Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2015 Dec;36(12):1011–1015. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2015.12.007

外周血造血干细胞采集对166名健康供者外周血细胞计数的近期影响

Short-term effects of hemogram in healthy donors after peripheral blood stem cell collection

Yanlong Zheng 1, Meng Zhou 1, Wanzhuo Xie 1,, De Zhou 1, Li Li 1, Jingjing Zhu 1, Lixia Zhu 1, Xiudi Yang 1, Yi Luo 1, He Huang 1, Xiujin Ye 1
Editor: 徐 茂强1
PMCID: PMC7342316  PMID: 26759103

Abstract

Objective

To observe the short-term effects of hemogram in donors after peripheral blood stem cell (PBSC) collection and donors' tolerance.

Methods

A total of 166 related allogeneic donors were selected from The First Affiliated Hospital of Medical School of Zhejiang University between January 2013 and December 2014, including 86 male and 80 female. All donors accepted granulocyte-colony-stimulating factor (G-CSF) 5–10 µg·kg−1·d−1 until collection finished and were measured by blood cells count before and after PBSC collection.

Results

After PBSC collection, the hemoglobin level decreased from 145 (94–181) g/L to 138 (93–167) g/L, and the platelet counts decreased in all donors from 231 (105–490) ×109/L to 95 (39–210) ×109/L. The amount of hemoglobin contamination in collection products was weak correlated with the decreased hemoglobin in peripheral blood (r=0.297, P=0.017), and the platelet contamination was high correlated with that decreased in peripheral blood (r=0.719, P<0.001). The decline of hemoglobin level after twice PBSC collection was of no significant difference between four groups in different ages (P≥0.05). The decline of platelet counts was out of a significant difference (P>0.05). In addition, the decline of hemoglobin level after once and twice PBSC collection was of a significant difference between four groups in different body mass index (BMI) (P=0.003 and P<0.001), especially in thinner group with obvious decrease. But the decline of platelet counts was out of a significant difference (P>0.05).

Conclusion

The hemoglobin level decreased mildly in healthy allogeneic hematopoietic stem cell donors after PBSC collection and it is better to adjust parameters every time to ensure their safety for thinner donors. However, it will increase the risk of platelet decline, which is unrelated with ages and BMI and can be tolerated.

Keywords: Hematopoietic stem cell mobilization, Granulocyte colony-stimulating factor, Tissue donors


造血干细胞移植(HSCT)是白血病、淋巴瘤、多发性骨髓瘤、骨髓增生异常综合征、免疫缺陷病、先天性疾病等多种疾病的重要治疗手段。造血前体细胞(hematopoietic progenitor cells, HPC)通过骨髓或外周血造血干细胞(peripheral blood stem cell, PBSC)的捐献而获得。在过去的20年中,PBSC采集已经逐渐取代了骨髓捐献,目前有99%的自体移植和71%的异基因移植依赖PBSC[1],欧洲骨髓移植年会的调查报告称该趋势开始于20世纪90年代早期并逐渐占主导地位[2]。对供者而言,采集PBSC不需要麻醉和多部位穿刺,较安全且易被接受[3]。PBSC动员和采集可导致供者发生低热、头痛、肌痛、骨痛、腰痛、口周麻木等不良反应[3],但对异基因供者血常规指标的影响鲜有报道。本研究探讨PBSC连续采集对异基因供者外周血细胞计数的影响以及供者对连续采集的耐受性。

对象和方法

1.研究对象:2013年1月1日至2014年12月31日在浙江大学医学院附属第一医院接受PBSC动员采集的166名亲缘异基因供者纳入本研究。男86名,女80名;中位年龄40.5(15.0~60.0)岁,≤29岁43名(25.9%),30~39岁32名(19.28%),40~49岁68名(40.96%),50~60岁23名(13.86%);中位体重62(40~110)kg,中位体重指数(BMI)为23.1(16.2~33.1)kg/m2,偏瘦(BMI<18.5 kg/m2)8名(4.82%),正常(BMI 18.5~23.9 kg/m2)92名(55.42%),超重(BMI 24.0~27.9 kg/m2)48名(28.92%),肥胖(BMI ≥28.0 kg/m2)18名(10.84%);中位身高为165(145~185)cm。所有供者对本研究均知情同意,研究方案获本院医学伦理委员会批准。

2.PBSC的动员和采集:全部166名供者均于G-CSF 5~10 µg·kg−1·d−1动员后第3天(20名)或第4天(146名)开始采集PBSC,每天1次,连续2 d。采用COBE Spectra 6.1血细胞分离机(美国Terumo BCT公司产品)的单个核细胞(MNC)采集程序进行单采,处理血量为供者血容量的1.5~2.5倍(7 000~11 000 ml),流速为30~75 ml/min,以枸橼酸(ACD)液为抗凝剂。计算每次采集物中MNC和CD34细胞的采集总量。

3.观察方法:留取供者PBSC动员前(基线)、采集前、第1次采集后和第2次采集后的外周血标本,用Coulter血细胞计数仪进行血细胞分析,测定外周血及采集物中的HGB、WBC和PLT。

4.统计学处理:应用SPSS 19.0统计软件对数据进行分析。数据采用中位数表示,组间比较采用两独立样本t检验、单因素方差分析以及直线相关分析,P<0.05为差异具有统计学意义。

结果

1.连续采集对供者HGB、PLT及WBC的影响:全部166名供者动员前(基线)、采集前、第1次采集及第2次采集后HGB、PLT、WBC结果见表1。与动员前比较,采集前PLT下降(t=3.240,P<0.001),WBC升高(t=38.440,P<0.001),HGB变化不明显(t=1.496,P=0.136)。与采集前相比,第1、2次采集后HGB均降低(t=2.265,P=0.024;t=2.435,P=0.015),PLT均下降(t=12.732,P<0.001;t=23.578,P< 0.001),WBC差异无统计学意义(t=0.739,P=0.461;t=1.613,P=0.108)。全部166名供者在PBSC采集后均无明显临床出血倾向。

表1. 166名外周血造血干细胞供者动员前及采集前后的血细胞计数.

时间 HGB(g/L) PLT(×109/L) WBC(×109/L)
动员前 145(94~181) 231(105~490) 6.3(2.4~12.1)
采集前 143(98~177) 202(77~484)a 45.9(20.8~94.5)a
第1次采集后 139(95~168)b 131(61~298)b 47.3(13.7~89.4)
第2次采集后 138(93~167)b 95(39~210)b 47.3(16.6~86.0)

注:与动员前比较,aP<0.001;与采集前比较,bP<0.05

2.采集物中血细胞含量与外周血细胞降幅的关系:将2次采集物中血细胞计数之和与供者外周血中减少的血细胞总含量比较。采集物中位HGB为22(9~51)g/L,与供者外周血HGB降幅呈低度正相关性(r=0.297,P=0.017)(图1);采集物中位PLT为3.86(2.15~9.38)×1012/L,与供者外周血PLT降幅高度相关(r=0.719,P<0.001)(图2)。

图1. 采集物HGB与供者外周血HGB降幅的相关性.

图1

图2. 采集物血小板计数与供者外周血血小板计数降幅的相关性.

图2

3.年龄对采集PBSC后供者HGB、PLT降幅的影响:≤29、30~39、40~49、50~60岁4个年龄组供者在采集PBSC 2次后HGB降幅差异有统计学意义(P=0.029),但两两比较差异均无统计学意义(P≥0.05);各年龄组PLT降幅差异无统计学意义(P>0.05)。详见表2

表2. 不同年龄组供者采集PBSC后HGB、PLT降幅比较.

组别 样本量 HGB降幅(g/L)
PLT降幅(×109/L)
第1次采集 第2次采集 第1次采集 第2次采集
≤ 29岁 43 5(−6~11) 6(−5~16) 72(23~144) 115(47~196)
30~39岁 32 3(−6~15) 5(−4~12) 58(27~153) 101(44~227)
40~49岁 68 3(−7~11) 5(−10~16) 71(6~195) 108(7~274)
50~60岁 23 3(−2~14) 6(0~21) 73(13~187) 108(47~263)

F 1.496 3.088 0.520 0.575
P 0.218 0.029 0.669 0.632

注:各年龄组间两两比较,P值均≥0.05

4.体重指数(BMI)对采集PBSC后供者HGB、PLT降幅的影响:不同BMI供者2次采集PBSC后HGB降幅差异均有统计学意义(P=0.003,P<0.001),偏瘦组供者HGB下降最明显。PLT降幅差异无统计学意义(P>0.05)。详见表3

表3. 不同体重指数(BMI)供者采集外周血造血干细胞后HGB、PLT降幅比较.

组别 样本量 HGB降幅(g/L)
PLT降幅(×109/L)
第1次采集 第2次采集 第1次采集 第2次采集
偏瘦 8 6(3~10) 9(5~21) 80(58~113) 139(7~173)
正常 92 4(−6~15) 7(−5~16) 70(15~195) 106(30~274)
超重 48 2(−7~8)a 5(−5~11)b 69(6~187) 105(48~263)
肥胖 18 3(−7~9) 3(−10~13)c 78(37~143) 119(61~195)

F 4.764 6.427 0.516 0.560
P 0.003 <0.001 0.672 0.642

注:偏瘦:BMI<18.5 kg/m2;正常:BMI 18.5~23.9 kg/m2;超重:BMI 24.0~27.9 kg/m2;肥胖:BMI≥28.0 kg/m2。与正常组比较,aP=0.023;与偏瘦组比较,bP=0.013,cP=0.005,其余各组间两两比较P值均>0.05

讨论

正常人外周血PBSC的含量很低,CD34+细胞仅占外周血单个核细胞0.01%~0.1%,有效的动员可使外周血中PBSC数量增加数十倍,并且自我更新和复制能力增强[4]。通常认为PBSC供者相比于骨髓供者有较少的压力[5][6],其实不然,PBSC捐献有其他的压力因素,G-CSF对供者短期及长期的影响尚不明确[7][10]。近期的研究结果表明G-CSF对健康供者的止血功能有一定影响[11][13]。与骨髓移植比较,PBSC移植可采集到更多的造血干细胞,植入速度更快,感染并发症较少,移植物抗宿主病(GVHD)的发生率更高,意味着移植物抗肿瘤效应更强[14][15]。研究证实异基因PBSC供者严重不良反应的发生率远低于骨髓供者[16]。最初PBSC采集仅用于血缘相关供者,随着安全数据的积累,也逐渐用于无关供者。异基因PBSC采集的两个关键因素是供者的安全性和提供能保证良好移植效果的采集物。影响PBSC供者安全性的因素包括G-CSF剂量和PBSC采集次数[14]

Cooling等[17]发现,虽然WBC在动员第5天仍在继续增加,但CD34+细胞开始减少,Flommersfeld等[3]也发现动员第4天采集PBSC较动员第5天更有效。因而本研究中全部166名供者均在G-CSF动员3~4 d后开始采集PBSC。

Chen等[18]研究发现,在PBSC采集后供者外周血HGB即刻出现下降,但仍在正常范围之内;PLT在G-CSF动员5 d后出现轻度降低,而在PBSC采集后立即出现明显降低。本研究中,PBSC采集1次及2次后供者外周血HGB有轻度下降,但均高于或接近正常下限值,与Chen等[18]的研究结果相同。另外,本研究中2次PBSC采集后PLT均有下降(P< 0.05),与Chen等[18]的研究结果相符合。因而对初始即有血小板减少的供者应密切观察,必要时予输注血小板以避免出现出血[19]。美国骨髓捐赠者登记中心(NMDP)规定,供者在PBSC采集前,若第1天PLT<120×109/L或第2天<80×109/L需考虑该供者PBSC采集的安全性,以避免在采集后出现血小板计数<50×109/L[20]

常乃柏等[19]用化疗加G-CSF进行自体PBSC动员,采集物中HGB与患者外周血HGB降幅明显相关,采集物中PLT与外周血PLT降幅也明显相关,提示采集物中红细胞和血小板污染是造成患者PBSC采集后贫血和血小板减少的原因。本研究中,我们发现采集物中HGB与供者外周血HGB降幅呈弱相关性,这可能与COBE机器在分离造血干细胞的同时对红细胞造成机械性的破坏与移除有关。而采集物中PLT与外周血PLT降幅高度相关,提示采集物中血小板污染是引起供者血小板减少的主要原因。

不同年龄组的供者在连续2次PBSC采集后HGB降幅有组间差异,但两两比较差异无统计学意义,而血小板计数组间比较差异无统计学意义,提示PBSC采集对60岁及以下的健康供者均具有相同的安全性。不同BMI值组的供者在PBSC采集1次及2次后HGB均出现组间差异,偏瘦组血红蛋白浓度下降程度远远高于超重组及肥胖组,这可能与偏瘦组例数较少以及采集参数设置引起偏差有关。粟亚丽等[21]在67名儿童[中位体重28.5(11~70)kg]中成功采集PBSC,可见体重偏轻并不是采集PBSC的禁忌。余喆等[22]发现供者体重与采集物中MNC及CD34+细胞数有关:供者体重越大,收获的MNC及CD34+细胞数越多。对于偏瘦供者,应在参数设置上进行调整,减少供者外周血HGB降幅,提高PBSC采集的安全性。

Gordon等[23]的研究显示,血小板计数平均在PBSC采集结束1个月后恢复至正常范围,但恢复至基线水平至少需3个月,这可能与血小板正常值范围较宽有关。Kindwall-Keller[24]报道在PBSC采集20 d后PLT开始回升。

本研究结果表明,在对健康异基因供者进行PBSC采集的过程中可能出现外周血HGB轻度下降,但对60岁及以下的健康供者具有相同的安全性,对偏瘦的供者应调整采集参数以保证安全。采集PBSC会增加供者发生血小板减少的风险,减少的程度与年龄及BMI值无关。本研究结果提示,用COBE Spectra 6.1血细胞分离机对供者进行连续2次的PBSC采集总体是安全的。

Funding Statement

基金项目:国家自然科学基金(81372256);浙江省科技厅公益性技术应用研究计划(2013C33125);浙江省教育厅项目(Y201327033)

References

  • 1.Baldomero H, Gratwohl M, Gratwohl A, et al. The EBMT activity survey 2009: trends over the past 5 years[J] Bone Marrow Transplant. 2011;46(4):485–501. doi: 10.1038/bmt.2011.11. [DOI] [PubMed] [Google Scholar]
  • 2.Gratwohl A, Baldomero H. Trends of hematopoietic stem cell transplantation in the third millennium[J] Curr Opin Hematol. 2009;16(6):420–426. doi: 10.1097/MOH.0b013e328330990f. [DOI] [PubMed] [Google Scholar]
  • 3.Flommersfeld S, Sohlbach K, Jaques G, et al. Collection of peripheral blood progenitor cells on Day 4 is feasible and effective while reducing granulocyte-colony-stimulating factor exposure to healthy donors[J] Transfusion. 2015;55(6):1269–1274. doi: 10.1111/trf.13002. [DOI] [PubMed] [Google Scholar]
  • 4.陈 晓霞, 王 智明, 罗 贤生, et al. 健康供者外周血造血干细胞动员后采集的最佳时机[J] 中国组织工程研究与临床康复. 2010;14(6):1068–1071. [Google Scholar]
  • 5.Murata M, Harada M, Kato S, et al. Peripheral blood stem cell mobilization and apheresis: analysis of adverse events in 94 normal donors[J] Bone Marrow Transplant. 1999;24(10):1065–1071. doi: 10.1038/sj.bmt.1702038. [DOI] [PubMed] [Google Scholar]
  • 6.Cleaver SA, Goldman JM. Use of G-CSF to mobilise PBSC in normal healthy donors—an international survey[J] Bone Marrow Transplant. 1998;21(Suppl 3):S29–S31. [PubMed] [Google Scholar]
  • 7.Anderlini P, Przepiorka D, Seong D, et al. Clinical toxicity and laboratory effects of granulocyte-colony-stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures[J] Transfusion. 1996;36(7):590–595. doi: 10.1046/j.1537-2995.1996.36796323057.x. [DOI] [PubMed] [Google Scholar]
  • 8.Hasenclever D, Sextro M. Safety of AlloPBPCT donors: biometrical considerations on monitoring long term risks[J] Bone Marrow Transplant. 1996;Suppl 2:S28–S30. [PubMed] [Google Scholar]
  • 9.de la Rubia J, de Arriba F, Arbona C, et al. Follow-up of healthy donors receiving granulocyte colony-stimulating factor for peripheral blood progenitor cell mobilization and collection. Results of the Spanish Donor Registry[J] Haematologica. 2008;93(5):735–740. doi: 10.3324/haematol.12285. [DOI] [PubMed] [Google Scholar]
  • 10.Cavallaro AM, Lilleby K, Majolino I, et al. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor[J] Bone Marrow Transplant. 2000;25(1):85–89. doi: 10.1038/sj.bmt.1702072. [DOI] [PubMed] [Google Scholar]
  • 11.Canales MA, Arrieta R, Gomez-Rioja R, et al. Induction of a hypercoagulability state and endothelial cell activation by granulocyte colony-stimulating factor in peripheral blood stem cell donors[J] J Hematother Stem Cell Res. 2002;11(4):675–681. doi: 10.1089/15258160260194820. [DOI] [PubMed] [Google Scholar]
  • 12.Topcuoglu P, Arat M, Dalva K, et al. Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors[J] Bone Marrow Transplant. 2004;33(2):171–176. doi: 10.1038/sj.bmt.1704341. [DOI] [PubMed] [Google Scholar]
  • 13.Karadogan C, Karadogan I, Bilgin AU, et al. rHuG-CSF increases the platelet-neutrophil complex formation and neutrophil adhesion molecule expression in volunteer granulocyte and stem cell apheresis donors[J] Ther Apher Dial. 2006;10(2):180–186. doi: 10.1111/j.1744-9987.2006.00361.x. [DOI] [PubMed] [Google Scholar]
  • 14.Gratwohl A, Baldomero H, Schmid O, et al. Change in stem cell source for hematopoietic stem cell transplantation (HSCT) in Europe: a report of the EBMT activity survey 2003[J] Bone Marrow Transplant. 2005;36(7):575–590. doi: 10.1038/sj.bmt.1705104. [DOI] [PubMed] [Google Scholar]
  • 15.Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers[J] N Engl J Med. 2001;344(3):175–181. doi: 10.1056/NEJM200101183440303. [DOI] [PubMed] [Google Scholar]
  • 16.Pulsipher MA, Chitphakdithai P, Logan BR, et al. Lower risk for serious adverse events and no increased risk for cancer after PBSC vs BM donation[J] Blood. 2014;123(23):3655–3663. doi: 10.1182/blood-2013-12-542464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Cooling L, Hoffmann S, Herrst M, et al. A prospective randomized trial of two popular mononuclear cell collection sets for autologous peripheral blood stem cell collection in multiple myeloma[J] Transfusion. 2010;50(1):100–119. doi: 10.1111/j.1537-2995.2009.02350.x. [DOI] [PubMed] [Google Scholar]
  • 18.Chen SH, Wang TF, Yang K. Hematopoietic stem cell donation[J] Int J Hematol. 2013;97(4):446–455. doi: 10.1007/s12185-013-1298-8. [DOI] [PubMed] [Google Scholar]
  • 19.常 乃柏, 裴 蕾, 单 战海, et al. 外周血干细胞采集对外周血细胞成分的影响[J] 临床血液学杂志. 2002;15(4):153–155. [Google Scholar]
  • 20.Pulsipher MA, Chitphakdithai P, Logan BR, et al. Acute toxicities of unrelated bone marrow versus peripheral blood stem cell donation: results of a prospective trial from the National Marrow Donor Program[J] Blood. 2013;121(1):197–206. doi: 10.1182/blood-2012-03-417667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.粟 亚丽, 马 晶晶, 雷 素华, et al. 儿童外周血干细胞采集的安全性和有效性评估[J] 中国输血杂志. 2014;27(10):989–992. [Google Scholar]
  • 22.余 喆, 葛 林阜, 黄 宁, et al. 健康供者造血干细胞动员和采集效果的分析[J] 中华临床医师杂志. 2010;4(9):1662–1664. [Google Scholar]
  • 23.Gordon SV, Nivison-Smith I, Szer J, et al. Volunteer unrelated donor experience after administration of filgrastim and apheresis for the collection of haemopoietic stem cells: the Australian perspective[J] Intern Med J. 2013;43(11):1183–1190. doi: 10.1111/imj.12282. [DOI] [PubMed] [Google Scholar]
  • 24.Kindwall-Keller T. Peripheral stem cell collection: from leukocyte growth factor to removal of catheter[J] J Clin Apher. 2014;29(4):199–205. doi: 10.1002/jca.21329. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES