急性髓系白血病(AML)是起源于造血干细胞的恶性克隆增殖性疾病,以骨髓细胞异常增生及造血功能受损为主要表现[1]。目前国际上公认的标准诱导方案为蒽环类抗生素联合阿糖胞苷(Ara-C)的“3+7”方案,完全缓解(CR)率可达70%~80%[2]–[3]。蒽环类抗生素包括去甲氧柔红霉素(IDA)、柔红霉素(DNR)和米托蒽醌(MIT),国内外多篇文献报道IA方案疗效优于DA方案[4]–[5]。本研究中我们回顾性分析了我科收治的采用标准剂量IA方案诱导治疗的242例初诊AML(除外急性早幼粒细胞白血病)患者临床资料,评估其疗效、长期生存率、安全性及预后因素。现将资料进行分析总结如下。
病例与方法
1.病例:2004年12月至2017年6月就诊于江苏省人民医院、采用标准IA方案诱导治疗的242例初诊AML患者纳入研究。所有患者根据MICM(细胞形态学、免疫学、细胞遗传学、分子生物学)分型标准[6]确诊。排除标准包括①急性早幼粒细胞白血病;②ECOG评分≥3分,合并严重肝、肾、心等重要脏器功能异常,合并严重感染性疾病。
2.治疗方案:①诱导治疗:IDA 10~12 mg·m−2·d−1,第1~3天;Ara-C 100 mg·m−2·d−1,第1~7天,维持24 h静脉滴注。1个疗程达部分缓解(PR)或未缓解(NR)的患者给予IA或FLAG(氟达拉滨30 mg·m−2·d−1第1~5天,Ara-C 2 g·m−2·d−1第1~5天,重组人G-CSF 300 µg/d第0~5天)方案[7]为主的再诱导治疗。②缓解后治疗:根据中国成人AML指南[8],获得CR的患者按细胞遗传学风险分层治疗,包括大剂量Ara-C(2~3 g/m2每12 h 1次,第1~3天)或FLAG方案为主的化疗、化疗后行自体外周血干细胞移植(auto-PBSCT)或异基因外周血干细胞移植(allo-PBSCT)。
3.细胞遗传学及分子突变检测:AML-ETO融合基因通过荧光标记的FISH或PCR进行检测。核型根据《人类细胞遗传学国际命名体制(ISCN,1995)》描述[9];参照2015年NCCN指南[10]进行风险评估。细胞遗传学分组:inv(16)、t(16;16)、t(8;21)、t(15;17)为低危组;复杂核型(≥3种)、单体核型、−5、−7、5q−、7q−、11q23除外t(9;11)、inv(3)、t(3;3)、t(6;9)、t(9;22)为高危组;否则为中危组。综合预后评估:正常核型伴有NPM1突变且FLT3-ITD突变阴性或单纯双等位基因CEBPα突变归为“综合预后良好”;低危细胞遗传学异常伴有KIT突变归为“综合预后中等”;高危细胞遗传学异常、正常核型伴FLT3-ITD突变归为“综合预后不良”。如数据不足以判断预后,按缺失值处理。
4.评估标准:评估指标包括1个疗程后CR率、PR率,总有效率(ORR)、总生存(OS)时间、无病生存(DFS)时间,中性粒细胞绝对计数(ANC)<0.5×109/L、PLT<20×109/L持续时间,早期死亡率等。
疗效评价标准参照文献[6]。CR指临床无白血病细胞浸润所致的症状和体征,骨髓原始细胞比例≤0.05,外周血ANC ≥1.5×109/L,PLT ≥100×109/L,无髓外白血病。PR指骨髓原始细胞比例至少减少50%,达0.05~0.25,外周血细胞计数同CR标准。NR指骨髓、外周血及临床三项均未达到上述标准者。ORR指CR+PR。复发是指CR后骨髓原始细胞>0.05或髓外浸润。
早期死亡定义为诱导治疗后1个月内死亡。OS时间为从诊断到死亡、失访、随访结束的时间。DFS时间为CR至复发、死亡、失访、随访结束的时间。粒细胞缺乏持续时间定义为从诱导治疗结束至ANC ≥0.5×109/L的时间,PLT<20×109/L持续时间定义为从诱导治疗结束至PLT ≥20×109/L的时间。
5.随访:主要通过电话、门诊方式进行随访,随访截止时间为2017年8月31日。
6.统计学处理:采用SPSS 17.0软件进行统计学分析。组间CR率的比较采用独立样本的秩和检验或χ2检验。OS、DFS采用Kaplan-Meier生存分析法并进行Log-rank检验;通过Cox模型估算HR。P<0.05为差异有统计学意义。
结果
1.患者基本资料:所有患者中位年龄为38(12~69)岁,男女比例为1.07∶1。FAB分型:M0 6例,M1 28例,M2 130例,M4 31例,M5 36例,M6 9例,M7 1例,类型不详1例。初诊时中位WBC 16.3(0.27~299.7)×109/L,HGB 86(39~167)g/L,PLT 37(2~399)×109/L。
221例(91.32%)患者有细胞遗传学结果,其中低危37例(15.29%),中危163例(67.35%),高危21例(8.68%);12例(4.96%)未见分裂象,9例(3.72%)未作检查。175例(72.31%)患者行FLT3-ITD基因突变检测,178例(73.55%)患者行NPM1基因突变检测,168例(69.42%)患者行CEBPα基因突变检测,175例(72.31%)患者行C-KIT基因突变检测。综合预后评估预后良好组45例(18.59%),预后中等组83例(34.30%),预后不良组40例(16.53%)。
2.疗效:1个疗程IA方案诱导治疗后235例可评估疗效(7例早期死亡),其中CR 191例(81.28%),PR 19例(8.09%),ORR 89.37%。PR或NR患者接受再次诱导治疗后26例达CR,2个疗程后CR率达92.34%。
按细胞遗传学危险度分组,低危组32例(86.49%)获CR,2例(5.41%)获PR;中危组129例(81.64%)获CR,13例(8.23%)获PR,5例早期死亡;高危组15例(75.00%)获CR,1例(5.00%)获PR,1例早期死亡;三组间CR率按低、中、高危呈下降趋势,但差异无统计学意义(P=0.558)。
按综合预后危险度分组,综合预后良好组CR 38例(86.36%),PR 2例(4.55%),1例早期死亡;综合预后中等组CR 70例(86.42%),PR 5例(6.17%),2例早期死亡;综合预后不良组CR 28例(71.79%),PR 4例(10.26%),1例早期死亡。三组间CR率差异仍无统计学意义(P=0.108)。
接受IDA 12 mg·m−2·d−1的患者有154例(63.64%),其中1个疗程CR 123例(83.11%),PR 11例(7.43%),6例早期死亡;接受IDA 10 mg·m−2·d−1的患者有88例(36.36%),其中1个疗程CR 68例(78.16%),PR 8例(9.20%),1例早期死亡。两剂量组间CR率差异无统计学意义(χ2=0.881,P=0.348)。低危组中接受IDA 12 mg·m−2·d−1的患者CR率高于接受IDA 10 mg·m−2·d−1的患者(95.45%对73.33%,χ2=3.773,P=0.052),中危组中两个剂量组CR率分别为82.11%、80.95%(χ2=0.034,P=0.855);高危组中分别为81.25%、50.00%(χ2=1.506,P=0.220)。
缓解后治疗包括以大剂量Ara-C为主的化疗118例,化疗后auto-PBSCT 43例,allo-PBSCT 46例;2例失访,8例在复发前未行相关治疗。
诊断时伴t(8;21)的患者35例(30例低危,3例中危,2例高危),其中1个疗程后30例(85.71%)获CR(包括25例低危),2例(5.71%)PR,3例(8.57%)NR。CR患者中21例检测AML-ETO融合基因,9例数据缺失。1个疗程后AML-ETO融合基因水平低于检测下限者8例(6例采用PCR法,2例采用FISH法),下降2~3个对数级者3例,下降1~<2个对数级者5例,下降<1个对数级者5例。21例CR患者中19例达到细胞遗传学缓解,余2例未检测。
3.生存分析:随访至2017年8月31日,124例(51.24%)存活,15例(6.20%)失访。CR患者中有81例(33.47%)复发,其中综合预后良好组11例,中等组24例,不良组15例。中位OS时间为36.93(0.4~154.9)个月,5年OS率为49.18%;中位DFS时间未达到(0.1~153.9个月)。
预后单因素分析发现年龄、细胞遗传学危险度分组、综合预后危险度分组、化疗后第3天淋巴细胞计数(ALC)、第7天ALC、1个疗程诱导治疗疗效是影响OS、DFS的因素(表1);而高WBC(WBC ≥100×109/L)对预后无明显影响。
表1. 242例采用标准剂量IA方案诱导治疗的急性髓系白血病患者总生存(OS)与无病生存(DFS)的影响因素分析.
特征 | OS |
DFS |
||||||||
单因素分析 |
多因素分析 |
单因素分析 |
多因素分析 |
|||||||
5年OS率(%) | P值 | HR | 95%CI | P值 | 5年DFS率(%) | P值 | HR | 95%CI | P值 | |
年龄 | <0.001 | 1.680 | 0.960~2.941 | 0.069 | 0.012 | 1.328 | 0.706~2.496 | 0.379 | ||
<50岁 | 54.94 | 60.46 | ||||||||
≥50岁 | 32.86 | 37.84 | ||||||||
性别 | 0.373 | 0.671 | ||||||||
男 | 45.54 | 52.27 | ||||||||
女 | 53.09 | 58.81 | ||||||||
FAB分类 | 0.066 | 0.713 | ||||||||
M0 | 16.67 | 33.33 | ||||||||
M1 | 31.26 | 42.20 | ||||||||
M2 | 57.38 | 61.65 | ||||||||
M4 | 42.23 | 44.12 | ||||||||
M5 | 48.22 | 54.97 | ||||||||
M6 | 30.48 | 50.00 | ||||||||
细胞遗传学危险度 | 0.001 | 1.111 | 0.581~2.124 | 0.750 | 0.003 | 1.046 | 0.525~2.083 | 0.898 | ||
低危 | 69.44 | 73.80 | ||||||||
中危 | 49.04 | 54.58 | ||||||||
高危 | 22.00 | 27.87 | ||||||||
综合预后分组 | <0.001 | 1.722 | 1.026~2.891 | 0.040 | <0.001 | 2.036 | 1.156~3.586 | 0.014 | ||
良好 | 67.04 | 74.61 | ||||||||
中等 | 59.82 | 67.60 | ||||||||
不良 | 25.67 | 32.37 | ||||||||
WBC | 0.841 | 0.426 | ||||||||
<100×109/L | 49.43 | 55.17 | ||||||||
≥100×109/L | 50.60 | 62.96 | ||||||||
化疗后第3天ALC | 0.002 | 0.899 | 0.480~1.684 | 0.740 | 0.016 | 0.871 | 0.436~1.737 | 0.695 | ||
<0.20×109/L | 30.96 | 38.73 | ||||||||
≥0.20×109/L | 55.73 | 62.22 | ||||||||
化疗后第7天ALC | 0.001 | 0.613 | 0.333~1.131 | 0.117 | 0.002 | 0.603 | 0.313~1.162 | 0.131 | ||
<0.35×109/L | 37.25 | 41.72 | ||||||||
≥0.35×109/L | 63.99 | 71.78 | ||||||||
1个疗程化疗疗效 | <0.001 | 2.710 | 1.935~3.797 | <0.001 | <0.001 | 1.953 | 1.192~3.198 | 0.008 | ||
CR | 59.56 | 60.11 | ||||||||
PR | 0 | 0 | ||||||||
NR | 13.71 | 28.28 |
注:ALC:淋巴细胞计数;CR:完全缓解;PR:部分缓解;NR:未缓解
接受IDA 12 mg·m−2·d−1和10 mg·m−2·d−1AML患者的中位OS时间分别为37.43和30.67个月,5年OS率分别为49.40%和48.29%(P=0.931)。细胞遗传学低、中、高危组接受IDA 12 mg·m−2·d−1患者的中位OS时间分别为未达到、36.93和13.00个月;而接受IDA 10 mg·m−2·d−1患者的中位OS时间分别为未达到、30.67和4.94个月。低危组接受IDA 12 mg·m−2·d−1和10 mg·m−2·d−1患者5年OS率分别为76.19%、56.75%(P=0.270),中危组分别为48.99%、48.94%(P=0.762),高危组分别为20.71%、25.00%(P=0.482)。
我们将单因素分析中P<0.05的因素纳入Cox模型,结果显示综合预后良好(HR=1.722,95% CI 1.026~2.891,P=0.040;HR=2.036,95% CI 1.156~3.586,P=0.014)、1个疗程后达CR(HR=2.71,95% CI 1.935~3.797,P<0.001;HR=1.953,95% CI 1.192~3.198,P=0.008)均是改善OS、DFS的独立预后因素。
缓解后接受allo-PBSCT组5年OS率为63.06%,化疗±auto-PBSCT组为54.10%,两组间差异无统计学意义(P=0.446)。细胞遗传学中危患者34例接受allo-PBSCT,23例(67.65%)存活;108例接受化疗±auto-PBSCT,68例(62.96%)存活;两组5年OS率分别为60.57%和53.23%(P=0.773)。细胞遗传学高危患者4例接受allo-PBSCT,3例(75.00%)存活;11例接受化疗±auto-PBSCT,3例(27.27%)存活;两组5年OS率分别为75.00%和11.43%(P=0.072)。综合预后中等患者21例接受allo-PBSCT,16例(76.19%)存活;51例接受化疗±auto-PBSCT,37例(72.55%)存活;两组5年OS率分别为70.56%和66.08%(P=0.668)。综合预后不良患者13例接受allo-PBSCT,6例(46.15%)存活;19例接受化疗±auto-PBSCT,8例(42.11%)存活;两组5年OS率分别为43.08%和23.17%(P=0.673)。
4.不良反应:242例患者中,诱导治疗1个月内有7例(2.89%)患者发生早期死亡。诱导治疗后99.58%的患者出现Ⅳ度血液学不良反应,ANC<0.5×109/L及PLT<20×109/L的中位持续时间分别为15和17 d。主要非血液学不良反应为骨髓抑制后的发热、感染,共206例(85.12%)。
讨论
近年来虽然高强度化疗方案不断更新,但Ara-C联合蒽环类抗生素仍为经典的AML诱导方案。IDA是新一代蒽环类抗生素,其亲脂性强,半衰期长[11],因而抗肿瘤效果更强。我们中心曾报道38例AML患者接受IA方案(IDA 12 mg·m−2·d−1×3 d)诱导治疗,1个疗程CR率为84.2%,中位OS时间>22个月[3],与国外Ohtake等[2]、Beksaç等[12]的研究结果一致。Mandelli等[13]报道采用10 mg·m−2·d−1IDA联合Ara-C治疗初治AML,总CR率为66.9%,5年OS率为34%。因此国外推荐IDA剂量为10~12 mg·m−2·d−1×3 d,本研究中我们回顾性分析242例采用此剂量的IA方案治疗初诊AML患者,评估其诱导疗效、不良反应,并进行预后因素分析。
本研究结果显示1个疗程的IA方案诱导治疗后81.28% AML患者获得CR,经过再次诱导治疗,CR率达92.34%,证实IA方案诱导CR率高,与众多文献报道相符[2]–[4],[12]–[13]。美国癌症与白血病组研究1 213例接受同种方案诱导治疗的AML患者,发现细胞遗传学低危与中危组的CR率明显高于高危组(分别为88%、67%、32%)[14];本研究结果同样显示低危、中危组的CR率相对高于高危组(分别为86.49%、81.64%、75.00%)。结合分子生物学特征,预后良好、中等组CR率高于预后不良组,但预后良好与中等组CR率差异极小,可能是由于早期尚未开展分子突变检测。IA方案诱导治疗t(8;21)AML的CR率达85.71%,1个疗程后8例患者AML-ETO分子水平低于检测下限,3例患者下降2~3个对数级,提示IA方案不仅诱导缓解率高,还可较好地清除AML-ETO分子克隆。
本组患者中位OS时间长达36.93个月,5年OS率达49.18%,表明IA方案可明显改善AML患者预后。单因素分析中,我们发现年龄是AML预后因素之一,与OS时间呈负相关;与瑞典一项超过3 000例AML回顾性研究的结果一致[15]。细胞遗传学被公认为是AML的主要预后指标,本研究结果显示细胞遗传学低、中和高危患者5年OS率分别为69.44%、49.04%、22.00%,三组间差异有统计学意义;与Slovak等[16]的研究结果相符。结合分子生物学特征,我们发现预后良好、中等组的5年OS率也明显高于预后不良组。无论患者为预后良好、中等组或不良组,接受标准IA方案诱导治疗CR率均较高,但预后不良组OS时间短,CR后接受allo-PBSCT患者OS相对优于仅接受大剂量化疗者,提示只有allo-PBSCT才有可能改善预后不良患者的OS。有文献报道血ALC早期恢复可作为AML诱导的预测指标[17],诱导治疗后第15、21、28天ALC均≥0.5×109/L的患者OS时间明显延长。我们分析了诱导治疗后第3、7天的ALC,通过X-tile软件,确定第3天ALC以0.20×109/L和第7天ALC以0.35×109/L为界值有预后意义。诱导治疗后第3天ALC ≥0.2×109/L、<0.2×109/L患者的5年OS率分别为55.73%和30.96%;第7天ALC ≥0.35×109/L、<0.35×109/L患者的5年OS率分别为63.99%和37.25%;表明第7天的ALC可能较第3天更有预后意义。本研究Cox多因素分析证明1个疗程诱导治疗达CR具有独立预后价值,与Chen等[18]的研究结论相符。
我们进一步分析了不同剂量的IDA对AML疗效的影响,发现IDA 12 mg·m−2·d−1组的CR率及OS均优于IDA 10 mg·m−2·d−1组(83.11%对78.16%;37.43个月对30.67个月),但两组间差异无统计学意义。按细胞遗传学分组,低危组接受IDA12 mg·m−2·d−1者的CR率及OS均优于接受10 mg·m−2·d−1者,提示低危患者可获益于高剂量IDA治疗,与多项探讨不同剂量DNR治疗AML的研究结果类似[19]–[20]。Luskin等[19]的研究纳入657例AML患者,随机接受不同剂量DNR的DA方案(DNR 45 mg·m−2·d−1或90 mg·m−2·d−1),结果显示低危患者中,两组的CR率差异无统计学意义(84%对80% P=0.78),但高剂量DNR组的4年OS率明显高于低剂量组(64%对46%,P=0.02)。Devillier等[20]比较DNR 60 mg·m−2·d−1和90 mg·m−2·d−1治疗中、高危AML患者的疗效,2年OS率差异均无统计学意义(57%对62%,P=0.612;45%对49%,P=0.421)。我们的研究结果同样显示163例中危患者中接受不同剂量IDA组的CR率及5年OS率相近;高危患者接受高剂量IDA组的CR率优于低剂量组,5年OS率接近。高剂量IDA对OS的影响需进一步扩大病例数验证,尤其对低危患者。
不良反应方面,本研究中7例患者发生早期死亡,占2.89%,与文献报道的类似[5],[21]。Ⅳ度血液学不良反应发生率为99.58%;最常见的非血液学不良反应为感染,发生率约85.12%,以肺部、肠道为主。
总之,本研究结果显示对于初诊AML(除外急性早幼粒细胞白血病)患者,IA“3+7”方案诱导可显著提高CR率,改善长期生存。影响AML患者预后的独立因素为综合预后分组及1个疗程诱导治疗反应。
References
- 1.Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J] Nat Med. 1997;3(7):730–737. doi: 10.1038/nm0797-730. [DOI] [PubMed] [Google Scholar]
- 2.Ohtake S, Miyawaki S, Fujita H, et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSG AML201 Study[J] Blood. 2011;117(8):2358–2365. doi: 10.1182/blood-2010-03-273243. [DOI] [PubMed] [Google Scholar]
- 3.钱 思轩, 李 建勇, 吴 汉新, et al. 标准剂量去甲氧柔红霉素联合阿糖胞苷持续静脉点滴治疗急性髓系白血病[J] 中国实验血液学杂志. 2009;17(1):209–213. [Google Scholar]
- 4.李 鑫雨, 王 欣, 李 颖, et al. 去甲氧柔红霉素与柔红霉素联合阿糖胞苷方案治疗74例初治急性髓系白血病患者疗效分析[J] 中华血液学杂志. 2013;34(1):67–68. doi: 10.3760/cma.j.issn.0253-2727.2013.01.017. [DOI] [Google Scholar]
- 5.Berman E, Heller G, Santorsa J, et al. Results of a randomized trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukemia[J] Blood. 1991;77(8):1666–1674. [PubMed] [Google Scholar]
- 6.张 之南, 沈 悌. 血液病诊断及疗效标准[M] 3版. 北京: 科学出版社; 2007. pp. 106–116. [Google Scholar]
- 7.钱 思轩, 李 建勇, 洪 鸣, et al. IA方案继以FLAG方案巩同治疗原发性急性髓系白血病疗效观察[J] 中华血液学杂志. 2009;30(1):22–25. [Google Scholar]
- 8.中华医学会血液学分会白血病淋巴瘤学组. 成人急性髓系白血病(非急性早幼粒细胞白血病)中国诊疗指南(2017年版)[J] 中华血液学杂志. 2017;38(3):177–182. doi: 10.3760/cma.j.issn.0253-2727.2017.03.001. [DOI] [Google Scholar]
- 9.Shafer LG, Slovak ML, et al. International Standing Committee on Human Cytogenetic Nomenclature. ISCN 2009: aninternational system for human cytogenetic nomenclature(2009)[M] Basel: Unionville; 2009. [Google Scholar]
- 10.National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: acute myeloid leukemia, V.1.2015. 2014. Dec 3, http://guide.medlive.cn/guideline/7412.
- 11.Bozoglan H, Ergene U, Yoleri L. Use of cytarabine and idarubicin in a newly diagnosed AML patient with a severe wound[J] TransfusApher Sci. 2011;45(1):17–20. doi: 10.1016/j.transci.2011.06.016. [DOI] [PubMed] [Google Scholar]
- 12.Beksaç M, Arslan O, Koç HR, et al. Randomisedunicenter trial for comparison of three regimens in de novo adult acute nonlymphoblasticleukaemia[J] Med Oncol. 1998;15(3):183–190. doi: 10.1007/BF02821937. [DOI] [PubMed] [Google Scholar]
- 13.Mandelli F, Vignetti M, Suciu S, et al. Daunorubicin versus mitoxantrone versus idarubicin as induction and consolidation chemotherapy for adults with acute myeloid leukemia: the EORTC and GIMEMA Groups Study AML-10[J] J Clin Oncol. 2009;27(32):5397–5403. doi: 10.1200/JCO.2008.20.6490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Byrd JC, Kitada S, Flinn IW, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction[J] Blood. 2002;99(3):1038–1043. doi: 10.1182/blood.v99.3.1038. [DOI] [PubMed] [Google Scholar]
- 15.Juliusson G, Lazarevic V, Hörstedt AS, et al. Acute myeloid leukemia in the real world: why population-based registries are needed[J] Blood. 2012;119(17):3890–3899. doi: 10.1182/blood-2011-12-379008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study[J] Blood. 2000;96(13):4075–4083. [PubMed] [Google Scholar]
- 17.Behl D, Porrata LF, Markovic SN, et al. Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia[J] Leukemia. 2006;20(1):29–34. doi: 10.1038/sj.leu.2404032. [DOI] [PubMed] [Google Scholar]
- 18.Chen YC, Lin SF, Yao M, et al. Induction therapy of newly diagnosed acute nonlymphocytic leukemia with idarubicin and cytosine arabinoside—the Taiwan experience[J] SeminHematol. 1996;33(4 Suppl 3):30–34. [PubMed] [Google Scholar]
- 19.Luskin MR, Lee JW, Fernandez HF, et al. Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups[J] Blood. 2016;127(12):1551–1558. doi: 10.1182/blood-2015-07-657403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Devillier R, Bertoli S, Prébet T, et al. Comparison of 60 or 90 mg/m(2) of daunorubicin in induction therapy for acute myeloid leukemia with intermediate or unfavorable cytogenetics[J] Am J Hematol. 2015;90(2):E29–30. doi: 10.1002/ajh.23884. [DOI] [PubMed] [Google Scholar]
- 21.Fernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute myeloid leukemia[J] N Engl J Med. 2009;361(13):1249–1259. doi: 10.1056/NEJMoa0904544. [DOI] [PMC free article] [PubMed] [Google Scholar]