51245 (2) 0.01497 (9)

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N3 0.0174 (11) 0.0186 (12) 0.013 (2) 0.0024 (10) −0.0015 (15) −0.0061 (15)
C1 0.022 (2) 0.0159 (18) 0.0272 (14) −0.0004 (15) −0.0027 (14) −0.0024 (11)
C2 0.0167 (13) 0.0180 (13) 0.0269 (14) 0.0031 (10) 0.0009 (10) −0.0024 (10)
C3 0.018 (3) 0.016 (3) 0.0236 (15) 0.0048 (18) −0.0020 (14) 0.0014 (15)
N3B 0.022 (4) 0.026 (4) 0.012 (6) −0.002 (4) 0.000 (5) 0.001 (5)
C1B 0.024 (6) 0.015 (5) 0.031 (4) 0.000 (5) 0.003 (5) −0.002 (4)
C2B 0.018 (4) 0.020 (4) 0.032 (4) 0.006 (3) 0.002 (3) 0.001 (3)
C3B 0.016 (5) 0.017 (6) 0.020 (4) −0.001 (5) −0.001 (4) −0.002 (4)
C4 0.0188 (10) 0.0266 (11) 0.0187 (10) −0.0047 (9) −0.0032 (8) 0.0012 (8)
C5 0.0163 (10) 0.0179 (10) 0.0209 (10) 0.0015 (8) −0.0004 (8) −0.0001 (8)
C6 0.0157 (10) 0.0251 (11) 0.0233 (10) 0.0007 (8) −0.0025 (8) −0.0013 (9)
C7 0.0167 (10) 0.0322 (13) 0.0281 (12) −0.0029 (9) 0.0043 (9) −0.0026 (10)
C8 0.0210 (11) 0.0335 (13) 0.0209 (11) 0.0003 (9) 0.0068 (8) 0.0001 (9)
C9 0.0201 (10) 0.0197 (10) 0.0200 (10) 0.0014 (8) 0.0028 (8) −0.0020 (8)
C10 0.0237 (11) 0.0290 (12) 0.0190 (10) −0.0003 (9) 0.0014 (8) −0.0021 (9)
C11 0.0202 (10) 0.0232 (11) 0.0160 (9) 0.0008 (8) 0.0013 (8) 0.0016 (8)
C12 0.0187 (10) 0.0190 (10) 0.0220 (10) 0.0037 (8) 0.0029 (8) 0.0022 (8)
C13 0.0227 (11) 0.0281 (12) 0.0237 (11) 0.0043 (9) 0.0028 (9) 0.0069 (9)
C14 0.0237 (11) 0.0263 (12) 0.0344 (13) 0.0024 (9) 0.0105 (10) 0.0109 (10)
C15 0.0168 (10) 0.0230 (11) 0.0366 (13) −0.0003 (9) 0.0034 (9) 0.0046 (10)
C16 0.0170 (10) 0.0147 (10) 0.0300 (11) 0.0027 (8) 0.0018 (8) 0.0000 (8)
C17 0.0180 (10) 0.0204 (11) 0.0325 (12) −0.0022 (8) −0.0019 (9) −0.0003 (9)
C18 0.086 (3) 0.089 (3) 0.058 (2) 0.010 (3) −0.017 (2) −0.012 (2)
C19 0.071 (3) 0.068 (3) 0.066 (2) −0.003 (2) −0.014 (2) −0.010 (2)
O2 0.077 (2) 0.082 (2) 0.115 (3) −0.0006 (17) 0.0279 (19) 0.010 (2)
C20 0.056 (2) 0.067 (2) 0.0385 (17) 0.0003 (17) −0.0055 (14) 0.0105 (16)
C21 0.058 (3) 0.161 (5) 0.064 (3) −0.016 (3) 0.012 (2) −0.032 (3)
C22 0.0125 (9) 0.0216 (11) 0.0293 (11) 0.0008 (8) −0.0001 (8) −0.0020 (9)
C23 0.0192 (11) 0.0269 (12) 0.0322 (12) −0.0016 (9) 0.0045 (9) −0.0019 (10)
C24 0.0192 (11) 0.0231 (12) 0.0475 (15) −0.0020 (9) 0.0030 (10) −0.0016 (10)
C25 0.0195 (11) 0.0234 (12) 0.0505 (16) 0.0003 (9) −0.0063 (10) −0.0114 (11)
C26 0.0237 (11) 0.0296 (13) 0.0325 (13) 0.0043 (10) −0.0071 (9) −0.0082 (10)
C27 0.0183 (10) 0.0218 (11) 0.0326 (12) 0.0015 (8) −0.0032 (9) −0.0024 (9)
C28 0.0157 (10) 0.0173 (10) 0.0250 (10) 0.0011 (8) 0.0024 (8) 0.0016 (8)
C29 0.0191 (10) 0.0194 (10) 0.0259 (11) −0.0010 (8) 0.0015 (8) 0.0013 (8)
C30 0.0279 (12) 0.0211 (11) 0.0241 (11) −0.0022 (9) 0.0032 (9) −0.0019 (9)
C31 0.0281 (12) 0.0191 (11) 0.0293 (12) 0.0020 (9) 0.0100 (9) 0.0021 (9)
C32 0.0162 (10) 0.0225 (11) 0.0335 (12) 0.0018 (8) 0.0046 (9) 0.0038 (9)
C33 0.0179 (10) 0.0265 (12) 0.0250 (11) −0.0005 (9) −0.0002 (8) 0.0015 (9)
C34 0.0175 (10) 0.0208 (10) 0.0179 (10) −0.0019 (8) 0.0019 (8) 0.0026 (8)
C35 0.0177 (10) 0.0225 (11) 0.0258 (11) −0.0017 (8) 0.0021 (8) 0.0004 (9)
C36 0.0192 (11) 0.0266 (12) 0.0323 (12) 0.0042 (9) 0.0047 (9) 0.0039 (10)
C37 0.0144 (10) 0.0361 (13) 0.0252 (11) −0.0003 (9) 0.0011 (8) 0.0059 (10)
C38 0.0181 (10) 0.0297 (12) 0.0202 (10) −0.0063 (9) 0.0000 (8) 0.0039 (9)
C39 0.0191 (10) 0.0206 (10) 0.0214 (10) −0.0008 (8) 0.0021 (8) 0.0021 (8)
C40 0.0153 (10) 0.0193 (10) 0.0187 (10) −0.0017 (8) −0.0018 (8) −0.0026 (8)
C41 0.0171 (10) 0.0220 (10) 0.0216 (10) −0.0004 (8) 0.0004 (8) −0.0021 (8)
C42 0.0220 (11) 0.0275 (12) 0.0197 (10) −0.0055 (9) 0.0006 (8) −0.0010 (9)
C43 0.0291 (12) 0.0200 (11) 0.0235 (11) −0.0005 (9) −0.0057 (9) 0.0013 (9)
C44 0.0224 (11) 0.0220 (11) 0.0280 (11) 0.0043 (9) −0.0008 (9) −0.0034 (9)
C45 0.0179 (10) 0.0227 (11) 0.0220 (10) 0.0001 (8) 0.0005 (8) −0.0032 (9)
N2 0.0160 (8) 0.0188 (9) 0.0182 (8) −0.0001 (7) 0.0002 (7) 0.0013 (7)
N4 0.0157 (8) 0.0177 (8) 0.0187 (8) 0.0008 (7) −0.0002 (6) −0.0007 (7)
N1 0.0176 (8) 0.0166 (8) 0.0216 (9) 0.0009 (7) 0.0008 (7) 0.0013 (7)
O1 0.0174 (7) 0.0169 (7) 0.0173 (7) 0.0008 (6) −0.0015 (5) −0.0013 (6)
B1 0.0132 (10) 0.0192 (11) 0.0226 (11) −0.0002 (9) 0.0013 (8) −0.0014 (9)
Mn1 0.01475 (15) 0.01496 (15) 0.01515 (15) 0.00061 (12) −0.00081 (11) −0.00073 (11)

