Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 9;76(Pt 7):1057–1061. doi: 10.1107/S2056989020007483

Two N-{[4-(3-aryl-4-sydnonyl­idene­amino)-5-sulfan­yl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamides as disordered ethanol monosolvates

Chayanna Harish Chinthal a, Hemmige S Yathirajan a,*, Anish Kumar Kadambar b, Balakrishna Kalluraya b, Sabine Foro c, Christopher Glidewell d
PMCID: PMC7336802  PMID: 32695452

In each of the title newly synthesized and closely related N-{[4-(3-aryl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamides, which crystallized as ethanol monosolvates, the independent components are linked by hydrogen bonds to form centrosymmetric four-mol­ecule aggregates.

Keywords: synthesis; heterocyclic compounds; sydnones; 1,2,4-triazoles; crystal structure; disorder; hydrogen bonding; supra­molecular assembly

Abstract

Two new N-{[4-(3-aryl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamides have been prepared by acid-promoted condensation reactions between 3-aryl-4-formyl­sydnones and N-[(4-amino-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl)meth­yl]benzamide, and both have been crystallized as ethanol monosolvates. N-{[4-(3-Phenyl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamide ethanol monosolvate, C19H15N7O3S·C2H6O (I), and N-({4-[3-(4-methyl­phen­yl)-4-sydnonyl­idene­amino]-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl}meth­yl)benzamide ethanol monosolvate, C20H17N7O3S·C2H6O (II), differ only in the presence of a methyl group for (II) instead of a hydrogen atom for (I), and in both of them the ethanol component is disordered over two sets of atomic sites having occupancies of 0.836 (6) and 0.164 (6) in (I), and 0.906 (6) and 0.094 (6) in (II). Combinations of O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into cyclic, centrosymmetric four-mol­ecule aggregates. Comparisons are made with the structures of some related compounds.

Chemical context  

Compounds containing the sydnone [= 1,2,3-oxa­diazol-5(2H)-one] system have been shown to exhibit a wide range of biological activities, including analgesic (Kalluraya et al., 2001, 2002), and both anti­helminthic and anti-inflammatory properties (Kalluraya et al., 2001). In addition, compounds that combine sydnone units with other heterocyclic units such as thia­zoles (Kalluraya et al., 2001) or 1,2,4-triazines (Hegde et al., 2008), have been shown to exhibit CNS depressant and anti­microbial activities. Seeking to continue our studies in this area, we have now developed a synthesis of analogous compounds containing 3-aryl­sydnone and 1,2,4-triazole moieties.

We report here the syntheses and mol­ecular and supra­molecular structures of two closely related compounds, namely N-{[4-(3-phenyl-4-sydnonyl­idene­amino)-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl]meth­yl}benzamide (I) and N-({4-[3-(4-methyl­phen­yl)-4-sydnonyl­idene­amino]-5-sulfanyl­idene-1H-1,2,4-triazol-3-yl}meth­yl)benzamide (II). Compounds (I) and (II) were prepared using an acid-mediated condensation between the 3-aryl-4-formyl­sydnones (A) (Fig. 1) and the 4-amino­triazole derivative (B). The sydnone inter­mediates (A) had themselves been prepared by cyclo­dehydration of the corresponding N-aryl-N-nitro­soplycines followed by Vilsmaier–Haack formyl­ation (Goh et al., 2010), while the inter­mediate (B) was prepared by the fusion-induced condensation of N-benzoyl­glycine with thio­carbohydrazide, S=C(NHNH2)2 (Kalluraya et al., 2007).graphic file with name e-76-01057-scheme1.jpg

Figure 1.

Figure 1

The reaction sequence leading to the formation of compounds (I) and (II).

Structural commentary  

The mol­ecular and crystal structures of compounds (I) and (II) are closely related and differ only in the methyl group that is attached to C44 for (II) instead of a hydrogen atom for (I): each structure can readily be refined starting from the atomic coordinates of the other, provided that the necessary adjustment is made to the substituent at atom C44 (Figs. 2 and 3). Both compounds crystallized from ethanol/DMF as ethanol monosolvates, and in each structure the ethanol component is disordered over two sets of atomic sites, having occupancies of 0.836 (6) and 0.164 (6) in (I), and 0.906 (6) and 0.094 (6) in (II).

Figure 2.

Figure 2

The independent mol­ecular components of compound (I), showing the atom-labelling scheme, the disorder of the ethanol component, and the hydrogen bonds, drawn as dashed lines, within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level; the major disorder component of the ethanol is drawn with full lines, and the minor component is drawn with broken lines.

Figure 3.

Figure 3

The independent mol­ecular components of compound (II), showing the atom-labelling scheme, the disorder of the ethanol component, and the hydrogen bonds, drawn as dashed lines, within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level; the major disorder component of the ethanol is drawn with full lines, and the minor component is drawn with broken lines.

The triazole ring is present in both structures in the 1,2,4-triazol-5(4H)-thione form, as shown by the localization of the H atom on N21 in a difference-Fourier map and the subsequent refinement of its atomic coordinates, by the inter­molecular hydrogen bonds (Tables 1 and 2), and by the C—S distances, 1.6657 (18) Å in (I) and 1.661 (3) Å in (II). These values are typical for those found in thio­nes [mean value 1.671 Å; Allen et al., 1987], and they are far shorter than those found in aromatic thiols and thio­ethers (mean value 1.771 Å).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N25 0.85 (2) 2.62 (2) 2.946 (2) 104.0 (16)
N21—H21⋯O51i 0.88 (2) 1.84 (2) 2.700 (3) 166.0 (18)
N21—H21⋯O61i 0.88 (2) 1.88 (3) 2.730 (12) 164 (2)
O51—H51⋯O1 0.82 1.89 2.706 (4) 175

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N25 0.83 (3) 2.56 (3) 2.961 (3) 111 (2)
N21—H21⋯O51i 0.91 (3) 1.85 (3) 2.747 (4) 167 (2)
N21—H21⋯O61i 0.91 (3) 1.77 (3) 2.65 (4) 164 (3)
O51—H51⋯O1 0.82 1.94 2.754 (4) 171

Symmetry code: (i) Inline graphic.

Within the sydnone rings, the N—N distances have values typical of double bonds, viz. 1.300 (2) Å in (I) and 1.299 (3) Å in (II), while the exocyclic C=O distance in each structure is shorter than that for the amidic carbonyl unit.

Of the four independent aromatic rings within the mol­ecules of (I) and (II), no two are co-planar or even parallel, so that the mol­ecules exhibit no inter­nal symmetry and hence are conformationally chiral. Although there is a short intra­molecular N1—H1⋯N25 contact in both (I) and (II) (Tables 1 and 2), the resulting rings are non-planar, but instead adopt an envelope conformation, folded across the line N1⋯C23.

Supra­molecular features  

The supra­molecular assemblies in the crystal structures of (I) and (II) are almost identical and very simple. Within the asymmetric unit of each structure (Figs. 2 and 3), the ethanol solvent mol­ecule is linked to the amide unit via O51—H51⋯O1 hydrogen bonds. Inversion-related pairs of these units are linked by N—H⋯O hydrogen bonds to form a cyclic centrosymmetric four-mol­ecular aggregate [shown only for (I) in Fig. 4] containing an Inline graphic(2) motif (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995). The same motif occurs in the crystal structure of compound (II), and there are no significant direction-specific inter­actions between these aggregates.

Figure 4.

Figure 4

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded four-mol­ecule aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component of the ethanol mol­ecules and the H atoms bonded to C atom have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Database survey  

It is of inter­est briefly to compare the structures of compounds (I) and (II) with those of some related compounds. In the structure of 4-amino-3-(1,2,4-triazol-1-yl)-1H-1,2,4-triazole-5(4H)-thione (III), three independent N—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network structure (Xu et al., 2005a ). By contrast, in each of 5-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]-1,3,4-oxa­diazole-2-thione (IV) (Zhang et al., 2006a ) and 5-{[4-(4-meth­oxy­phen­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-1,3,4-oxa­diazole-2-thione (V) (Zhang et al., 2006b ), a single N—H⋯N hydrogen bond links mol­ecules that are related by translation into C(8) chains, running parallel to [001] and [010], respectively, in the triclinic unit cells. Although no crystal structure has yet been reported for the inter­mediate (B) (Fig. 1) used in the synthesis of compounds (I) and (II), the fact that all of compounds (I)–(V) crystallize in the thione form makes it seem likely that the inter­mediate also exists in this tautomeric form in the solid state, although it may well exist as an equilibrium mixture of thione and thiol (mercapto) forms in solution, with the position of equilibrium possibly differing from one solvent to another. However, it must be emphasized that, to date, no studies have been made of the constitution of this inter­mediate in solution. On the other hand, a masked form of the thiol tautomer is present in 2-{5-[(1H-1,2,4-triazol-1-yl)meth­yl]-1,3,4-oxa­diazol-2-yl­thio}-1-(2,4-di­chloro­phen­yl)ethanone (VI) (Xu et al., 2005b ), where mol­ecules which are related by a 21 screw axis are linked by a single C—H⋯N hydrogen bond to form C(14) chains.

Synthesis and crystallization  

Previously published methods were used for the preparation of the 3-aryl-4-formyl­sydnones (A) (Fig. 1) (Goh et al., 2010) and N-[(4-amino-5-sulfanyl­idene-1H-1,2,4-triazol3-yl)meth­yl]benzamide (B) (Kalluraya et al., 2007). For the preparation of compounds (I) and (II), the appropriate inter­mediate (A) [4.6 mmol; 870 mg for (I) or 940 mg for (II)] was added to a solution of (B) (4.6 mmol, 1.00 g) in ethanol (15 ml). Concentrated sulfuric acid (0.5 ml) was then added to each of these mixtures, under vigorous stirring, and stirring was then continued for 4 h. The resulting solid products were collected by filtration and then washed, first with ethanol and then with water, before being dried in air. Compound (I), yield 72%, m. p. 435 K, IR (cm−1) 3170 (NH), 1740 (C=O), 1660 (C=O), 1590 (C=N). Compound (II), yield 76%, m. p. 505 K, IR (cm−1) 3149 (NH), 1769 (C=O), 1665 (C=O), 1595 (C=N). Crystals of (I) and (II) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethanol/N,N-di­methyl­formamide mixtures (initial composition 7:3, v/v).

Refinement  

Crystal data, data collection and refinement details are summarized in Table 3. In both compounds, the ethanol component is disordered over two sets of atomic sites having unequal occupancies: for the minor disorder components, the bond distances and the 1,3 (non-bonded) distances were restrained to be the same as the corresponding distances in the major disorder components, subjected to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic dis­place­ment parameters for corresponding pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be the same. All H atoms, apart from those in the minor disorder components, were located in difference-Fourier maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl and aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms: the H atoms bonded to C atoms in the minor disorder components were included on the same basis. For the H atoms bonded to N atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N), giving the N—H distances shown in Tables 1 and 2. For the major disorder components of the ethanol mol­ecules, the H atoms bonded to O atoms were treated as riding atoms with O—H distances of 0.82 Å and with 1.5U eq(O). However, using the normal riding models for hydroxyl H atoms, it was not possible to establish satisfactory positions for these H atoms in the minor disorder components, and accordingly they were included in calculated positions, riding at 0.82 Å from the atoms O61, at positions calculated by inter­polation along the O61⋯O1 vectors, again with U iso(H) = 1.5U eq(O). The refined occupancies for the disorder components were 0.836 (6) and 0.164 (6) in (I), and 0.906 (6) and 0.094 (6) in (II).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C19H15N7O3S·C2H6O C20H17N7O3S·C2H6O
M r 467.51 481.53
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 8.6313 (6), 10.8378 (9), 13.384 (1) 8.5631 (5), 11.1242 (8), 13.5632 (9)
α, β, γ (°) 66.645 (8), 79.287 (8), 85.151 (8) 70.244 (6), 76.086 (7), 84.058 (6)
V3) 1129.30 (16) 1179.92 (15)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.18
Crystal size (mm) 0.48 × 0.28 × 0.24 0.50 × 0.12 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.822, 0.956 0.841, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 7829, 4464, 2985 8056, 4670, 2828
R int 0.016 0.025
(sin θ/λ)max−1) 0.618 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.116, 0.96 0.062, 0.117, 1.10
No. of reflections 4464 4670
No. of parameters 317 327
No. of restraints 3 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.22 0.19, −0.18

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989020007483/wm5563sup1.cif

e-76-01057-sup1.cif (607.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007483/wm5563Isup2.hkl

e-76-01057-Isup2.hkl (355.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007483/wm5563IIsup3.hkl

e-76-01057-IIsup3.hkl (371.8KB, hkl)

CCDC references: 2007902, 2007901

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CHC thanks the University of Mysore for research facilities.

supplementary crystallographic information

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Crystal data

C19H15N7O3S·C2H6O Z = 2
Mr = 467.51 F(000) = 488
Triclinic, P1 Dx = 1.375 Mg m3
a = 8.6313 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.8378 (9) Å Cell parameters from 4868 reflections
c = 13.384 (1) Å θ = 2.9–28.0°
α = 66.645 (8)° µ = 0.19 mm1
β = 79.287 (8)° T = 293 K
γ = 85.151 (8)° Needle, yellow
V = 1129.30 (16) Å3 0.48 × 0.28 × 0.24 mm

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 4464 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2985 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
ω scans θmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→6
Tmin = 0.822, Tmax = 0.956 k = −13→12
7829 measured reflections l = −16→16

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0712P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
4464 reflections Δρmax = 0.23 e Å3
317 parameters Δρmin = −0.22 e Å3
3 restraints

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4087 (2) 0.49774 (19) 0.18161 (16) 0.0539 (5)
O1 0.4564 (2) 0.57411 (15) 0.21616 (15) 0.0905 (5)
N1 0.44135 (19) 0.36690 (16) 0.22477 (13) 0.0521 (4)
H1 0.400 (2) 0.316 (2) 0.2026 (17) 0.063*
C11 0.3163 (2) 0.54838 (18) 0.08944 (15) 0.0511 (5)
C12 0.2787 (2) 0.4703 (2) 0.03721 (17) 0.0590 (5)
H12 0.3096 0.3804 0.0605 0.071*
C13 0.1954 (3) 0.5253 (3) −0.04951 (19) 0.0728 (6)
H13 0.1705 0.4718 −0.0840 0.087*
C14 0.1495 (3) 0.6565 (3) −0.0849 (2) 0.0770 (7)
H14 0.0932 0.6927 −0.1432 0.092*
C15 0.1865 (3) 0.7346 (3) −0.0343 (2) 0.0879 (8)
H15 0.1558 0.8247 −0.0586 0.106*
C16 0.2686 (3) 0.6813 (2) 0.05221 (19) 0.0766 (7)
H16 0.2924 0.7356 0.0862 0.092*
C17 0.5456 (2) 0.31146 (19) 0.30517 (16) 0.0548 (5)
H17A 0.6128 0.3825 0.2987 0.066*
H17B 0.6131 0.2441 0.2875 0.066*
N21 0.39481 (18) 0.18933 (16) 0.59238 (14) 0.0514 (4)
H21 0.397 (2) 0.1937 (19) 0.6562 (18) 0.062*
N22 0.48632 (18) 0.27926 (16) 0.50167 (14) 0.0546 (4)
C23 0.46533 (19) 0.24940 (16) 0.42114 (15) 0.0437 (4)
N24 0.36560 (15) 0.14207 (13) 0.45836 (11) 0.0389 (3)
C25 0.31748 (19) 0.10342 (16) 0.57162 (14) 0.0413 (4)
S25 0.18954 (6) −0.01347 (5) 0.65906 (4) 0.05549 (17)
N25 0.32368 (16) 0.10047 (14) 0.38197 (11) 0.0433 (3)
C26 0.26974 (18) −0.01806 (16) 0.41643 (14) 0.0395 (4)
H26 0.2588 −0.0751 0.4906 0.047*
O31 0.1874 (2) −0.08129 (15) 0.18574 (12) 0.0762 (5)
N32 0.1439 (2) −0.19906 (17) 0.27290 (15) 0.0663 (5)
N33 0.17026 (16) −0.18125 (14) 0.35876 (12) 0.0455 (4)
C34 0.2272 (2) −0.05913 (16) 0.33674 (15) 0.0429 (4)
C35 0.2393 (3) 0.0120 (2) 0.22153 (17) 0.0610 (5)
O35 0.2818 (2) 0.12192 (15) 0.15706 (12) 0.0876 (5)
C41 0.1316 (2) −0.28902 (17) 0.46537 (15) 0.0448 (4)
C42 0.1955 (2) −0.41464 (19) 0.4829 (2) 0.0605 (5)
H42 0.2644 −0.4315 0.4274 0.073*
C43 0.1543 (3) −0.5148 (2) 0.5855 (2) 0.0753 (7)
H43 0.1959 −0.6009 0.5993 0.090*
C44 0.0533 (3) −0.4903 (2) 0.6675 (2) 0.0752 (7)
H44 0.0261 −0.5595 0.7362 0.090*
C45 −0.0075 (2) −0.3635 (2) 0.64828 (18) 0.0650 (6)
H45 −0.0746 −0.3464 0.7044 0.078*
C46 0.0303 (2) −0.26166 (18) 0.54647 (16) 0.0511 (5)
H46 −0.0118 −0.1757 0.5326 0.061*
O51 0.5469 (4) 0.8063 (3) 0.21769 (15) 0.0720 (8) 0.836 (6)
H51 0.5236 0.7365 0.2142 0.108* 0.836 (6)
C51 0.6351 (5) 0.8888 (4) 0.1149 (3) 0.0896 (11) 0.836 (6)
H51A 0.6227 0.9819 0.1068 0.107* 0.836 (6)
H51B 0.5930 0.8805 0.0556 0.107* 0.836 (6)
C52 0.7995 (5) 0.8544 (7) 0.1049 (4) 0.1074 (13) 0.836 (6)
H52A 0.8533 0.9122 0.0340 0.161* 0.836 (6)
H52B 0.8126 0.7626 0.1119 0.161* 0.836 (6)
H52C 0.8427 0.8652 0.1620 0.161* 0.836 (6)
O61 0.6330 (19) 0.7535 (13) 0.2239 (8) 0.0720 (8) 0.164 (6)
H61 0.5772 0.6975 0.2215 0.108* 0.164 (6)
C61 0.672 (3) 0.834 (2) 0.1102 (12) 0.0896 (11) 0.164 (6)
H61A 0.6170 0.9198 0.0952 0.107* 0.164 (6)
H61B 0.6343 0.7906 0.0684 0.107* 0.164 (6)
C62 0.837 (3) 0.858 (4) 0.073 (2) 0.1074 (13) 0.164 (6)
H62A 0.8914 0.8253 0.1348 0.161* 0.164 (6)
H62B 0.8544 0.9526 0.0330 0.161* 0.164 (6)
H62C 0.8765 0.8117 0.0246 0.161* 0.164 (6)

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0647 (12) 0.0410 (11) 0.0513 (11) −0.0048 (9) 0.0002 (10) −0.0164 (9)
O1 0.1374 (15) 0.0516 (9) 0.0993 (13) 0.0019 (9) −0.0475 (11) −0.0355 (9)
N1 0.0604 (10) 0.0401 (9) 0.0516 (10) −0.0061 (7) −0.0088 (8) −0.0124 (7)
C11 0.0570 (11) 0.0408 (10) 0.0444 (10) −0.0021 (8) 0.0048 (9) −0.0105 (8)
C12 0.0591 (12) 0.0497 (12) 0.0605 (13) −0.0074 (9) −0.0033 (10) −0.0147 (10)
C13 0.0716 (15) 0.0766 (17) 0.0638 (14) −0.0180 (12) −0.0094 (12) −0.0181 (13)
C14 0.0673 (14) 0.0774 (17) 0.0603 (14) −0.0062 (12) −0.0078 (11) 0.0002 (13)
C15 0.105 (2) 0.0605 (15) 0.0736 (17) 0.0198 (14) −0.0149 (15) −0.0046 (13)
C16 0.1100 (19) 0.0488 (13) 0.0644 (15) 0.0088 (12) −0.0134 (14) −0.0176 (11)
C17 0.0500 (11) 0.0454 (11) 0.0629 (13) −0.0073 (9) −0.0064 (10) −0.0146 (10)
N21 0.0605 (10) 0.0528 (10) 0.0502 (10) 0.0000 (8) −0.0180 (8) −0.0259 (8)
N22 0.0569 (10) 0.0506 (10) 0.0643 (11) −0.0038 (8) −0.0183 (8) −0.0266 (9)
C23 0.0407 (9) 0.0368 (9) 0.0544 (11) −0.0010 (7) −0.0118 (8) −0.0171 (8)
N24 0.0435 (8) 0.0347 (7) 0.0412 (8) −0.0010 (6) −0.0108 (6) −0.0159 (6)
C25 0.0457 (10) 0.0378 (9) 0.0437 (10) 0.0100 (7) −0.0145 (8) −0.0184 (8)
S25 0.0654 (3) 0.0496 (3) 0.0435 (3) −0.0021 (2) −0.0044 (2) −0.0115 (2)
N25 0.0521 (8) 0.0399 (8) 0.0405 (8) −0.0051 (6) −0.0073 (7) −0.0176 (7)
C26 0.0426 (9) 0.0340 (9) 0.0411 (9) 0.0017 (7) −0.0084 (7) −0.0135 (7)
O31 0.1185 (13) 0.0688 (10) 0.0512 (9) −0.0207 (9) −0.0151 (8) −0.0293 (8)
N32 0.0916 (13) 0.0572 (11) 0.0617 (11) −0.0142 (9) −0.0135 (10) −0.0322 (9)
N33 0.0507 (8) 0.0413 (8) 0.0513 (9) −0.0033 (7) −0.0087 (7) −0.0246 (7)
C34 0.0499 (10) 0.0361 (9) 0.0449 (10) −0.0041 (8) −0.0060 (8) −0.0180 (8)
C35 0.0871 (15) 0.0525 (13) 0.0485 (12) −0.0108 (11) −0.0104 (11) −0.0234 (10)
O35 0.1473 (16) 0.0598 (10) 0.0485 (9) −0.0296 (10) −0.0126 (9) −0.0097 (8)
C41 0.0442 (10) 0.0352 (9) 0.0560 (11) −0.0055 (7) −0.0127 (8) −0.0161 (8)
C42 0.0574 (12) 0.0427 (11) 0.0857 (16) 0.0009 (9) −0.0145 (11) −0.0286 (11)
C43 0.0738 (15) 0.0357 (12) 0.109 (2) 0.0044 (10) −0.0313 (14) −0.0139 (13)
C44 0.0765 (15) 0.0523 (14) 0.0777 (16) −0.0121 (11) −0.0255 (13) 0.0023 (12)
C45 0.0615 (13) 0.0629 (14) 0.0607 (13) −0.0105 (10) −0.0060 (10) −0.0137 (11)
C46 0.0474 (10) 0.0428 (11) 0.0598 (12) 0.0009 (8) −0.0105 (9) −0.0161 (9)
O51 0.095 (2) 0.0762 (16) 0.0573 (10) −0.0211 (14) −0.0090 (11) −0.0365 (10)
C51 0.101 (3) 0.096 (3) 0.0654 (18) 0.001 (2) −0.0205 (17) −0.0220 (19)
C52 0.104 (4) 0.140 (3) 0.071 (3) 0.000 (3) −0.005 (2) −0.038 (3)
O61 0.095 (2) 0.0762 (16) 0.0573 (10) −0.0211 (14) −0.0090 (11) −0.0365 (10)
C61 0.101 (3) 0.096 (3) 0.0654 (18) 0.001 (2) −0.0205 (17) −0.0220 (19)
C62 0.104 (4) 0.140 (3) 0.071 (3) 0.000 (3) −0.005 (2) −0.038 (3)

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Geometric parameters (Å, º)

C1—O1 1.225 (2) N32—N33 1.300 (2)
C1—N1 1.329 (2) N33—C34 1.352 (2)
C1—C11 1.488 (3) N33—C41 1.442 (2)
N1—C17 1.444 (2) C34—C35 1.412 (3)
N1—H1 0.851 (19) C35—O35 1.200 (2)
C11—C16 1.378 (3) C41—C42 1.371 (2)
C11—C12 1.382 (3) C41—C46 1.374 (3)
C12—C13 1.382 (3) C42—C43 1.375 (3)
C12—H12 0.9300 C42—H42 0.9300
C13—C14 1.358 (3) C43—C44 1.369 (3)
C13—H13 0.9300 C43—H43 0.9300
C14—C15 1.364 (3) C44—C45 1.370 (3)
C14—H14 0.9300 C44—H44 0.9300
C15—C16 1.372 (3) C45—C46 1.373 (3)
C15—H15 0.9300 C45—H45 0.9300
C16—H16 0.9300 C46—H46 0.9300
C17—C23 1.481 (3) O51—C51 1.422 (3)
C17—H17A 0.9700 O51—H51 0.8200
C17—H17B 0.9700 C51—C52 1.432 (5)
N21—C25 1.330 (2) C51—H51A 0.9700
N21—N22 1.372 (2) C51—H51B 0.9700
N21—H21 0.88 (2) C52—H52A 0.9600
N22—C23 1.288 (2) C52—H52B 0.9600
C23—N24 1.376 (2) C52—H52C 0.9600
N24—N25 1.3821 (18) O61—C61 1.413 (9)
N24—C25 1.392 (2) O61—H61 0.8198
C25—S25 1.6657 (18) C61—C62 1.431 (10)
N25—C26 1.277 (2) C61—H61A 0.9700
C26—C34 1.421 (2) C61—H61B 0.9700
C26—H26 0.9300 C62—H62A 0.9600
O31—N32 1.367 (2) C62—H62B 0.9600
O31—C35 1.412 (2) C62—H62C 0.9600
O1—C1—N1 120.3 (2) C34—N33—C41 127.36 (15)
O1—C1—C11 121.36 (18) N33—C34—C35 105.95 (15)
N1—C1—C11 118.31 (17) N33—C34—C26 124.92 (16)
C1—N1—C17 121.94 (16) C35—C34—C26 129.09 (16)
C1—N1—H1 118.0 (14) O35—C35—O31 121.02 (18)
C17—N1—H1 120.0 (14) O35—C35—C34 135.49 (18)
C16—C11—C12 118.0 (2) O31—C35—C34 103.48 (16)
C16—C11—C1 118.33 (18) C42—C41—C46 122.09 (18)
C12—C11—C1 123.63 (18) C42—C41—N33 119.66 (17)
C13—C12—C11 120.3 (2) C46—C41—N33 118.25 (15)
C13—C12—H12 119.8 C41—C42—C43 117.8 (2)
C11—C12—H12 119.8 C41—C42—H42 121.1
C14—C13—C12 120.7 (2) C43—C42—H42 121.1
C14—C13—H13 119.6 C44—C43—C42 121.3 (2)
C12—C13—H13 119.6 C44—C43—H43 119.4
C13—C14—C15 119.5 (2) C42—C43—H43 119.4
C13—C14—H14 120.2 C43—C44—C45 119.8 (2)
C15—C14—H14 120.2 C43—C44—H44 120.1
C14—C15—C16 120.4 (2) C45—C44—H44 120.1
C14—C15—H15 119.8 C44—C45—C46 120.3 (2)
C16—C15—H15 119.8 C44—C45—H45 119.9
C15—C16—C11 121.0 (2) C46—C45—H45 119.9
C15—C16—H16 119.5 C45—C46—C41 118.77 (18)
C11—C16—H16 119.5 C45—C46—H46 120.6
N1—C17—C23 114.88 (15) C41—C46—H46 120.6
N1—C17—H17A 108.5 C51—O51—H51 109.5
C23—C17—H17A 108.5 O51—C51—C52 112.8 (3)
N1—C17—H17B 108.5 O51—C51—H51A 109.0
C23—C17—H17B 108.5 C52—C51—H51A 109.0
H17A—C17—H17B 107.5 O51—C51—H51B 109.0
C25—N21—N22 114.74 (15) C52—C51—H51B 109.0
C25—N21—H21 128.3 (13) H51A—C51—H51B 107.8
N22—N21—H21 116.9 (13) C51—C52—H52A 109.5
C23—N22—N21 104.27 (14) C51—C52—H52B 109.5
N22—C23—N24 110.68 (16) H52A—C52—H52B 109.5
N22—C23—C17 126.19 (15) C51—C52—H52C 109.5
N24—C23—C17 122.94 (16) H52A—C52—H52C 109.5
C23—N24—N25 118.51 (14) H52B—C52—H52C 109.5
C23—N24—C25 108.53 (14) C61—O61—H61 100.2
N25—N24—C25 132.76 (14) O61—C61—C62 113.9 (14)
N21—C25—N24 101.77 (15) O61—C61—H61A 108.8
N21—C25—S25 128.17 (14) C62—C61—H61A 108.8
N24—C25—S25 129.98 (13) O61—C61—H61B 108.8
C26—N25—N24 118.01 (14) C62—C61—H61B 108.8
N25—C26—C34 117.24 (16) H61A—C61—H61B 107.7
N25—C26—H26 121.4 C61—C62—H62A 109.5
C34—C26—H26 121.4 C61—C62—H62B 109.5
N32—O31—C35 111.00 (14) H62A—C62—H62B 109.5
N33—N32—O31 104.83 (13) C61—C62—H62C 109.5
N32—N33—C34 114.72 (16) H62A—C62—H62C 109.5
N32—N33—C41 117.88 (14) H62B—C62—H62C 109.5
O1—C1—N1—C17 −6.2 (3) C23—N24—N25—C26 160.75 (15)
C11—C1—N1—C17 172.55 (16) C25—N24—N25—C26 −25.1 (3)
O1—C1—C11—C16 −7.8 (3) N24—N25—C26—C34 179.98 (14)
N1—C1—C11—C16 173.48 (18) C35—O31—N32—N33 −1.1 (2)
O1—C1—C11—C12 170.63 (19) O31—N32—N33—C34 0.7 (2)
N1—C1—C11—C12 −8.1 (3) O31—N32—N33—C41 178.55 (15)
C16—C11—C12—C13 −0.1 (3) N32—N33—C34—C35 0.1 (2)
C1—C11—C12—C13 −178.57 (18) C41—N33—C34—C35 −177.57 (17)
C11—C12—C13—C14 0.1 (3) N32—N33—C34—C26 −177.83 (16)
C12—C13—C14—C15 0.1 (3) C41—N33—C34—C26 4.5 (3)
C13—C14—C15—C16 −0.4 (4) N25—C26—C34—N33 179.15 (16)
C14—C15—C16—C11 0.4 (4) N25—C26—C34—C35 1.7 (3)
C12—C11—C16—C15 −0.1 (3) N32—O31—C35—O35 −179.6 (2)
C1—C11—C16—C15 178.4 (2) N32—O31—C35—C34 1.2 (2)
C1—N1—C17—C23 100.0 (2) N33—C34—C35—O35 −179.8 (3)
C25—N21—N22—C23 0.3 (2) C26—C34—C35—O35 −2.0 (4)
N21—N22—C23—N24 −1.01 (19) N33—C34—C35—O31 −0.7 (2)
N21—N22—C23—C17 −176.04 (16) C26—C34—C35—O31 177.04 (17)
N1—C17—C23—N22 −124.95 (19) N32—N33—C41—C42 55.7 (2)
N1—C17—C23—N24 60.6 (2) C34—N33—C41—C42 −126.68 (19)
N22—C23—N24—N25 176.86 (14) N32—N33—C41—C46 −124.04 (18)
C17—C23—N24—N25 −7.9 (2) C34—N33—C41—C46 53.5 (2)
N22—C23—N24—C25 1.4 (2) C46—C41—C42—C43 0.4 (3)
C17—C23—N24—C25 176.60 (16) N33—C41—C42—C43 −179.38 (17)
N22—N21—C25—N24 0.50 (19) C41—C42—C43—C44 −0.2 (3)
N22—N21—C25—S25 −176.58 (13) C42—C43—C44—C45 −0.6 (3)
C23—N24—C25—N21 −1.08 (17) C43—C44—C45—C46 1.2 (3)
N25—N24—C25—N21 −175.67 (16) C44—C45—C46—C41 −0.9 (3)
C23—N24—C25—S25 175.93 (13) C42—C41—C46—C45 0.2 (3)
N25—N24—C25—S25 1.3 (3) N33—C41—C46—C45 179.94 (15)

N-{[4-(3-phenyl-4-sydnonylideneamino)-5-sulfanylidene-1H-1,2,4-triazol-3-yl]methyl}benzamide ethanol monosolvate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N25 0.85 (2) 2.62 (2) 2.946 (2) 104.0 (16)
N21—H21···O51i 0.88 (2) 1.84 (2) 2.700 (3) 166.0 (18)
N21—H21···O61i 0.88 (2) 1.88 (3) 2.730 (12) 164 (2)
O51—H51···O1 0.82 1.89 2.706 (4) 175
O61—H61···O1 0.82 1.79 2.614 (16) 180
C12—H12···O35 0.93 2.59 3.468 (3) 158

Symmetry code: (i) −x+1, −y+1, −z+1.

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Crystal data

C20H17N7O3S·C2H6O Z = 2
Mr = 481.53 F(000) = 504
Triclinic, P1 Dx = 1.355 Mg m3
a = 8.5631 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.1242 (8) Å Cell parameters from 5107 reflections
c = 13.5632 (9) Å θ = 2.6–28.0°
α = 70.244 (6)° µ = 0.18 mm1
β = 76.086 (7)° T = 293 K
γ = 84.058 (6)° Needle, yellow
V = 1179.92 (15) Å3 0.50 × 0.12 × 0.08 mm

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 4670 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2828 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω scans θmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→5
Tmin = 0.841, Tmax = 0.986 k = −13→13
8056 measured reflections l = −16→15

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.4689P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
4670 reflections Δρmax = 0.19 e Å3
327 parameters Δρmin = −0.18 e Å3
3 restraints

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4320 (3) 0.4989 (3) 0.1887 (2) 0.0516 (7)
O1 0.5007 (3) 0.57130 (19) 0.21463 (17) 0.0728 (6)
N1 0.4417 (3) 0.3724 (2) 0.2369 (2) 0.0571 (7)
H1 0.390 (3) 0.325 (3) 0.221 (2) 0.069*
C11 0.3385 (3) 0.5462 (3) 0.1039 (2) 0.0498 (7)
C12 0.2858 (3) 0.4682 (3) 0.0582 (2) 0.0593 (8)
H12 0.3071 0.3807 0.0818 0.071*
C13 0.2022 (4) 0.5194 (4) −0.0219 (3) 0.0728 (10)
H13 0.1675 0.4663 −0.0521 0.087*
C14 0.1696 (4) 0.6474 (4) −0.0573 (3) 0.0840 (11)
H14 0.1124 0.6816 −0.1112 0.101*
C15 0.2216 (5) 0.7253 (4) −0.0129 (3) 0.0894 (12)
H15 0.1991 0.8127 −0.0366 0.107*
C16 0.3065 (4) 0.6754 (3) 0.0662 (3) 0.0722 (9)
H16 0.3430 0.7295 0.0947 0.087*
C17 0.5493 (3) 0.3149 (3) 0.3086 (2) 0.0596 (8)
H17A 0.6172 0.3808 0.3063 0.072*
H17B 0.6187 0.2526 0.2822 0.072*
N21 0.4015 (3) 0.1866 (2) 0.5901 (2) 0.0560 (7)
H21 0.401 (3) 0.184 (3) 0.658 (2) 0.067*
N22 0.4901 (3) 0.2760 (2) 0.5037 (2) 0.0597 (7)
C23 0.4687 (3) 0.2512 (3) 0.4215 (2) 0.0492 (7)
N24 0.3715 (2) 0.14807 (19) 0.45373 (18) 0.0430 (5)
C25 0.3256 (3) 0.1057 (3) 0.5646 (2) 0.0465 (7)
S25 0.20592 (10) −0.01225 (8) 0.64723 (6) 0.0607 (2)
N25 0.3260 (3) 0.1148 (2) 0.37505 (17) 0.0463 (6)
C26 0.2769 (3) 0.0009 (2) 0.4004 (2) 0.0427 (6)
H26 0.2733 −0.0578 0.4686 0.051*
O31 0.1843 (3) −0.0446 (2) 0.16972 (16) 0.0798 (7)
N32 0.1452 (3) −0.1594 (2) 0.2474 (2) 0.0666 (7)
N33 0.1738 (3) −0.1471 (2) 0.33327 (18) 0.0463 (6)
C34 0.2283 (3) −0.0315 (2) 0.3201 (2) 0.0449 (7)
C35 0.2365 (4) 0.0409 (3) 0.2114 (3) 0.0667 (9)
O35 0.2748 (3) 0.1471 (2) 0.15540 (18) 0.0986 (9)
C41 0.1448 (3) −0.2546 (2) 0.4303 (2) 0.0421 (6)
C42 0.2134 (3) −0.3709 (3) 0.4292 (2) 0.0541 (8)
H42 0.2745 −0.3818 0.3660 0.065*
C43 0.1898 (4) −0.4716 (3) 0.5243 (3) 0.0607 (8)
H43 0.2357 −0.5511 0.5244 0.073*
C44 0.1002 (3) −0.4577 (3) 0.6190 (3) 0.0547 (8)
C45 0.0311 (3) −0.3401 (3) 0.6162 (2) 0.0579 (8)
H45 −0.0315 −0.3291 0.6790 0.069*
C46 0.0520 (3) −0.2377 (3) 0.5224 (2) 0.0505 (7)
H46 0.0041 −0.1586 0.5216 0.061*
C47 0.0841 (4) −0.5680 (3) 0.7222 (3) 0.0829 (11)
H47A 0.0051 −0.5465 0.7775 0.124*
H47B 0.1859 −0.5857 0.7429 0.124*
H47C 0.0512 −0.6421 0.7121 0.124*
O51 0.5508 (4) 0.8106 (3) 0.2175 (2) 0.0639 (10) 0.906 (6)
H51 0.5341 0.7434 0.2098 0.096* 0.906 (6)
C51 0.6322 (6) 0.8952 (5) 0.1173 (3) 0.0883 (16) 0.906 (6)
H51A 0.6089 0.9824 0.1174 0.106* 0.906 (6)
H51B 0.5898 0.8854 0.0604 0.106* 0.906 (6)
C52 0.8062 (5) 0.8748 (5) 0.0935 (3) 0.0981 (17) 0.906 (6)
H52A 0.8537 0.9409 0.0295 0.147* 0.906 (6)
H52B 0.8311 0.7932 0.0831 0.147* 0.906 (6)
H52C 0.8486 0.8768 0.1524 0.147* 0.906 (6)
O61 0.599 (5) 0.773 (3) 0.228 (3) 0.0639 (10) 0.094 (6)
H61 0.5670 0.7079 0.2237 0.096* 0.094 (6)
C61 0.663 (8) 0.833 (3) 0.116 (3) 0.0883 (16) 0.094 (6)
H61A 0.5833 0.8341 0.0758 0.106* 0.094 (6)
H61B 0.7564 0.7835 0.0923 0.106* 0.094 (6)
C62 0.711 (6) 0.963 (3) 0.095 (3) 0.0981 (17) 0.094 (6)
H62A 0.8222 0.9729 0.0598 0.147* 0.094 (6)
H62B 0.6937 0.9801 0.1619 0.147* 0.094 (6)
H62C 0.6465 1.0224 0.0501 0.147* 0.094 (6)

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0548 (18) 0.0450 (18) 0.0514 (18) −0.0072 (15) 0.0021 (15) −0.0186 (15)
O1 0.1006 (17) 0.0496 (13) 0.0801 (16) −0.0097 (12) −0.0273 (13) −0.0287 (12)
N1 0.0597 (17) 0.0467 (16) 0.0666 (18) −0.0120 (13) −0.0199 (13) −0.0131 (13)
C11 0.0483 (17) 0.0459 (17) 0.0498 (18) −0.0020 (14) 0.0020 (14) −0.0172 (14)
C12 0.0555 (18) 0.0549 (19) 0.064 (2) −0.0025 (15) −0.0071 (16) −0.0188 (17)
C13 0.066 (2) 0.084 (3) 0.069 (2) −0.010 (2) −0.0138 (19) −0.025 (2)
C14 0.068 (2) 0.097 (3) 0.068 (2) −0.004 (2) −0.0143 (19) −0.002 (2)
C15 0.092 (3) 0.061 (2) 0.098 (3) 0.007 (2) −0.024 (2) −0.004 (2)
C16 0.084 (2) 0.051 (2) 0.078 (2) 0.0000 (18) −0.016 (2) −0.0178 (18)
C17 0.0545 (18) 0.0515 (18) 0.072 (2) −0.0104 (15) −0.0173 (17) −0.0146 (17)
N21 0.0683 (17) 0.0571 (16) 0.0571 (17) 0.0055 (13) −0.0268 (15) −0.0301 (15)
N22 0.0655 (16) 0.0506 (15) 0.0738 (19) −0.0021 (13) −0.0280 (15) −0.0251 (14)
C23 0.0477 (17) 0.0448 (17) 0.064 (2) 0.0002 (14) −0.0205 (15) −0.0236 (15)
N24 0.0470 (13) 0.0401 (13) 0.0495 (15) −0.0034 (11) −0.0153 (11) −0.0206 (11)
C25 0.0500 (17) 0.0463 (17) 0.0499 (18) 0.0101 (14) −0.0188 (14) −0.0218 (14)
S25 0.0708 (5) 0.0570 (5) 0.0516 (5) −0.0006 (4) −0.0106 (4) −0.0165 (4)
N25 0.0535 (14) 0.0433 (14) 0.0495 (14) −0.0051 (11) −0.0146 (11) −0.0210 (11)
C26 0.0470 (16) 0.0383 (16) 0.0436 (16) 0.0013 (13) −0.0103 (13) −0.0148 (13)
O31 0.139 (2) 0.0618 (14) 0.0462 (13) −0.0308 (14) −0.0296 (13) −0.0119 (11)
N32 0.103 (2) 0.0557 (16) 0.0506 (16) −0.0197 (15) −0.0224 (15) −0.0203 (13)
N33 0.0560 (14) 0.0412 (13) 0.0461 (14) −0.0067 (11) −0.0113 (11) −0.0180 (11)
C34 0.0567 (17) 0.0366 (15) 0.0446 (17) −0.0055 (13) −0.0125 (14) −0.0150 (13)
C35 0.099 (3) 0.055 (2) 0.055 (2) −0.0181 (19) −0.0223 (18) −0.0199 (17)
O35 0.180 (3) 0.0552 (15) 0.0578 (15) −0.0416 (16) −0.0319 (16) −0.0002 (12)
C41 0.0437 (16) 0.0387 (15) 0.0476 (17) −0.0048 (13) −0.0115 (13) −0.0168 (13)
C42 0.0572 (18) 0.0455 (17) 0.065 (2) −0.0037 (15) −0.0080 (15) −0.0273 (16)
C43 0.062 (2) 0.0318 (16) 0.088 (3) 0.0025 (14) −0.0227 (18) −0.0164 (17)
C44 0.0501 (18) 0.0480 (18) 0.063 (2) −0.0117 (15) −0.0184 (16) −0.0075 (16)
C45 0.0551 (18) 0.060 (2) 0.0523 (19) −0.0048 (16) −0.0047 (15) −0.0136 (16)
C46 0.0506 (17) 0.0416 (16) 0.058 (2) 0.0044 (14) −0.0095 (15) −0.0184 (15)
C47 0.086 (3) 0.062 (2) 0.084 (3) −0.0187 (19) −0.026 (2) 0.0074 (19)
O51 0.089 (2) 0.056 (2) 0.0543 (15) −0.0169 (16) −0.0188 (14) −0.0212 (14)
C51 0.103 (4) 0.070 (4) 0.079 (3) −0.021 (3) −0.032 (3) 0.005 (3)
C52 0.095 (4) 0.100 (4) 0.070 (3) −0.004 (3) −0.015 (2) 0.007 (3)
O61 0.089 (2) 0.056 (2) 0.0543 (15) −0.0169 (16) −0.0188 (14) −0.0212 (14)
C61 0.103 (4) 0.070 (4) 0.079 (3) −0.021 (3) −0.032 (3) 0.005 (3)
C62 0.095 (4) 0.100 (4) 0.070 (3) −0.004 (3) −0.015 (2) 0.007 (3)

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Geometric parameters (Å, º)

C1—O1 1.228 (3) N33—C41 1.436 (3)
C1—N1 1.340 (3) C34—C35 1.409 (4)
C1—C11 1.479 (4) C35—O35 1.198 (3)
N1—C17 1.446 (4) C41—C42 1.368 (3)
N1—H1 0.83 (3) C41—C46 1.370 (4)
C11—C16 1.375 (4) C42—C43 1.379 (4)
C11—C12 1.386 (4) C42—H42 0.9300
C12—C13 1.373 (4) C43—C44 1.378 (4)
C12—H12 0.9300 C43—H43 0.9300
C13—C14 1.362 (5) C44—C45 1.371 (4)
C13—H13 0.9300 C44—C47 1.505 (4)
C14—C15 1.368 (5) C45—C46 1.379 (4)
C14—H14 0.9300 C45—H45 0.9300
C15—C16 1.370 (5) C46—H46 0.9300
C15—H15 0.9300 C47—H47A 0.9600
C16—H16 0.9300 C47—H47B 0.9600
C17—C23 1.478 (4) C47—H47C 0.9600
C17—H17A 0.9700 O51—C51 1.426 (4)
C17—H17B 0.9700 O51—H51 0.8200
N21—C25 1.339 (3) C51—C52 1.458 (6)
N21—N22 1.370 (3) C51—H51A 0.9700
N21—H21 0.91 (3) C51—H51B 0.9700
N22—C23 1.292 (3) C52—H52A 0.9600
C23—N24 1.373 (3) C52—H52B 0.9600
N24—C25 1.383 (3) C52—H52C 0.9600
N24—N25 1.387 (3) O61—C61 1.429 (11)
C25—S25 1.661 (3) O61—H61 0.8214
N25—C26 1.284 (3) C61—C62 1.465 (11)
C26—C34 1.415 (3) C61—H61A 0.9700
C26—H26 0.9300 C61—H61B 0.9700
O31—N32 1.364 (3) C62—H62A 0.9600
O31—C35 1.414 (3) C62—H62B 0.9600
N32—N33 1.299 (3) C62—H62C 0.9600
N33—C34 1.353 (3)
O1—C1—N1 120.1 (3) C35—C34—C26 129.2 (2)
O1—C1—C11 122.2 (3) O35—C35—C34 135.6 (3)
N1—C1—C11 117.8 (3) O35—C35—O31 121.0 (3)
C1—N1—C17 122.2 (2) C34—C35—O31 103.4 (2)
C1—N1—H1 119 (2) C42—C41—C46 121.4 (3)
C17—N1—H1 119 (2) C42—C41—N33 119.3 (2)
C16—C11—C12 118.3 (3) C46—C41—N33 119.3 (2)
C16—C11—C1 118.0 (3) C41—C42—C43 118.3 (3)
C12—C11—C1 123.7 (3) C41—C42—H42 120.8
C13—C12—C11 120.4 (3) C43—C42—H42 120.8
C13—C12—H12 119.8 C44—C43—C42 121.9 (3)
C11—C12—H12 119.8 C44—C43—H43 119.0
C14—C13—C12 120.5 (3) C42—C43—H43 119.0
C14—C13—H13 119.7 C45—C44—C43 117.9 (3)
C12—C13—H13 119.7 C45—C44—C47 121.7 (3)
C13—C14—C15 119.5 (3) C43—C44—C47 120.4 (3)
C13—C14—H14 120.2 C44—C45—C46 121.6 (3)
C15—C14—H14 120.2 C44—C45—H45 119.2
C14—C15—C16 120.4 (4) C46—C45—H45 119.2
C14—C15—H15 119.8 C41—C46—C45 118.9 (3)
C16—C15—H15 119.8 C41—C46—H46 120.6
C15—C16—C11 120.8 (3) C45—C46—H46 120.6
C15—C16—H16 119.6 C44—C47—H47A 109.5
C11—C16—H16 119.6 C44—C47—H47B 109.5
N1—C17—C23 114.9 (2) H47A—C47—H47B 109.5
N1—C17—H17A 108.6 C44—C47—H47C 109.5
C23—C17—H17A 108.6 H47A—C47—H47C 109.5
N1—C17—H17B 108.6 H47B—C47—H47C 109.5
C23—C17—H17B 108.6 C51—O51—H51 109.5
H17A—C17—H17B 107.5 O51—C51—C52 114.2 (3)
C25—N21—N22 114.5 (2) O51—C51—H51A 108.7
C25—N21—H21 125.5 (19) C52—C51—H51A 108.7
N22—N21—H21 120.0 (18) O51—C51—H51B 108.7
C23—N22—N21 104.3 (2) C52—C51—H51B 108.7
N22—C23—N24 110.6 (3) H51A—C51—H51B 107.6
N22—C23—C17 125.6 (3) C51—C52—H52A 109.5
N24—C23—C17 123.6 (3) C51—C52—H52B 109.5
C23—N24—C25 109.0 (2) H52A—C52—H52B 109.5
C23—N24—N25 118.0 (2) C51—C52—H52C 109.5
C25—N24—N25 132.7 (2) H52A—C52—H52C 109.5
N21—C25—N24 101.7 (2) H52B—C52—H52C 109.5
N21—C25—S25 127.9 (2) C61—O61—H61 97.5
N24—C25—S25 130.4 (2) O61—C61—C62 110.6 (15)
C26—N25—N24 117.5 (2) O61—C61—H61A 109.5
N25—C26—C34 117.1 (2) C62—C61—H61A 109.5
N25—C26—H26 121.4 O61—C61—H61B 109.5
C34—C26—H26 121.4 C62—C61—H61B 109.5
N32—O31—C35 111.2 (2) H61A—C61—H61B 108.1
N33—N32—O31 104.6 (2) C61—C62—H62A 109.5
N32—N33—C34 114.9 (2) C61—C62—H62B 109.5
N32—N33—C41 117.9 (2) H62A—C62—H62B 109.5
C34—N33—C41 127.2 (2) C61—C62—H62C 109.5
N33—C34—C35 105.9 (2) H62A—C62—H62C 109.5
N33—C34—C26 124.7 (2) H62B—C62—H62C 109.5
O1—C1—N1—C17 −9.0 (4) C25—N24—N25—C26 −27.7 (4)
C11—C1—N1—C17 170.3 (3) N24—N25—C26—C34 179.0 (2)
O1—C1—C11—C16 −10.8 (4) C35—O31—N32—N33 −0.9 (3)
N1—C1—C11—C16 169.9 (3) O31—N32—N33—C34 0.6 (3)
O1—C1—C11—C12 167.1 (3) O31—N32—N33—C41 −179.5 (2)
N1—C1—C11—C12 −12.2 (4) N32—N33—C34—C35 −0.1 (3)
C16—C11—C12—C13 −0.7 (4) C41—N33—C34—C35 −179.9 (3)
C1—C11—C12—C13 −178.7 (3) N32—N33—C34—C26 −175.8 (2)
C11—C12—C13—C14 −0.1 (5) C41—N33—C34—C26 4.3 (4)
C12—C13—C14—C15 0.3 (5) N25—C26—C34—N33 179.9 (2)
C13—C14—C15—C16 0.3 (6) N25—C26—C34—C35 5.2 (4)
C14—C15—C16—C11 −1.2 (6) N33—C34—C35—O35 179.7 (4)
C12—C11—C16—C15 1.4 (5) C26—C34—C35—O35 −4.8 (7)
C1—C11—C16—C15 179.5 (3) N33—C34—C35—O31 −0.5 (3)
C1—N1—C17—C23 114.4 (3) C26—C34—C35—O31 175.0 (3)
C25—N21—N22—C23 0.3 (3) N32—O31—C35—O35 −179.3 (3)
N21—N22—C23—N24 −0.9 (3) N32—O31—C35—C34 0.9 (3)
N21—N22—C23—C17 −175.0 (3) N32—N33—C41—C42 52.9 (3)
N1—C17—C23—N22 −124.1 (3) C34—N33—C41—C42 −127.2 (3)
N1—C17—C23—N24 62.5 (4) N32—N33—C41—C46 −128.6 (3)
N22—C23—N24—C25 1.1 (3) C34—N33—C41—C46 51.3 (4)
C17—C23—N24—C25 175.4 (2) C46—C41—C42—C43 −1.2 (4)
N22—C23—N24—N25 175.0 (2) N33—C41—C42—C43 177.2 (2)
C17—C23—N24—N25 −10.7 (4) C41—C42—C43—C44 −0.2 (4)
N22—N21—C25—N24 0.3 (3) C42—C43—C44—C45 1.4 (4)
N22—N21—C25—S25 −178.8 (2) C42—C43—C44—C47 −176.8 (3)
C23—N24—C25—N21 −0.8 (3) C43—C44—C45—C46 −1.1 (4)
N25—N24—C25—N21 −173.5 (2) C47—C44—C45—C46 177.0 (3)
C23—N24—C25—S25 178.3 (2) C42—C41—C46—C45 1.4 (4)
N25—N24—C25—S25 5.6 (4) N33—C41—C46—C45 −177.0 (2)
C23—N24—N25—C26 160.2 (2) C44—C45—C46—C41 −0.2 (4)

N-({4-[3-(4-Methylphenyl)-4-sydnonylideneamino]-5-sulfanylidene-1H-1,2,4-triazol-3-yl}methyl)benzamide ethanol monosolvate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N25 0.83 (3) 2.56 (3) 2.961 (3) 111 (2)
N21—H21···O51i 0.91 (3) 1.85 (3) 2.747 (4) 167 (2)
N21—H21···O61i 0.91 (3) 1.77 (3) 2.65 (4) 164 (3)
O51—H51···O1 0.82 1.94 2.754 (4) 171
O61—H61···O1 0.82 1.73 2.55 (4) 180
C12—H12···O35 0.93 2.47 3.366 (4) 163

Symmetry code: (i) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Department of Science and Technology, Ministry of Science and Technology, India grant . University Grants Commission grant .

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o1303. [DOI] [PMC free article] [PubMed]
  6. Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  7. Kalluraya, B., Lingappa, B. & Nooji, S. R. (2007). Phosphorus Sulfur Silicon, 182, 1393–1401.
  8. Kalluraya, B., Rahiman, M. A. & Banji, D. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 263–268. [DOI] [PubMed]
  9. Kalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. 41B, 1712–1717.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  14. Xu, L.-Z., Yu, G.-P., Xu, F.-L. & Li, W.-H. (2005a). Acta Cryst. E61, o2061–o2062.
  15. Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005b). Acta Cryst. E61, o3375–o3376.
  16. Zhang, X.-R., Xu, M.-H., Bi, S., Yu, Y.-Q. & Zhang, S.-S. (2006b). Acta Cryst. E62, o4866–o4867.
  17. Zhang, X.-R., Xu, M.-H., Bi, S. & Zhang, S.-S. (2006a). Acta Cryst. E62, o4368–o4369.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989020007483/wm5563sup1.cif

e-76-01057-sup1.cif (607.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007483/wm5563Isup2.hkl

e-76-01057-Isup2.hkl (355.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020007483/wm5563IIsup3.hkl

e-76-01057-IIsup3.hkl (371.8KB, hkl)

CCDC references: 2007902, 2007901

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES