慢性淋巴细胞白血病(CLL)是老年常见的惰性B淋巴细胞肿瘤。随着步入老年化社会,我国初诊CLL患者逐年增多,成为主要的老年血液肿瘤之一。以利妥昔单抗为基础的免疫化学治疗(如FCR方案)是治疗CLL的首选方案,治疗总反应率(ORR)达70%。但对于合并TP53突变、17p−等细胞遗传学异常的CLL患者,FCR方案治疗的ORR仅30%[1]。有些患者对治疗反应差,病情容易进展而转化成弥漫大B细胞淋巴瘤(DLBCL)等侵袭性淋巴瘤(即Richter转化)。发生Richter转化的患者预后差,传统FCR方案治疗后的中位生存时间<12个月,即使采用R-CHOP方案(DLBCL的一线治疗方案)治疗,中位生存时间也只有21个月,明显低于原发DLBCL[2]。FDA已经批准新药ibrutinib、idelalisib和venetoclax应用于临床,给CLL患者带来更多治疗选择。复发难治的CLL患者采用新药治疗,虽然ORR可达65%~85%,但是部分患者仍然出现疾病进展发生Richter转化,或因无法耐受新药的严重出血、心房纤颤等不良反应而终止治疗[3]–[5]。因此,Richter转化可能还存在其他潜在分子机制,CLL新的预后标志和靶向治疗方法成为研究热点。
一、CLL细胞Richter转化的分子机制
CLL虽然是惰性淋巴肿瘤,但约10.7%的患者发生Richter转化,转化为DLBCL占多数(90%),少部分(10%)转化为霍奇金淋巴瘤[6]–[8]。我们随访了210例初治CLL,发现有10%的患者出现Richter转化,均为DLBCL[9]。研究表明,IGHV4-39、IGHD6-13、IGHJ5基因偏向性使用频率增加是CLL发生Richter转化的高危因素,特别是独特型BCR以及IGHV4-39基因偏向性使用频率增加是转化的独立预后因素[10]。其他因素还有CD38、ZAP-70、CD49d的高表达和端粒的缩短等,以及del(11q22.3)、del(17p13)、del(15q21.3)、del(9p21)、add(2p25.3)等细胞遗传学改变[7],[11]–[13]。此外,BCL-2、CD38、LRP4的基因多态性也与转化有关[12],[14]。虽然转化的DLBCL和原发DLBCL在形态学、免疫表型方面相似,但前者具有特别之处。首先,CLL细胞Richter转化有不同模式。多数是线性模式转化,即转化克隆直接来自父辈的CLL克隆;少数是分支模式转化,转化的克隆和原来的CLL克隆来自共同的前体细胞[12]。其次,CLL容易出现Richter转化相关的染色体拷贝数改变事件。最常见的是17p的缺失,直接导致TP53失活,后者促使其他基因改变,包括体细胞突变和染色体重排。比如,发生转化的患者易检测到19p21和CDKN2A/B的双等位缺失,而且CDKN2A的缺失和TP53失活、MYC活化常常并存,这种现象和分支转化模式密切相关[12]。其他和转化相关的细胞遗传学改变有12三体、del(7q31.31-36.6)、del(8p)、del(14q23.2-q32.33),以及11、13、18、8q24/MYC的扩增[15]–[16]。我们曾报道了1例伴12三体染色体核型异常的CLL,患者在治疗期间很快出现疾病进展,转化为DLBCL[17]。再次,CLL的许多重现性基因突变也和Richter转化密切相关,包括TP53(肿瘤抑制基因)、NOTCH1和MYC(细胞增殖相关)、CDKN2A/B(细胞周期调控)等,转化时90%的重现性突变是发生在上述基因[12]。但有研究表明,原发DLBCL却很少见NOTCH1和TP53的基因突变,提示NOTCH1基因的突变是Richter转化的较特异的分子事件[18]–[20]。
二、NOTCH1突变参与CLL细胞Richter转化
NOTCH1基因位于9q34,编码的NOTCH1蛋白表达于细胞膜表面,是一种依赖配体激活的转录因子,对淋巴细胞分化与凋亡发挥重要影响[21]–[22]。研究表明,NOTCH1功能失调与T-ALL、CLL等淋巴肿瘤细胞的增殖、分化、凋亡过程密切相关[23]–[24]。随着二代测序技术的普及,NOTCH1突变与CLL Richter转化的关系越来越受到重视,成为近几年血液肿瘤领域的研究热点。首先,Richter转化时NOTCH1突变较频繁。国内Xia等[25]和国外Shedden等[26]采用二代测序结合拷贝数分析,发现CLL初诊时NOTCH1突变的发生频率为10%~20%。如果出现17p−、12三体等细胞遗传学改变时,NOTCH1突变频率会明显提高,特别是发生Richter转化或化疗耐药时,这种突变发生频率可达30%[27]。我们采用巢式PCR结合测序分析Richter转化患者的基因,发现NOTCH1的PEST区域容易发生突变,该突变表现为2 bp的框移缺失(ΔCT7544-7545, P2515fs)[17]。Lopez等[27]也证实,这种突变位于NOTCH1基因外显子34,可以引起NOTCH1分子的PEST区的C端截短。其次,Richter转化和NOTCH1突变之间存在密切联系。有学者将NOTCH1突变作为CLL预后不良的重要指标之一[20],[28]–[29],因为诸多研究证明NOTCH1突变和细胞转化之间存在着因果关系。如NOTCH1突变可以促进活性成分ICN的释放和稳定,更强地抑制CLL细胞的凋亡[28]。我们的研究表明Richter转化是突变产生的ICN蛋白直接活化NF-κB通路的结果[30],Baldoni等[31]的研究也支持这一观点。此外,突变型ICN也可以通过抑制蛋白酶系统依赖的降解,或与共抑制分子竞争性结合CSL等多种方式持续激活下游HES-1、DTX等癌基因而影响细胞功能[32]–[33]。然而,以上研究都局限于分析NOTCH1突变对下游信号通路或癌基因的影响。该分子突变是否还通过其他方式影响细胞功能呢?
三、NOTCH1突变通过调节趋化因子影响细胞转化
最近有学者发现NOTCH1突变可以通过调节DNMT3A影响抑癌基因DUSP22启动子的甲基化,从而激活趋化因子CCL19,促进CLL细胞归巢[34]。这项研究在阐明NOTCH1调控CLL细胞分泌细胞因子的功能方面做了有意义的探索,虽然仍有许多问题还没有答案。我们在近期研究中发现,NOTCH1突变患者的趋化因子CCL17的基因和蛋白表达明显高于未突变患者;通过构建NOTCH1突变质粒并进行转录组测序,我们发现突变型ICN可以上调许多基因,特别是与细胞趋化功能相关的基因,包括CCL17、CCL22,和临床标本检测结果相互印证;另外,我们还发现与野生型ICN相比,突变型ICN募集抑制性转录辅因子HDAC1/MTA2的能力明显减弱(待发表)。总之,野生型ICN可以在部分靶基因(如CCL17)上募集转录抑制复合物HDAC1/MTA2,使该靶基因低表达;但突变型ICN因缺失了PEST结构域,不能再募集HDAC1/MTA2,从而该靶基因得以恢复高表达。CCL17表达上调后,增强对Th细胞的趋化功能,后者持续刺激CLL细胞归巢、增殖、抗凋亡,导致细胞转化。
综上所述,CLL细胞发生Richter转化的原因和机制很复杂,深刻理解其中的机制有助于寻找CLL新的预后标志和靶向治疗方法。
Funding Statement
基金项目:福建省自然科学基金项目(2016J01458);福建省血液医学中心建设项目[闽政办(2017)4号];国家和福建省临床重点专科建设项目
References
- 1.Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia[J] Leukemia. 2012;26(7):1458–1461. doi: 10.1038/leu.2012.25. [DOI] [PubMed] [Google Scholar]
- 2.Langerbeins P, Busch R, Anheier N, et al. Poor efficacy and tolerability of R-CHOP in relapsed/refractory chronic lymphocytic leukemia and Richter transformation[J] Am J Hematol. 2014;89(12):E239–243. doi: 10.1002/ajh.23841. [DOI] [PubMed] [Google Scholar]
- 3.Mato AR, Hill BT, Lamanna N, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients[J] Ann Oncol. 2017;28(5):1050–1056. doi: 10.1093/annonc/mdx031. [DOI] [PubMed] [Google Scholar]
- 4.Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia[J] N Engl J Med. 2014;370(11):997–1007. doi: 10.1056/NEJMoa1315226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Tsang M, Shanafelt TD, Call TG, et al. The efficacy of ibrutinib in the treatment of Richter syndrome[J] Blood. 2015;125(10):1676–1678. doi: 10.1182/blood-2014-12-610782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Fan L, Wang L, Zhang R, et al. Richter transformation in 16 of 149 Chinese patients with chronic lymphocytic leukemia[J] Leuk Lymphoma. 2012;53(9):1749–1756. doi: 10.3109/10428194.2012.664845. [DOI] [PubMed] [Google Scholar]
- 7.Parikh SA, Rabe KG, Call TG, et al. Diffuse large B-cell lymphoma (Richter syndrome) in patients with chronic lymphocytic leukaemia (CLL): a cohort study of newly diagnosed patients[J] Br J Haematol. 2013;162(6):774–782. doi: 10.1111/bjh.12458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tadmor T, Shvidel L, Goldschmidt N, et al. Hodgkin's variant of Richter transformation in chronic lymphocytic leukemia; a retrospective study from the Israeli CLL study group[J] Anticancer Res. 2014;34(2):785–790. [PubMed] [Google Scholar]
- 9.Xu Z, Zhang J, Wu S, et al. Younger patients with chronic lymphocytic leukemia benefit from rituximab treatment: a single center study in China[J] Oncol Lett. 2013;5(4):1266–1272. doi: 10.3892/ol.2013.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Rossi D, Spina V, Cerri M, et al. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome[J] Clin Cancer Res. 2009;15(13):4415–4422. doi: 10.1158/1078-0432.CCR-08-3266. [DOI] [PubMed] [Google Scholar]
- 11.Chigrinova E, Rinaldi A, Kwee I, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome[J] Blood. 2013;122(15):2673–2682. doi: 10.1182/blood-2013-03-489518. [DOI] [PubMed] [Google Scholar]
- 12.Fabbri G, Khiabanian H, Holmes AB, et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome[J] J Exp Med. 2013;210(11):2273–2288. doi: 10.1084/jem.20131448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Rossi D, Lobetti BC, Genuardi E, et al. Telomere length is an independent predictor of survival, treatment requirement and Richter's syndrome transformation in chronic lymphocytic leukemia[J] Leukemia. 2009;23(6):1062–1072. doi: 10.1038/leu.2008.399. [DOI] [PubMed] [Google Scholar]
- 14.Rasi S, Spina V, Bruscaggin A, et al. A variant of the LRP4 gene affects the risk of chronic lymphocytic leukaemia transformation to Richter syndrome[J] Br J Haematol. 2011;152(3):284–294. doi: 10.1111/j.1365-2141.2010.08482.x. [DOI] [PubMed] [Google Scholar]
- 15.Strati P, Abruzzo LV, Wierda WG, et al. Second cancers and Richter transformation are the leading causes of death in patients with trisomy 12 chronic lymphocytic leukemia[J] Clin Lymphoma Myeloma Leuk. 2015;15(7):420–427. doi: 10.1016/j.clml.2015.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Li Y, Hu S, Wang SA, et al. The clinical significance of 8q24/MYC rearrangement in chronic lymphocytic leukemia[J] Mod Pathol. 2016;29(5):444–451. doi: 10.1038/modpathol.2016.35. [DOI] [PubMed] [Google Scholar]
- 17.许 贞书, 张 金燕, 战 榕, et al. 1例伴12三体染色体核型异常的慢性淋巴细胞白血病转化为Richter综合症[J] 中国实验血液学杂志. 2012;20(2):287–290. [PubMed] [Google Scholar]
- 18.Fabbri M, Bottoni A, Shimizu M, et al. Association of a micro RNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia[J] JAMA. 2011;305(1):59–67. doi: 10.1001/jama.2010.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia[J] Nature. 2011;475(7354):101–105. doi: 10.1038/nature10113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Guieze R, Robbe P, Clifford R, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL[J] Blood. 2015;126(18):2110–2117. doi: 10.1182/blood-2015-05-647578. [DOI] [PubMed] [Google Scholar]
- 21.Wang H, Zang C, Liu XS, et al. The role of Notch receptors in transcriptional regulation[J] J Cell Physiol. 2015;230(5):982–988. doi: 10.1002/jcp.24872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Wu LM, Wang J, Conidi A, et al. Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination[J] Nat Neurosci. 2016;19(8):1060–1072. doi: 10.1038/nn.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Rosati E, Sabatini R, Rampino G, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells[J] Blood. 2009;113(4):856–865. doi: 10.1182/blood-2008-02-139725. [DOI] [PubMed] [Google Scholar]
- 24.Wang Z, Hu Y, Xiao D, et al. Stabilization of Notch1 by the Hsp90 chaperone is crucial for T-cell leukemogenesis[J] Clin Cancer Res. 2017;23(14):3834–3846. doi: 10.1158/1078-0432.CCR-16-2880. [DOI] [PubMed] [Google Scholar]
- 25.Xia Y, Fan L, Wang L, et al. Frequencies of SF3B1, NOTCH1, MYD88, BIRC3 and IGHV mutations and TP53 disruptions in Chinese with chronic lymphocytic leukemia: disparities with Europeans[J] Oncotarget. 2015;6(7):5426–5434. doi: 10.18632/oncotarget.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Shedden K, Li Y, Ouillette P, et al. Characteristics of chronic lymphocytic leukemia with somatically acquired mutations in NOTCH1 exon 34[J] Leukemia. 2012;26(5):1108–1110. doi: 10.1038/leu.2011.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.López C, Delgado J, Costa D, et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations[J] Genes Chromosomes Cancer. 2012;51(9):881–889. doi: 10.1002/gcc.21972. [DOI] [PubMed] [Google Scholar]
- 28.Villamor N, Conde L, Martínez-Trillos A, et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome[J] Leukemia. 2013;27(5):1100–1106. doi: 10.1038/leu.2012.357. [DOI] [PubMed] [Google Scholar]
- 29.Del GI, Rossi D, Chiaretti S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of + 12 CLL[J] Haematologica. 2012;97(3):437–441. doi: 10.3324/haematol.2011.060129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Xu ZS, Zhang JS, Zhang JY, et al. Constitutive activation of NF-κB signaling by NOTCH1 mutations in chronic lymphocytic leukemia[J] Oncol Rep. 2015;33(4):1609–1614. doi: 10.3892/or.2015.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Baldoni S, Sportoletti P, Del PB, et al. NOTCH and NF-κB interplay in chronic lymphocytic leukemia is independent of genetic lesion[J] Int J Hematol. 2013;98(2):153–157. doi: 10.1007/s12185-013-1368-y. [DOI] [PubMed] [Google Scholar]
- 32.Yatim A, Benne C, Sobhian B, et al. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function[J] Mol Cell. 2012;48(3):445–458. doi: 10.1016/j.molcel.2012.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Pozzo F, Bittolo T, Vendramini E, et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components[J] Leukemia. 2017;31(11):2407–2415. doi: 10.1038/leu.2017.90. [DOI] [PubMed] [Google Scholar]
- 34.Arruga F, Gizdic B, Bologna C, et al. Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22[J] Leukemia. 2017;31(9):1882–1893. doi: 10.1038/leu.2016.383. [DOI] [PubMed] [Google Scholar]