Di-µ-oxido-bis{[N,N-bis(6-methyl-2-pyridilmethyl)propane-1,3-diamine]manganese(II)}(MnMn) bis(tetraphenylborate) diethyl ether disolvate (Complex2) . Geometric parameters (Å, º)

N3—C1 1.487 (5) C19—O2 1.394 (5)
N3—Mn1 2.133 (6) C19—H19A 0.99
N3—H1A 0.91 C19—H19B 0.99
N3—H1B 0.91 O2—C20 1.331 (5)
C1—C2 1.518 (4) C20—C21 1.507 (6)
C1—H1C 0.99 C20—H20A 0.99
C1—H1D 0.99 C20—H20B 0.99
C2—C3 1.517 (8) C21—H21A 0.98
C2—H2A 0.99 C21—H21B 0.98
C2—H2B 0.99 C21—H21C 0.98
C3—N2 1.529 (9) C22—C27 1.403 (3)
C3—H3A 0.99 C22—C23 1.404 (3)
C3—H3B 0.99 C22—B1 1.651 (3)
N3B—C1B 1.502 (16) C23—C24 1.391 (3)
N3B—Mn1 1.96 (3) C23—H23 0.95
N3B—H1B1 0.91 C24—C25 1.385 (4)
N3B—H1B2 0.91 C24—H24 0.95
C1B—C2B 1.500 (15) C25—C26 1.390 (4)
C1B—H1B3 0.99 C25—H25 0.95
C1B—H1B4 0.99 C26—C27 1.390 (3)
C2B—C3B 1.516 (18) C26—H26 0.95
C2B—H2B1 0.99 C27—H27 0.95
C2B—H2B2 0.99 C28—C29 1.399 (3)
C3B—N2 1.40 (5) C28—C33 1.411 (3)
C3B—H3B1 0.99 C28—B1 1.639 (3)
C3B—H3B2 0.99 C29—C30 1.400 (3)
C4—N2 1.482 (3) C29—H29 0.95
C4—C5 1.506 (3) C30—C31 1.383 (3)
C4—H4A 0.99 C30—H30 0.95
C4—H4B 0.99 C31—C32 1.387 (3)
C5—N4 1.343 (3) C31—H31 0.95
C5—C6 1.385 (3) C32—C33 1.389 (3)
C6—C7 1.386 (3) C32—H32 0.95
C6—H6 0.95 C33—H33 0.95
C7—C8 1.379 (3) C34—C35 1.401 (3)
C7—H7 0.95 C34—C39 1.404 (3)
C8—C9 1.397 (3) C34—B1 1.651 (3)
C8—H8 0.95 C35—C36 1.398 (3)
C9—N4 1.345 (3) C35—H35 0.95
C9—C10 1.499 (3) C36—C37 1.384 (3)
C10—H10A 0.98 C36—H36 0.95
C10—H10B 0.98 C37—C38 1.384 (3)
C10—H10C 0.98 C37—H37 0.95
C11—N2 1.489 (3) C38—C39 1.395 (3)
C11—C12 1.507 (3) C38—H38 0.95
C11—H11A 0.99 C39—H39 0.95
C11—H11B 0.99 C40—C45 1.400 (3)
C12—N1 1.347 (3) C40—C41 1.415 (3)
C12—C13 1.383 (3) C40—B1 1.653 (3)
C13—C14 1.387 (3) C41—C42 1.386 (3)
C13—H13 0.95 C41—H41 0.95
C14—C15 1.377 (3) C42—C43 1.391 (3)
C14—H14 0.95 C42—H42 0.95
C15—C16 1.397 (3) C43—C44 1.386 (3)
C15—H15 0.95 C43—H43 0.95
C16—N1 1.351 (3) C44—C45 1.395 (3)
C16—C17 1.496 (3) C44—H44 0.95
C17—H17A 0.98 C45—H45 0.95
C17—H17B 0.98 N2—Mn1 2.1828 (18)
C17—H17C 0.98 N4—Mn1 2.3522 (18)
C18—C19 1.381 (6) N1—Mn1 2.3251 (18)
C18—H18A 0.98 O1—Mn1 1.8325 (15)
C18—H18B 0.98 O1—Mn1i 1.8349 (15)
C18—H18C 0.98 Mn1—Mn1i 2.6825 (7)
C1—N3—Mn1 119.9 (3) C20—C21—H21C 109.5
C1—N3—H1A 107.3 H21A—C21—H21C 109.5
Mn1—N3—H1A 107.3 H21B—C21—H21C 109.5
C1—N3—H1B 107.3 C27—C22—C23 115.0 (2)
Mn1—N3—H1B 107.3 C27—C22—B1 123.0 (2)
H1A—N3—H1B 106.9 C23—C22—B1 121.9 (2)
N3—C1—C2 112.4 (4) C24—C23—C22 122.9 (2)
N3—C1—H1C 109.1 C24—C23—H23 118.5
C2—C1—H1C 109.1 C22—C23—H23 118.5
N3—C1—H1D 109.1 C25—C24—C23 120.0 (2)
C2—C1—H1D 109.1 C25—C24—H24 120
H1C—C1—H1D 107.9 C23—C24—H24 120
C3—C2—C1 114.2 (4) C24—C25—C26 119.1 (2)
C3—C2—H2A 108.7 C24—C25—H25 120.5
C1—C2—H2A 108.7 C26—C25—H25 120.5
C3—C2—H2B 108.7 C25—C26—C27 119.9 (2)
C1—C2—H2B 108.7 C25—C26—H26 120
H2A—C2—H2B 107.6 C27—C26—H26 120
C2—C3—N2 116.7 (6) C26—C27—C22 123.0 (2)
C2—C3—H3A 108.1 C26—C27—H27 118.5
N2—C3—H3A 108.1 C22—C27—H27 118.5
C2—C3—H3B 108.1 C29—C28—C33 115.0 (2)
N2—C3—H3B 108.1 C29—C28—B1 124.39 (19)
H3A—C3—H3B 107.3 C33—C28—B1 120.48 (19)
C1B—N3B—Mn1 126.7 (19) C28—C29—C30 122.8 (2)
C1B—N3B—H1B1 105.6 C28—C29—H29 118.6
Mn1—N3B—H1B1 105.6 C30—C29—H29 118.6
C1B—N3B—H1B2 105.6 C31—C30—C29 120.2 (2)
Mn1—N3B—H1B2 105.6 C31—C30—H30 119.9
H1B1—N3B—H1B2 106.1 C29—C30—H30 119.9
C2B—C1B—N3B 109.8 (15) C30—C31—C32 118.9 (2)
C2B—C1B—H1B3 109.7 C30—C31—H31 120.6
N3B—C1B—H1B3 109.7 C32—C31—H31 120.6
C2B—C1B—H1B4 109.7 C31—C32—C33 120.2 (2)
N3B—C1B—H1B4 109.7 C31—C32—H32 119.9
H1B3—C1B—H1B4 108.2 C33—C32—H32 119.9
C1B—C2B—C3B 113.8 (17) C32—C33—C28 122.9 (2)
C1B—C2B—H2B1 108.8 C32—C33—H33 118.6
C3B—C2B—H2B1 108.8 C28—C33—H33 118.6
C1B—C2B—H2B2 108.8 C35—C34—C39 115.2 (2)
C3B—C2B—H2B2 108.8 C35—C34—B1 123.53 (19)
H2B1—C2B—H2B2 107.7 C39—C34—B1 121.25 (19)
N2—C3B—C2B 115 (3) C36—C35—C34 122.9 (2)
N2—C3B—H3B1 108.4 C36—C35—H35 118.6
C2B—C3B—H3B1 108.4 C34—C35—H35 118.6
N2—C3B—H3B2 108.4 C37—C36—C35 120.1 (2)
C2B—C3B—H3B2 108.4 C37—C36—H36 120
H3B1—C3B—H3B2 107.5 C35—C36—H36 120
N2—C4—C5 112.64 (17) C38—C37—C36 118.9 (2)
N2—C4—H4A 109.1 C38—C37—H37 120.6
C5—C4—H4A 109.1 C36—C37—H37 120.6
N2—C4—H4B 109.1 C37—C38—C39 120.4 (2)
C5—C4—H4B 109.1 C37—C38—H38 119.8
H4A—C4—H4B 107.8 C39—C38—H38 119.8
N4—C5—C6 122.8 (2) C38—C39—C34 122.5 (2)
N4—C5—C4 117.05 (18) C38—C39—H39 118.7
C6—C5—C4 119.99 (19) C34—C39—H39 118.7
C5—C6—C7 118.2 (2) C45—C40—C41 114.69 (19)
C5—C6—H6 120.9 C45—C40—B1 124.37 (18)
C7—C6—H6 120.9 C41—C40—B1 120.93 (18)
C8—C7—C6 119.6 (2) C42—C41—C40 123.2 (2)
C8—C7—H7 120.2 C42—C41—H41 118.4
C6—C7—H7 120.2 C40—C41—H41 118.4
C7—C8—C9 119.2 (2) C41—C42—C43 120.1 (2)
C7—C8—H8 120.4 C41—C42—H42 119.9
C9—C8—H8 120.4 C43—C42—H42 119.9
N4—C9—C8 121.3 (2) C44—C43—C42 118.5 (2)
N4—C9—C10 118.12 (19) C44—C43—H43 120.7
C8—C9—C10 120.59 (19) C42—C43—H43 120.7
C9—C10—H10A 109.5 C43—C44—C45 120.7 (2)
C9—C10—H10B 109.5 C43—C44—H44 119.7
H10A—C10—H10B 109.5 C45—C44—H44 119.7
C9—C10—H10C 109.5 C44—C45—C40 122.8 (2)
H10A—C10—H10C 109.5 C44—C45—H45 118.6
H10B—C10—H10C 109.5 C40—C45—H45 118.6
N2—C11—C12 110.51 (17) C3B—N2—C4 103.8 (15)
N2—C11—H11A 109.5 C3B—N2—C11 110.0 (17)
C12—C11—H11A 109.5 C4—N2—C11 108.97 (16)
N2—C11—H11B 109.5 C4—N2—C3 111.9 (4)
C12—C11—H11B 109.5 C11—N2—C3 107.8 (4)
H11A—C11—H11B 108.1 C3B—N2—Mn1 123.8 (11)
N1—C12—C13 122.8 (2) C4—N2—Mn1 104.85 (12)
N1—C12—C11 115.39 (18) C11—N2—Mn1 104.74 (12)
C13—C12—C11 121.7 (2) C3—N2—Mn1 118.1 (3)
C12—C13—C14 118.1 (2) C5—N4—C9 119.01 (18)
C12—C13—H13 121 C5—N4—Mn1 109.15 (13)
C14—C13—H13 121 C9—N4—Mn1 131.23 (14)
C15—C14—C13 119.6 (2) C12—N1—C16 119.17 (19)
C15—C14—H14 120.2 C12—N1—Mn1 110.88 (14)
C13—C14—H14 120.2 C16—N1—Mn1 129.95 (15)
C14—C15—C16 119.8 (2) Mn1—O1—Mn1i 94.02 (7)
C14—C15—H15 120.1 C28—B1—C22 109.51 (17)
C16—C15—H15 120.1 C28—B1—C34 112.06 (17)
N1—C16—C15 120.5 (2) C22—B1—C34 108.04 (17)
N1—C16—C17 117.82 (19) C28—B1—C40 108.53 (17)
C15—C16—C17 121.7 (2) C22—B1—C40 110.73 (17)
C16—C17—H17A 109.5 C34—B1—C40 107.96 (17)
C16—C17—H17B 109.5 O1—Mn1—O1i 85.98 (7)
H17A—C17—H17B 109.5 O1—Mn1—N3B 94.3 (6)
C16—C17—H17C 109.5 O1i—Mn1—N3B 177.0 (11)
H17A—C17—H17C 109.5 O1—Mn1—N3 89.11 (13)
H17B—C17—H17C 109.5 O1i—Mn1—N3 175.08 (13)
C19—C18—H18A 109.5 O1—Mn1—N2 174.90 (7)
C19—C18—H18B 109.5 O1i—Mn1—N2 89.04 (7)
H18A—C18—H18B 109.5 N3B—Mn1—N2 90.7 (6)
C19—C18—H18C 109.5 N3—Mn1—N2 95.86 (13)
H18A—C18—H18C 109.5 O1—Mn1—N1 106.39 (7)
H18B—C18—H18C 109.5 O1i—Mn1—N1 94.30 (6)
C18—C19—O2 108.7 (4) N3B—Mn1—N1 82.8 (10)
C18—C19—H19A 109.9 N3—Mn1—N1 87.4 (2)
O2—C19—H19A 109.9 N2—Mn1—N1 75.08 (6)
C18—C19—H19B 109.9 O1—Mn1—N4 103.70 (6)
O2—C19—H19B 109.9 O1i—Mn1—N4 93.77 (6)
H19A—C19—H19B 108.3 N3B—Mn1—N4 89.1 (11)
C20—O2—C19 112.4 (4) N3—Mn1—N4 87.0 (2)
O2—C20—C21 106.6 (3) N2—Mn1—N4 75.49 (6)
O2—C20—H20A 110.4 N1—Mn1—N4 149.29 (6)
C21—C20—H20A 110.4 O1—Mn1—Mn1i 43.03 (5)
O2—C20—H20B 110.4 O1i—Mn1—Mn1i 42.96 (5)
C21—C20—H20B 110.4 N3B—Mn1—Mn1i 137.2 (6)
H20A—C20—H20B 108.6 N3—Mn1—Mn1i 132.13 (12)
C20—C21—H21A 109.5 N2—Mn1—Mn1i 131.99 (5)
C20—C21—H21B 109.5 N1—Mn1—Mn1i 104.13 (5)
H21A—C21—H21B 109.5 N4—Mn1—Mn1i 101.93 (5)

Symmetry code: (i) −x+1, −y+2, −z+1.

Funding Statement

This work was funded by National Science Foundation grant CHE-1664682.

References

  1. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Coggins, M. K., Brines, L. M. & Kovacs, J. A. (2013a). Inorg. Chem. 52, 12383–12393. [DOI] [PMC free article] [PubMed]
  3. Coggins, M. K. & Kovacs, J. A. (2011). J. Am. Chem. Soc. 133, 12470–12473. [DOI] [PMC free article] [PubMed]
  4. Coggins, M. K., Martin-Diaconescu, V., DeBeer, S. & Kovacs, J. A. (2013b). J. Am. Chem. Soc. 135, 4260–4272. [DOI] [PMC free article] [PubMed]
  5. Coggins, M. K., Poon, P. C. Y. & Kovacs, J. A. (2020). Inorg. Chem. In preparation.
  6. Coggins, M. K., Sun, X., Kwak, Y., Solomon, E. I., Rybak-Akimova, E. & Kovacs, J. A. (2013c). J. Am. Chem. Soc. 135, 5631–5640. [DOI] [PMC free article] [PubMed]
  7. Coggins, M. K., Toledo, S., Shaffer, E., Kaminsky, W., Shearer, J. & Kovacs, J. A. (2012). Inorg. Chem. 51, 6633–6644. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Hatakeyama, M., Ogata, K., Fujii, K., Yachandra, V. K., Yano, J. & Nakamura, S. (2016). Chem. Phys. Lett. 651, 243–250. [DOI] [PMC free article] [PubMed]
  10. Kok, B., Forbush, B. & McGloin, M. (1970). Photochem. Photobiol. 11, 457–475. [DOI] [PubMed]
  11. Krewald, V., Lassalle-Kaiser, B., Boron, T. T., Pollock, C. J., Kern, J., Beckwith, M. A., Yachandra, V. K., Pecoraro, V. L., Yano, J., Neese, F. & DeBeer, S. (2013). Inorg. Chem. 52, 12904–12914. [DOI] [PMC free article] [PubMed]
  12. Lewis, N. S. (2016). Science, 351, 353–363.
  13. Lohmiller, T., Krewald, V., Sedoud, A., Rutherford, A. W., Neese, F., Lubitz, W., Pantazis, D. A. & Cox, N. (2017). J. Am. Chem. Soc. 139, 14412–14424. [DOI] [PubMed]
  14. Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416–443. [DOI] [PMC free article] [PubMed]
  15. Poon, P. C. Y., Dedushko, M., Sun, X., Yang, G., Toledo, S., Hayes, E. C., Johansen, A., Piquette, M. C., Rees, J. A., Stoll, S., Rybak-Akimova, E. & Kovacs, J. A. (2019). J. Am. Chem. Soc. 141, 15046–15057. [DOI] [PMC free article] [PubMed]
  16. Que, L. & Tolman, W. B. (2002). Angew. Chem. Int. Ed. 41, 1114–1137. [DOI] [PubMed]
  17. Renger, G. (2011). J. Photochem. Photobiol. B, 104, 35–43. [DOI] [PubMed]
  18. Retegan, M., Krewald, V., Mamedov, F., Neese, F., Lubitz, W., Cox, N. & Pantazis, D. A. (2016). Chem. Sci. 7, 72–84. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Torayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1998). Polyhedron, 17, 105–118.
  22. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. (2011). Nature, 473, 55–60. [DOI] [PubMed]
  23. Waasmaier, D. & Kirfel, A. (1995). Acta Cryst. A51, 416–431.
  24. Yano, J. & Yachandra, V. (2014). Chem. Rev. 114, 4175–4205 [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, Complex1, Complex2. DOI: 10.1107/S2056989020004557/cq2034sup1.cif

e-76-01042-sup1.cif (4.6MB, cif)

Structure factors: contains datablock(s) Complex1. DOI: 10.1107/S2056989020004557/cq2034Complex1sup4.hkl

Structure factors: contains datablock(s) Complex2. DOI: 10.1107/S2056989020004557/cq2034Complex2sup5.hkl

CCDC references: 1994292, 1994291

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES