Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2016 Sep;37(9):784–789. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2016.09.011

13-顺式维甲酸联合IFN-α-2b治疗套细胞淋巴瘤的动物实验研究

Anti-tumor effects of 13-cis-retinoic acid combined with interferon α-2b in animal model of mantle cell lymphoma

Jingjing Wen 1, Zhibin Liu 1, Caigang Xu 1,
Editor: 刘 志红1
PMCID: PMC7342114  PMID: 27719722

Abstract

Objective

To determine the anti-tumor effects of 13-cis-retinoic acid (13cRA) combined with interferonα-2b (IFNα-2b) in mantle cell lymphoma (MCL) animal model.

Methods

The animal model of MCL was established by introducing Jeko-1 cell line into severe combined immunodeficiency disease mice. The successfully tumor-developed mice were assigned to different groups treated with negative control group (solvents), 13cRA (high dose: 200mg/kg; middle dose: 100mg/kg; low dose: 50 mg/kg) alone, IFNα-2b alone or combination of different dose of 13cRA with IFNα-2b, and positive control group (bortezomib, rituximab, cyclophosphamide), respectively. Variations of tumor volume were observed regularly. The relative tumor proliferation rate and tumor inhibition rate were calculated. Immunohistochemistry stain was used to detect the Ki-67 expression and TUNEL was applied to measure the apoptosis of tumor cells. Furthermore, the levels of Cyclin D1, caspase 9 and Rb protein were measured by Western-blot method.

Results

①The relative tumor proliferation rates (T/C%)were 30%, 37%, 32% and 33% in middle dose, high dose groups of 13cRA as well as their combination with IFN α-2b, respectively. ②Comparing with the negative control, both 13cRA at different doses and its combination with IFNα-2b remarkably inhibited the tumor growth (P<0.05), while no statistic significance existed in different dose group of 13cRA. IFN-α 2b alone didn't demonstrate the tumor-inhibition effects (P>0.05). Middle dose of 13cRA and its combination with IFN-α-2b demonstrated relatively high tumor-inhibition effects (59.2% and 62.6% respectively), which were similar to the effects in positive control (69.4%). ③There was no statistic difference of Ki-67 in each experimental group. ④Comparing with negative control group, all doses of 13cRA and their combinations with IFNα-2b remarkably increased the apoptosis (P<0.05), similar to the positive control group (P>0.05). However, IFNα-2b alone didn't promote the apoptosis of tumor tissue (P=0.098). ⑤Comparing with negative control group, IFNα-2b combined with each dose of 13cRA significantly decreased the levels of cycling D1 and procaspase-9, while increased the level of cleaved caspase-9 (P<0.05), which were similar to the positive control group (P>0.05). Nevertheless, 13cRA alone didn't demonstrate such effects.

Conclusion

In the MCL animal model, IFNα-2b alone showed no effects, but combined with IFNα-2b, 13cRA displayed anti-tumor effects at different doses. The anti-tumor mechanism of 13cRA combined with IFNα-2b was probably down-regulation of the cyclin D1 expression, inhibition of cell proliferation and induction of apoptosis by activating caspase-9.

Keywords: Jeko-1 cell; Severe Combined Immunodeficiency; Lymphoma, B-cell; Tretinoin; Interferon-alpha


套细胞淋巴瘤(mantle cell lymphoma, MCL)的特征性改变是染色体易位,即t(11;14)(q13;q32),该移位导致CyclinD1的过度表达,导致细胞周期失调[1],与恶性细胞增殖密切相关[2]。Cyclin D1与CDK4/6形成复合物,促使视网膜神经胶质瘤蛋白(Rb)磷酸化,促进细胞进入细胞周期S期而增殖[3]。caspase-9经线粒体/细胞色素C参与细胞凋亡,procaspase-9经过水解成活性片段即cleaved caspase-9,经过剪切的caspase-9促进caspase-3、-7的活化,导致细胞凋亡[4]

13-顺式维甲酸或异维甲酸(13-cis-retinoic acid/Isotretinoin, 13cRA)是维甲酸(Retinoic acid, RA)的同分异构体之一,以往的研究发现13cRA联合其他药物在胶质瘤[5]、黑色素瘤[6]、成神经管细胞瘤[7]等动物模型治疗中均显示出一定的治疗效果或者协同效应。RA单用或者联合重组人IFN-α对MCL具有抗肿瘤作用[8][9]。我们在前期进行的体外实验中发现13cRA和IFN-α-2b对Jeko-1细胞有不同程度的抗肿瘤作用(结果未显示),在本研究中我们通过建立MCL动物模型,评估13cRA联合IFN-α-2b对MCL的治疗作用,并探讨Cyclin D1、caspase-9、Rb在MCL中的表达及其意义。

材料与方法

1.材料及来源:人MCL细胞株Jeko-1细胞购自American Type Culture Collection。干扰素α-2b购自美国先灵葆雅公司。13cRA购自大连美仑生物技术有限公司。硼替佐米为西安杨森制药有限公司产品。利妥昔单抗购自上海罗氏制药有限公司。注射用环磷酰胺为通化茂祥药业股份有限公司产品。抗Cyclin D1、caspase-9、Rb抗体等均为美国cell signaling technology公司产品,抗Ki-67(clone SP6)抗体为美国Thermo公司产品。

2.建立MCL动物模型及实验分组:重症联合免疫缺陷(SCID)小鼠来源于北京华阜康生物科技股份有限公司。将4周左右的SCID小鼠分别于右侧近前肢背部处皮下注射1×107个Jeko-1细胞(100 µl),约2周后可扪及的瘤块直径约4~5 mm。将荷瘤成功的SCID小鼠随机分为9组:①阴性对照组:13cRA溶剂载体(8%DMSO+92%聚乙二醇300);②阳性对照组:硼替佐米1.0 mg·kg−1·d−1+利妥昔单10 mg·kg−1 ·d−1+环磷酰胺40 mg·kg−1 ·d−1;③50 mg/kg 13cRA组;④100 mg/kg 13cRA组;⑤200 mg/kg 13cRA组;⑥50 mg/kg13cRA联合IFN-α-2b(每只105 IU)组;⑦100 mg/kg 13cRA联合IFN-α-2b(每只105 IU)组;⑧200 mg/kg 13cRA联合IFN-α-2b(每只105 IU)组;⑨IFN-α-2b(每只105 IU)组。

对照组小鼠每组5~6只,实验组小鼠每组7~11只。13cRA经灌胃给药,每周5 d,共计4周。IFN-α-2b经肌肉注射给药,隔天1次,共计4周。阳性对照组经腹腔注射给药,第1、4、7、10天给药。

3.观察肿瘤生长情况:每隔2天观察1次小鼠一般情况,测量瘤体长、短径,计算肿瘤体积和相对肿瘤体积(RTV)[RTV=每次测量的肿瘤体积(Vt)/给药前的肿瘤体积(Vo)]。并绘制肿瘤体积增长曲线。

以相对肿瘤增殖率(TGI)表示抗肿瘤活性,TGI=TRTV/CRTV×100%,TRTV指在治疗结束后治疗组的平均相对肿瘤体积,CRTV指在治疗结束后阴性对照组的平均相对肿瘤体积,TGI≤42%认为有效[10]

按照下列公式计算抑瘤率。抑瘤率(%)=(对照组瘤体重量−实验组瘤体重量)/对照组瘤体重量× 100%。以抑瘤率≥40%并经统计学处理P<0.05为有效。

总生存时间为从治疗开始至实验结束时小鼠存活的时间。

4.免疫组化法检测瘤组织Ki-67的表达:取荷瘤组织,常规制片,加入抗体进行反应,DAB染色,苏木素复染,乙醇梯度脱水后在ZGP-A2270光学显微镜下观察,采用Imagepro-plus软件分析切片阳性反应物的表达水平,以平均光密度值表示Ki-67的表达水平。平均光密度值=黄色的光密度总和(IOD SUM)/切片观察面积。每组包含3张切片,每张切片随机记录9个(×200)视野。

5.缺口末端标记法(TUNEL)检测组织中瘤细胞凋亡情况:按照TUNEL试剂盒说明书进行操作,在荧光显微镜下(×200)直接观察。每组包含3张切片,每张切片在镜下随机选取6个视野,计算每组平均凋亡细胞数。

6.Western blot法检测Cyclin D1、caspase-9、Rb的表达:提取瘤块组织总蛋白,BCA法测定蛋白浓度,行SDS-PAGE电泳,PVDF膜转膜后加入抗体进行反应,以GAPDH(武汉博士德生物工程有限公司产品)为内参照,进行化学发光反应。将胶片进行扫描或拍照,用凝胶图象处理系统分析目标条带的分子量和净光密度值。

7.统计学处理:应用SPSS17.0软件进行统计学分析。近似正态分布资料以x±s表示,非正态分布资料以中位数和范围表示。组间肿瘤生长情况比较采用秩和检验,瘤重、Ki-67的表达及凋亡细胞数的组间比较采用单因素方差分析。P<0.05为差异有统计学意义。

结果

1.肿瘤体积变化:给药前,各组瘤块大小差异无统计学意义(χ2=11.088,P=0.197),给药4周后,各组的肿瘤生长曲线见图1,可以看出治疗组肿瘤体积均较阴性对照组小(P值均<0.05)。

图1. 不同实验分组的荷瘤小鼠肿瘤生长曲线.

图1

13cRA:13-顺式维甲酸

2.RTV和TGI:详见表1。与阴性对照组比较,中、高剂量13cRA组及其联合IFN-α-2b组治疗结束后RTV降低,差异均有统计学意义(P值均<0.05);中、高剂量13cRA组及其联合IFN-α-2b组显示出有效的抗肿瘤活性,TGI分别为30%、37%与32%、33%。

表1. 不同实验分组的荷瘤小鼠抗肿瘤效果及Ki-67表达水平比较.

组别 鼠数 体重改变率(%) 治疗结束时RTV [M(范围)] TGI(%) 平均瘤重(g,x±s 抑瘤率(%) Ki-67表达(光密度值,x±s
阴性对照组 5 8.19 25.5(15.2~27.5)a 1.47±0.70a 0.071±0.037
50 mg/kg 13cRA组 7 2.68 17.2(9.0~25.5)a 67 0.83±0.59b 43.5c 0.076±0.024
100 mg/kg 13cRA组 9 −10.06 7.7(4.7~15.6)b 30c 0.60±0.30b 59.2c 0.078±0.014
200 mg/kg 13cRA组 11 −20.18 9.5(5.0~12.5)b 37c 0.76±0.42b 48.3c 0.074±0.024
IFN-α-2b组 11 12.23 16.3(10.4~19.6)a 64 1.47±0.72a 0 0.070±0.014
50 mg/kg 13cRA+IFN-α-2b组 8 0.81 19.7(10.8~28.6)a 77 0.85±0.43b 42.2c 0.073±0.021
100 mg/kg 13cRA+IFN-α-2b组 10 −9.92 8.1(3.3~12.7)b 32c 0.55±0.29b 62.6c 0.073±0.016
200 mg/kg 13cRA+IFN-α-2b组 10 −10.64 8.5(3.5~13.9)b 33c 0.72±0.43b 51.0c 0.069±0.003
阳性对照组 6 8.96 5.8(2.7~6.5)b 23c 0.45±0.04 b 69.4c 0.079±0.012

注:RTV:相对肿瘤体积;TGI:相对肿瘤增殖率;Ki-67表达:此处为平均光密度值;13cRA:13-顺式维甲酸;a:与阳性对照组比较,P<0.05;b:与阴性对照组比较,P<0.05;c:抗肿瘤评价有效;−:无

3.抑瘤率:各组平均瘤重分布见表1。结果显示:①阴性对照组与IFN-α-2b组瘤组织均重于其他组(P<0.05);②阳性对照组与单用13cRA组或其联合IFN-α-2b组瘤重差异无统计学意义(P>0.05);③各单用13cRA组间或联合IFN-α-2b组间差异均无统计学意义(P值均>0.05)。不同剂量13cRA组或联合IFN-α-2b组都有抑瘤效果(抑瘤率≥40%),中剂量13cRA组(59.2%)和其联合IFN-α-2b组(62.6%)抑瘤率与阳性对照组(69.4%)相近(P> 0.05),与其他剂量13cRA组差异均无统计学意义(P值均>0.05)。

4.各组荷瘤小鼠生存情况比较:如图2所示,仅中剂量13cRA组及中、高剂量13cRA联合IFN-α-2b组组与阳性对照组荷瘤小鼠生存时间差异无统计学意义(P>0.100)。

图2. 不同实验分组的荷瘤小鼠生存曲线比较.

图2

13cRA:13-顺式维甲酸

5.Ki-67表达水平比较:结果显示各组荷瘤小鼠的Ki-67表达水平差异无统计学意义(χ2=9.009,P=0.342)(表1)。

6.各组细胞凋亡数比较:结果显示:①阴性对照组凋亡细胞数与IFN-α-2b组差异无统计学意义(P=0.098);②各剂量13cRA组及其联合IFN-α-2b组凋亡细胞数明显多于阴性对照组(P<0.05),而与阳性对照组差异无统计学意义(P=0.170);③各剂量13cRA组与其联合IFN-α-2b组间差异无统计学意义(P>0.05);④不同剂量13cRA组与相应的联合IFN-α-2b组比较,差异无统计学意义(P>0.05)(图3)。

图3. 缺口末端标记法检测各组荷瘤小鼠细胞凋亡情况(每组观察3张切片,每张切片在镜下随机选取6个视野).

图3

1:阴性对照组;2~4:分别为50、100、200 mg/kg 13-顺式维甲酸(13cRA)组;5:IFN-α-2b 组(每只100 000 IU);6~8:分别为50、100、200 mg/kg 13cRA联合IFN-α-2b 组(每只100 000 IU);9:阳性对照组(硼替佐米+利妥昔单抗+环磷酰胺)

7.CyclinD1、caspase-9及Rb表达水平:Western blot法检测结果显示:①各实验组高磷酸化Rb表达均较阴性对照组低,尤以联合用药组和阳性对照组明显。②不同剂量13cRA组CyclinD1、caspase-9(procaspase-9 and cleaved capase-9)的表达水平与阴性对照组比较未见差异;IFN-α-2b组较阴性对照组CyclinD1、cleaved capase-9表达降低,procaspase-9表达增高。③不同剂量13cRA联合IFN-α-2b组CyclinD1和procaspase-9表达水平明显低于阴性对照组,而cleaved capase-9表达则升高,且与阳性对照组CyclinD1、caspase-9的表达水平接近(图4)。

图4. Western blot法检测各组荷瘤小鼠细胞Cyclin D1、caspase-9及Rb的表达水平.

图4

1:阴性对照组;2~4:分别为50、100、200 mg/kg 13-顺式维甲酸(13cRA)组;5:IFN-α-2b组(每只100 000 IU);6~8:分别为50、100、200 mg/kg 13cRA联合IFN-α-2b组(每只100 000 IU);9:阳性对照组(硼替佐米+利妥昔单抗+环磷酰胺);pRb:磷酸化的视网膜神经胶质瘤蛋白

讨论

MCL的进展常伴随着细胞周期依赖性激酶(cyclin-dependent kinase,CDK)抑制剂p27Kip1水平的降低[11]。因此,可以推测,细胞周期抑制剂或许可以改变MCL的自然病程。

IFN-α是一种细胞因子,通过抑制Cyclin、CDK的表达,增加CDK抑制剂p27的水平及抑制Rb的磷酸化,使细胞停滞在G1期或者延长S期时间而抑制细胞增殖[12][14]

Abedi等[15]采用IFN-α治疗淋巴细胞增生症SCID小鼠,给予的剂量为105U/d。在本研究中我们采用的IFN-α-2b用量即参照了上述研究。结果显示单用IFN-α-2b未见抗肿瘤效应,也未发现凋亡细胞数与阴性对照组差异有统计学意义。推测其原因可能为:①MCL荷瘤小鼠模型可能对IFN-α产生抵抗。Grandér等[16]曾报道恶性肿瘤对IFN的抵抗是IFN治疗肿瘤失败的主要原因。②本研究采用的SCID小鼠系SCID,直接影响了IFN通过免疫途径发挥抗瘤作用。

我们的实验结果提示单用中剂量13cRA组及其联合IFN-α-2b组疗效较好;不同剂量的13cRA单用或联合IFN-α-2b组都有抑瘤效果(抑瘤率≥ 40%),但中剂量13cRA及其联合IFN-α-2b组抑瘤率较高,分别为59.2%和62.6%。虽然低、中、高剂量13cRA组的抗肿瘤作用并没有呈现出典型的量效关系,但从中剂量组在抑瘤率及动物体重下降方面均优于高剂量组这一趋势说明,在13cRA的血药浓度到达一定阈值时,其作用可能不再增加,且很可能随剂量的加大而增加不良反应的发生率。Conley等[17]采用13cRA联合他莫昔芬治疗人乳腺癌荷瘤鼠模型,结果显示单用13cRA的4个剂量梯度(25、50、100、200 mg/kg)之间肿瘤生长体积差异无统计学意义,与本研究结果类似。从生存时间上看,仅中剂量13cRA组及中、高剂量13cRA联合IFN-α-2b组与阳性对照组生存时间接近,提示联合用药可减轻单用高剂量13cRA的不良反应、延长荷瘤小鼠的生存时间。

为了解13cRA及联合IFN-α-2b的抗肿瘤机制,我们从细胞增殖和凋亡途径进行分析。在本研究中我们发现各组Ki-67表达差异并无统计学意义,提示给予13cRA或联合IFN-α-2b并未对该肿瘤的高增殖活性产生影响。不同剂量13cRA联合IFN-α-2b组都表现为Cycling D1下调,而单用13cRA组对Cyclin D1表达未见明显影响,提示两者联合很可能通过下调Cyclin D1的表达抑制细胞增殖。

Dal等[8]报道9cRA联合IFN-α干预MCL的体外实验结果,提示通过下调Cyclin D1、上调p27的表达抑制MCL细胞生长,与本实验结果类似。Guidoboni等[9]研究发现RA(ATRA、9cRA、13cRA)单用不影响MCL细胞(Granta 519)Cyclin D1的表达水平,而是通过上调CDK抑制剂p27和p21的表达抑制细胞增殖;在RA干预后的MCL细胞中,p27通过与Cyclin D1/CDK4复合物结合,导致CDK活性降低及Rb低磷酸化,使细胞停滞在细胞周期G0、G1期,实现对细胞周期的调控。

Rb控制着细胞周期的G1/S的调控点R,低磷酸化的Rb阻遏细胞生长,高磷酸化时细胞则由G1期进入S期。当Cyclin D1与CDK4/6形成复合物,促使Rb磷酸化,使细胞进入细胞周期S期[3]。在Cyclin D1过度表达时,CDK4和CDK6活性增强可导致Rb高磷酸化,细胞周期R点失控使细胞生长不受控制引起肿瘤。在本实验中,我们发现各组高磷酸化Rb均较阴性对照组低,联合用药组与阳性对照组减少更为明显,单用13cRA及IFN-α-2b次之,提示13cRA与IFN-α-2b均降低了高磷酸化Rb的表达,与文献[9],[13]报道一致;当两者联合,则增强对高磷酸化Rb的抑制作用。

在本研究中,我们发现13cRA单用和其联合IFN-α-2b组可通过促凋亡作用发挥抗肿瘤效应。进一步检测caspase-9发现,不同剂量的13cRA联合IFN-α-2b组与阴性对照组比较,都表现为procaspase-9降低及cleaved caspase-9升高,与阳性对照组表达相当,而单用13cRA组与阴性对照组间则差异无统计学意义,提示13cRA联合IFN-α-2b可通过激活caspase-9诱导凋亡。本研究TUNEL检查发现低、中、高剂量13cRA组及其联合IFN-α-2b组诱导细胞凋亡明显,而Western blot法检查只发现联合组cleaved caspase-9明显增加,推测13cRA与IFN-α-2b联合应用时IFN-α-2b增加了13cRA诱导细胞凋亡作用。Benthin等[18]发现当单用RA或IFN-α治疗慢性粒系白血病无效时,将两者联合则显示出抗肿瘤效应。Dal等[8]已证明9cRA联合IFN-α通过激活caspase-8和caspase-9诱导MCL发生凋亡,与我们的实验结果相同。

综上,在MCL动物模型中IFN-α-2b单用并未显示出疗效;13cRA单用及其与IFN-α-2b联合应用均显示出抑制肿瘤生长效应,其作用机制可能为通过下调Cyclin D1的表达而抑制细胞增殖或者激活caspase-9诱导凋亡。其具体作用机制有待进行更多探讨。

References

  • 1.Fernàndez V, Hartmann E, Ott G, et al. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways[J] J Clin Oncol. 2005;23(26):6364–6369. doi: 10.1200/JCO.2005.05.019. [DOI] [PubMed] [Google Scholar]
  • 2.Divakar SK, Ramana RMV, Cosenza SC, et al. Dual inhibition of CDK4/Rb and PI3K/AKT/mTOR pathways by ON123300 induces synthetic lethality in mantle cell lymphomas[J] Leukemia. 2016;30(1):86–93. doi: 10.1038/leu.2015.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics[J] Nat Rev Cancer. 2007;7(10):750–762. doi: 10.1038/nrc2230. [DOI] [PubMed] [Google Scholar]
  • 4.Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner[J] J Cell Biol. 1999;144(2):281–292. doi: 10.1083/jcb.144.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Levin VA, Giglio P, Puduvalli VK, et al. Combination chemotherapy with 13-cis-retinoic acid and celecoxib in the treatment of glioblastoma multiforme[J] J Neurooncol. 2006;78(1):85–90. doi: 10.1007/s11060-005-9062-4. [DOI] [PubMed] [Google Scholar]
  • 6.Liu X, Chan SY, Ho PC. Comparison of the in vitro and in vivo effects of retinoids either alone or in combination with cisplatin and 5-fluorouracil on tumor development and metastasis of melanoma[J] Cancer Chemother Pharmacol. 2008;63(1):167–174. doi: 10.1007/s00280-008-0763-1. [DOI] [PubMed] [Google Scholar]
  • 7.Spiller SE, Ditzler SH, Pullar BJ, et al. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA)[J] J Neurooncol. 2008;87(2):133–141. doi: 10.1007/s11060-007-9505-1. [DOI] [PubMed] [Google Scholar]
  • 8.Dal Col J, Mastorci K, Faè DA, et al. Retinoic acid/alpha-interferon combination inhibits growth and promotes apoptosis in mantle cell lymphoma through Akt-dependent modulation of critical targets[J] Cancer Res. 2012;72(7):1825–1835. doi: 10.1158/0008-5472.CAN-11-2505. [DOI] [PubMed] [Google Scholar]
  • 9.Guidoboni M, Zancai P, Cariati R, et al. Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma[J] Cancer Res. 2005;65(2):587–595. [PubMed] [Google Scholar]
  • 10.Park R, Chang CC, Liang YC, et al. Systemic treatment with tetra-O-methyl nordihydroguaiaretic acid suppresses the growth of human xenograft tumors[J] Clin Cancer Res. 2005;11(12):4601–4609. doi: 10.1158/1078-0432.CCR-04-2188. [DOI] [PubMed] [Google Scholar]
  • 11.Chiarle R, Budel LM, Skolnik J, et al. Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma[J] Blood. 2000;95(2):619–626. [PubMed] [Google Scholar]
  • 12.Sangfelt O, Erickson S, Castro J, et al. Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins[J] Oncogene. 1999;18(18):2798–2810. doi: 10.1038/sj.onc.1202609. [DOI] [PubMed] [Google Scholar]
  • 13.Kumar R, Atlas I. Interferon alpha induces the expression of retinoblastoma gene product in human Burkitt lymphoma Daudi cells: role in growth regulation[J] Proc Natl Acad Sci U S A. 1992;89(14):6599–6603. doi: 10.1073/pnas.89.14.6599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Roos G, Leanderson T, Lundgren E. Interferon-induced cell cycle changes in human hematopoietic cell lines and fresh leukemic cells[J] Cancer Res. 1984;44(6):2358–2362. [PubMed] [Google Scholar]
  • 15.Abedi MR, Linde A, Christensson B, et al. Preventive effect of IgG from EBV-seropositive donors on the development of human lympho-proliferative disease in SCID mice[J] Int J Cancer. 1997;71(4):624–629. doi: 10.1002/(sici)1097-0215(19970516)71:4<624::aid-ijc19>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  • 16.Grandér D, Einhorn S. Interferon and malignant disease—how does it work and why doesn't it always?[J] Acta Oncol. 1998;37(4):331–338. doi: 10.1080/028418698430548. [DOI] [PubMed] [Google Scholar]
  • 17.Conley BA, Ramsland TS, Sentz DL, et al. Antitumor activity, distribution, and metabolism of 13-cis-retinoic acid as a single agent or in combination with tamoxifen in established human MCF-7 xenografts in mice[J] Cancer Chemother Pharmacol. 1999;43(3):183–197. doi: 10.1007/s002800050883. [DOI] [PubMed] [Google Scholar]
  • 18.Benthin M, Dallmann I, Atzpodien J. 13cis- and all-trans retinoic acid have antiproliferative effects on CML cells and render IFN alpha antiproliferative potency after combined treatment in vitro[J] Cancer Biother Radiopharm. 2001;16(4):323–331. doi: 10.1089/108497801753131408. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES