Abstract
目的
研究Ph染色体阴性的慢性骨髓增殖性肿瘤(MPN)患者JAK2、CALR及MPL基因突变情况,比较不同类型基因突变及突变阴性患者部分临床参数的差异。
方法
采用基因测序法分别检测1 648例Ph阴性MPN患者JAK2V617F、JAK2基因12号外显子、CALR基因9号外显子及MPL基因10号外显子突变情况。
结果
①JAK2V617F突变总检出率为82.8%(1 364/1 648),其中真性红细胞增多症(PV)为92.7%(471/508),原发性血小板增多症(ET)为78.1%(819/1 049),原发性骨髓纤维化(PMF)为81.3%(74/91);JAK2基因12号外显子突变总检出率为0.5%(9/1 648),均为PV患者[1.7%(9/508)];CALR基因突变总检出率为8.7%(143/1 648),其中ET为12.6%(132/1 049),PMF为12.1%(11/91);MPL基因突变总检出率为0.6%(10/1 648),其中ET为0.9%(9/1 049),PMF为1.1%(1/91)。未发现两种及以上基因突变共存病例。②JAK2V617F突变组中位年龄[61(15~95)岁]高于JAK2 12号外显子突变组[49(33~62)岁]及突变阴性组[42(3~78)岁](P值均<0.001),与CALR突变组[57(17~89)岁]、MPL突变组[59(22~71)岁]比较差异无统计学意义(P>0.05)。JAK2V617F突变阳性组白细胞计数、血红蛋白浓度均高于CALR突变阳性及阴性组(P<0.05),而与MPL突变阳性组比较仅表现为高白细胞计数(P=0.013);CALR突变组血小板计数高于JAK2V617F突变组[966(400~2 069)×109/L对800(198~3 730)×109/L,P<0.001]。③共1 160例患者进行了有效染色体核型分析,CALR基因突变阳性、阴性患者异常核型检出率差异无统计学意义[9.8%(8/82)对7.4%(80/1 078),P=0.441];JAK2V617F突变阳性、阴性患者异常核型检出率差异无统计学意义[7.7%(75/971)对6.9%(13/189),P=0.688]。CALR突变阳性组与JAK2V617F突变阳性组的异常核型检出率差异无统计学意义[9.8%(8/82)对7.7%(75/971),P=0.512]。7例JAK2基因12号外显子突变阳性及6例MPL基因突变阳性患者均未发现异常核型。
结论
基因检测使MPN的诊断及预后判断有了更可靠的依据,不同MPN亚型基因突变的发生频率、分布情况不同,不同基因突变导致独特的临床表型。
Keywords: 真性红细胞增多症; 血小板增多, 原发性; 原发性骨髓纤维化; DNA突变分析
Abstract
Objective
To explore the prevalences of JAK2, CALR and MPL gene mutations and the mutation types in patients with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs), and to compare their clinical characteristics of different mutation types with each other and mutation negative group.
Methods
The mutations of JAK2 V617F, JAK2 gene at exon 12, CALR gene at exon 9 and MPL gene at exon 10 in 1 648 Ph negative MPNs patients were detected by direct sequencing.
Results
①The JAK2V617F mutation was found in 471 (92.7%) of 508 PV patients, 819 (78.1%) of 1 049 ET patients and 74 (81.3%) of 91 PMF patients respectively, with the total mutation rate as 82.8% (1 364/1 648). The JAK2 exon12 mutation was found in 9 (1.7%) of 508 PV patients, none was found in ET or PMF patients, with the total mutation rate as 0.5% (9/1 648). The CALR mutation was found in 132 (12.6%) of 1 049 ET patients and 11 (12.1%) of 91 PMF patients respectively, with the total mutation rate as 8.7% (143/1 648); the MPL mutation was found in 9 (0.9%) of 1 049 ET patients and 1 (1.1%) of 91 PMF patients respectively, with the total mutation rate as 0.6% (10/1 648). The co-occurrence of any two types of driver gene mutations was not detected by direct sequencing. ②The median onset age of patients with JAK2V617F[61 (15–95) y] was significant higher than of with JAK2 exon12 mutation[49 (33–62) y] or without mutations[42 (3–78) y] (P<0.001), but not for patients with CALR[57 (17–89) y] or MPL mutation[59 (22–71) y] (P>0.05). Patients with JAK2V617F had higher white blood cell count and hemoglobin level (P<0.05) when compared with patients with CALR mutation or without mutations, or only significantly higher white blood cell count when compared with patients with MPL mutation (P=0.013). The platelet count of patients with CALR mutation was significantly higher than of with JAK2V617F[966 (400–2 069) ×109/L vs 800 (198–3 730) ×109/L, P<0.001]. ③Karyotype analysis was conducted in 1 160 patients with MPNs, the rates of karyotype abnormality of patients with and without CALR mutation were 9.8% (8/82) and 7.4% (80/1 078) (P=0.441) respectively; The rates of karyotype abnormality of patients with and without JAK2V617F mutation were 7.7% (75/971) and 6.9% (13/189) (P=0.688) respectively. The incidence of karyotype abnormality of patients with CALR mutation was higher than of with JAK2V617F[9.8% (8/82) vs 7.7% (75/971)] without statistically significant difference (P=0.512). The karyotype analysis of 7 cases of JAK2 exon12 mutation and 6 ones with MPL gene mutation revealed normal karyotype.
Conclusion
Driver gene mutations detection could ensure the diagnosis and prognosis judgment of MPN more reliable, different subtypes of MPNs had different profiles of driver gene mutations, the latter lead to unique clinical phenotype.
Keywords: Polycythemia vera; Thrombocythemia, essential; Primary myelofibrosis; DNA mutational analysis
慢性骨髓增殖性肿瘤(MPN)是一组发生在造血干细胞水平的异质性疾病,是由一系或多系分化相对成熟的骨髓细胞不断克隆性增殖所导致的一组肿瘤性疾病的统称。2008年WHO分类将MPN分为两大类8种疾病:①经典型MPN:包括慢性髓性白血病(CML)、真性红细胞增多症(PV)、原发性血小板增多症(ET)及原发性骨髓纤维化(PMF);②非经典型MPN:包括慢性中性粒细胞白血病(CNL)、非特指型慢性嗜酸性粒细胞白血病(CEL-NOS)、肥大细胞增多症(SM)及骨髓增殖性肿瘤-未分类型(MPN-U)[1]。其中PV、ET及PMF统称为Ph阴性MPN。随着JAK2V617F、JAK2基因12号外显子、MPL及CALR等基因突变的发现,MPN的发病机制陆续被揭示,MPN的诊断及靶向治疗也进入了全新时期[2]–[4]。本研究对1 648例Ph阴性MPN患者的临床资料进行了回顾性分析,比较JAK2V617F、JAK2基因12号外显子、MPL及CALR基因突变以及未检出以上基因突变患者临床和实验室特征的差异。
病例与方法
1.病例:2009年7月1日至2015年12月30日于苏州大学附属第一医院门诊及住院治疗的Ph阴性MPN患者1 648例,其中PV患者508例、ET患者1 049例、PMF患者91例。
2.JAK2、CALR及MPL基因突变检测:用PCR方法扩增JAK2基因12和14号外显子、CALR基因9号外显子和MPL基因10号外显子。PCR产物经消减、测序反应、纯化后,使用ABI-3730型基因分析仪进行分析。
3.染色体核型分析:采用常规R显带技术进行核型分析。
4.统计学处理:结果均采用SPSS 19.0软件分析。计数资料采用卡方检验或Fisher确切概率法,计量资料采用Mann-Whitney U检验。P<0.05为差异有统计学意义。
结果
1.一般资料:全部1 648例Ph阴性MPN患者中,男799例,女848例,中位发病年龄60(3~95)岁,40~79岁者占80.1%(1 320/1 648)。PV 508例(30.8%),ET 1 049例(63.7%),PMF 91例(5.5%)。
2.基因突变分析:全部1 648例MPN患者中,JAK2V617F突变阳性患者共1 364例(82.8%),PV、ET、PMF患者JAK2V617F突变的检出率分别为92.7%(471/508)、78.1%(819/1 049)、81.3%(74/91)。JAK2基因12号外显子突变阳性9例(1.7%),均为PV患者,主要突变类型为K539L(3例)、N542_E543del(2例)。CALR基因第9号外显子突变阳性143例(8.7%),仅见于ET及PMF患者,检出率分别为12.6%(132/1 049)和12.1%(11/91),主要突变类型:c.1092_1143del(Ⅰ型)(69例),c.1154_1155insTTGTC(Ⅱ型)(38例)。MPL基因第10号外显子突变阳性患者10例(0.6%),仅见于ET及PMF患者,检出率分别为0.8%(9/1 049)及1.1%(1/91),突变类型包括W515K(4例)、W515L(2例)、W515R(2例)、W515A(1例)、S505N(1例)。未检测到两种及以上基因突变共存。ET患者中CALR基因9号外显子突变检出率为12.6%(132/1 049),其中JAK2及MPL突变阴性患者CALR突变的检出率为59.7%(132/221),包括Ⅰ型(c.1092_1143del52bp)62例(46.9%)、Ⅱ型(c.1154_1155insTTGTC)34例(25.8%)等17种类型。91例PMF患者中11例(12.1%)检出CALR基因突变,其中JAK2及MPL突变阴性PMF患者的CALR基因突变检出率为68.8%(11/16),包括Ⅰ型7例(63.6%)、Ⅱ型4例(36.4%)。详见表1。
表1. 1 648例Ph阴性慢性骨髓增殖性肿瘤(MPN)患者基因突变情况[例(%)].
组别 | 例数 | JAK2V617F突变 | JAK2基因12号外显子突变 | CALR基因9号外显子突变 | MPL基因10号外显子突变 | 突变阴性 |
真性红细胞增多症 | 508 | 471(92.7) | 9(1.7) | 0(0) | 0(0) | 28(5.5) |
原发性血小板增多症 | 1 049 | 819(78.1) | 0(0) | 132(12.6) | 9(0.8) | 89(8.5) |
原发性骨髓纤维化 | 91 | 74(81.3) | 0(0) | 11(12.1) | 1(1.1) | 5(5.5) |
3.MPN患者基因突变与发病年龄的相关性:JAK2V617F突变阳性组中位年龄[61(15~95)岁]高于JAK2 12号外显子突变阳性组[49(33~62)岁]、CALR突变阳性组[57(17~89)岁]及JAK2、CALR、MPL三种基因突变均阴性组[42(3~78)岁],差异均有统计学意义(z=−2.396,P=0.017;z=−3.437,P=0.001;z=−11.284,P<0.001),与MPL突变阳性组[59(22~71)岁]比较差异无统计学意义(z=−1.681,P=0.093)。
4.MPN患者基因突变与外周血细胞计数的相关性:①PV组:与JAK2基因12号外显子突变阳性及三种基因突变均阴性患者相比,JAK2V617F突变阳性患者具有更高的白细胞计数(z=−2.687,P=0.007;z=−4.996,P<0.001)和更高的血小板计数(z=−2.909,P=0.004;z=−5.092,P<0.001),血红蛋白浓度差异无统计学意义(P值均>0.05);JAK2基因12号外显子突变及三种基因突变均阴性患者血细胞计数差异无统计学意义(P<0.05)。详见表2。②ET组:与CALR突变阳性组比较,JAK2V617F突变阳性组具有更高的外周血白细胞计数、血红蛋白浓度及较低的血小板计数(z值分别为−5.149、−5.166、−3.852,P值均<0.001);与MPL突变阳性组患者相比,JAK2V617F突变阳性组仅表现为外周血白细胞计数增高(z=−2.481,P=0.013);与JAK2、CALR、MPL三种基因突变均阴性的ET患者相比,JAK2V617F突变阳性患者白细胞计数及血红蛋白浓度增高(z=−4.760,P<0.001;z=−2.953,P=0.003),血小板计数差异无统计学意义(P值均<0.05);CALR基因突变阳性组血小板计数高于JAK2V617F突变阳性组及JAK2、CALR、MPL三种基因突变均阴性组(z=−3.852,P<0.001;z=−3.444,P=0.001)。详见表3。③PMF组:JAK2V617F突变阳性组血红蛋白浓度高于CALR突变阳性组(z=−2.392,P=0.017),血小板计数低于CALR突变组(z=−2.455,P=0.014),白细胞计数差异无统计学意义(P<0.05);JAK2、CALR、MPL三种基因突变均阴性组血红蛋白浓度低于JAK2V617F突变阳性组(z=−2.726,P=0.006);JAK2、CALR、MPL三种基因突变均阴性组与CALR突变阳性组在外周血细胞计数方面差异无统计学意义(P<0.05)。详见表4。
表2. 不同基因突变类型真性红细胞增多症患者的临床特征[M(范围)].
组别 | 例数(男/女) | 年龄(岁) | WBC(×109/L) | HGB(g/L) | PLT(×109/L) |
JAK2V617F突变 | 225/246 | 61(22~88) | 14.4(3.3~57.0) | 194(153~277) | 436(61~1574) |
JAK2基因12号外显子突变 | 5/4 | 52(33~62)a | 7.4(5.2~11.6)a | 217.5(180~230) | 157(109~256)a |
JAK2、CALR、MPL基因突变均阴性 | 24/4 a | 41.5(18~67)a | 6.9(3.5~12.4)a | 188(176~205) | 187.5(92~241)a |
注:a与JAK2V617F突变组比较,P<0.05
表3. 不同基因突变类型原发性血小板增多症患者的临床特征[M(范围)].
组别 | 例数(男/女) | 年龄(岁) | WBC(×109/L) | HGB(g/L) | PLT(×109/L) |
JAK2V617F突变 | 386/433 | 62(15~95) | 12.2(3.0~77.4) | 138(52~204) | 800(198~3 730) |
CALR基因9号外显子突变 | 58/74 | 56(17~89)a | 9.1(3.6~44.7)a | 123(73~170)a | 966(400~2 069)a |
MPL基因10号外显子突变 | 6/3 | 58(22~71) | 8.8(5.4~12.3)a | 133(126~152) | 965(416~1 268) |
JAK2、CALR、MPL基因突变均阴性 | 44/45 | 39(3~80)ab | 9.0(2.7~20.7)a | 127.5(79~165)a | 703(384~2 022)b |
注:与JAK2V617F突变组比较,aP<0.05;与CALR 9号外显子突变组比较,bP<0.05
表4. 不同基因突变类型原发性骨髓纤维化患者的临床特征[M(范围)].
组别 | 例数(男/女) | 年龄(岁) | WBC(×109/L) | HGB(g/L) | PLT(×109/L) |
JAK2V617F突变 | 41/33 | 59(20~78) | 11.66(2.00~97.10) | 91(51~149) | 161(20~974) |
CALR基因9号外显子突变 | 7/4 | 60.5(45~77) | 15.60(3.41~60.35) | 58(44~107)a | 480(24~1 566)a |
JAK2、CALR、MPL基因突变均阴性 | 3/2 | 45(40~58) | 11.74(5.94~18.99) | 58(40~70)a | 546(35~606) |
注:与JAK2V617F突变组比较,aP<0.05
5.Ph阴性MPN患者基因突变与细胞遗传学分析:1 160例患者进行了有效染色体核型分析,共检出核型异常患者88例。CALR基因突变阳性、阴性患者异常核型检出率差异无统计学意义[9.8%(8/82)对7.4%(80/1 078),χ2=0.593,P=0.441]。JAK2V617F突变阳性与阴性患者异常核型检出率差异无统计学意义[7.7%(75/971)对6.9%(13/189),χ2=0.161,P=0.688]。7例JAK2基因12号外显子突变阳性及6例MPL基因突变阳性患者均未检出异常核型。其中,CALR基因突变阳性组异常核型检出率与JAK2V617F突变阳性组差异无统计学意义[9.8%(8/82)对7.7%(75/971),χ2=0.430,P=0.512]。本组病例常见的核型异常为+9、20q−及复杂核型,其中+9及+8异常仅见于JAK2V617F突变阳性组。突变阴性的MPN患者核型异常检出率为5.3%(5/94)。详见表5。
表5. 1 160例Ph阴性慢性骨髓增殖性肿瘤(MPN)患者染色体核型分析结果.
组别 | 异常核型[阳性例数/检测例数(%)] | 三体9及9号异常(例) | 三体8及8号异常(例) | 1号异常(例) | 18号异常(例) | 13q−及13号异常(例) | 20q−(例) | 5q−(例) | −7/7q−(例) | −Y(例) | 复杂核型(例) | 其他异常(例) |
MPN亚型 | ||||||||||||
PV | 17/381(4.5) | 4 | 1 | 2 | 2 | 0 | 1 | 1 | 2 | 1 | 1 | 2 |
ET | 54/724(7.5) | 7 | 2 | 3 | 4 | 0 | 7 | 3 | 3 | 8 | 5 | 12 |
PMF | 17/55(30.9) | 0 | 0 | 1 | 0 | 3 | 3 | 0 | 0 | 1 | 7 | 2 |
基因突变 | ||||||||||||
JAK2V617F | 75/971(7.7) | 11 | 3 | 5 | 4 | 4 | 10 | 3 | 4 | 9 | 11 | 11 |
JAK2基因12号外显子 | 0/7(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CALR基因9号外显子 | 8/82(9.8) | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 1 |
MPL基因10号外显子 | 0/6(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
阴性 | 5/94(5.3) | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
注:PV:真性红细胞增多症;ET:原发性血小板增多症;PMF:原发性骨髓纤维化
讨论
MPN是一组起源于造血干细胞、以一系或多系分化相对成熟的骨髓细胞克隆性增殖为特点的一组肿瘤性疾病。在欧美国家,PV、ET、PMF的年发病率分别为(0.8~2.6)/10万、(0.2~2.5)/10万、(0.4~1.5)/10万,中位发病年龄为60岁[5]–[6]。上述疾病在我国尚无可靠的流行病学资料。本组Ph阴性慢性MPN患者以ET为主,其次为PV,PMF患者较少;中位发病年龄为60(3~95)岁,与西方国家既往报道一致。
本研究中,JAK2V617F突变检出率最高,其次为CALR基因第9号外显子突变,JAK2基因第12号外显子突变及MPL基因第10号外显子突变相对少见。国外研究表明,JAK2V617F基因突变在PV、ET、PMF患者的检出率分别为65%~97%、23%~57%、35%~57%[4]–[5]。本组PV、ET、PMF患者JAK2V617F突变检出率分别为92.7%、78.1%、81.3%,PV患者JAK2V617F突变检出率与文献[2],[7]–[10]结果基本一致,而ET及PMF患者JAK2V617F突变检出率高于国外报道[8]–[11],考虑与以下原因有关:①早期PV患者与ET难以鉴别,另外PV及ET患者可能进展为骨髓纤维化,这部分患者可能被诊断为PMF而导致JAK2V617F突变检出率增高;②病例数较少,尤其是入组的PMF患者例数较少;③人种及地区差异。
本组ET及PMF患者CALR基因9号外显子突变检出率分别为12.6%(132/1 049)、12.1%(11/91),在JAK2V617F突变及MPL突变均阴性的ET和PMF患者中CALR突变检出率分别为59.7%(132/221)、68.8%(11/16),与文献[4],[12]基本一致,总体检出率较低考虑与突变检测的方法相关。既往Baxer等[2]认为超过40%的细胞有杂合子突变时测序法才能检测到突变的基因,而MPN患者外周血只有部分细胞来源于恶性祖细胞,故测序法可能低估了突变携带者的比例。本研究ET患者检出的CALR突变包括17种类型,其中Ⅰ型(c.1092_1143del52bp)占46.9%(62/132),Ⅱ型(c.1154_1155insTTGTC)占25.8%(34/132),其他类型占27.3%(36/132);而PMF患者中Ⅰ型CALR突变占63.6%,Ⅱ型占36.4%,发生比例与文献[13]报道一致。既往报道显示PMF患者Ⅰ型CALR基因突变检出率高于ET患者(75%对48%,P<0.001)[13],但本研究未发现此差异,结合既往中国其他中心的报道[14]–[15],考虑可能与入组病例数量较少及人种差异有关。JAK2基因12号外显子突变及MPL突变检出率较低,突变类型与文献[16]–[19]结果一致。
本组病例中,JAK2V617F突变阳性组中位年龄[61(22~88)岁]高于JAK2 12号外显子突变阳性组[49(33~62)岁]、CALR突变阳性组[57(17~89)岁]及JAK2、CALR、MPL三种基因突变均阴性组[42(3~78)岁]。PV患者中,JAK2V617F突变阳性组与JAK2基因12号外显子突变阳性组及突变阴性组相比,具有更高的外周血白细胞计数、血小板计数,差异具有统计学意义,而血红蛋白浓度差异无统计学意义。多项研究结果显示,与JAK2V617F突变组相比,CALR突变ET患者血小板计数较高,发病年龄、白细胞计数和血红蛋白浓度较低[14],[20]–[21]。本研究ET患者中,CALR突变组的白细胞计数和血红蛋白浓度及年龄低于JAK2V617F突变组,血小板计数高于JAK2V617F突变组,与既往报道一致。既往西方研究报道显示,与JAK2V617F及Ⅰ型CALR突变的ET患者相比,Ⅱ型CALR突变患者更年轻并具有更高的血小板计数[13]。本研究中,Ⅰ、Ⅱ型及其他CALR基因突变ET患者在性别、年龄、白细胞计数、血小板计数和血红蛋白浓度差异均无统计学意义,考虑与病例数较少及人种差异有关。MPL突变组及JAK2、CALR、MPL三种基因突变均阴性组与JAK2V617F突变组相比,白细胞计数及血小板计数较低,血红蛋白浓度差异无统计学意义。Tefferi等[22]研究表明CALR突变阳性PMF患者血小板计数较高,而年龄、白细胞计数较低。在本组PMF患者中,JAK2V617F突变阳性组血红蛋白浓度高于CALR突变阳性组和JAK2、CALR、MPL三种基因突变均阴性组,血小板计数低于CALR突变阳性组,其余指标差异无统计学意义,可能与病例数较少有关。
目前,基因突变与染色体核型的相关性尚未见大宗资料报道。本组资料显示MPN患者总体核型异常的检出率为7.6%(88/1 160),CALR基因突变组异常核型检出率与JAK2V617F突变组差异无统计学意义[9.8%(8/82)对7.7%(75/971),χ2=0.430,P=0.512]。JAK2基因12号外显子及MPL基因突变阳性患者均为正常核型。CALR基因突变阳性、阴性患者异常核型检出率差异无统计学意义[9.8%(8/82)对7.4%(80/1 078),χ2=0.593,P=0.441]。JAK2V617F突变阳性与阴性患者间异常核型检出率差异亦无统计学意义[7.7%(75/971)对6.9%(13/189),χ2=0.161,P=0.688]。本组病例常见的核型异常为+9、20q−及复杂核型,其中+9及+8异常仅见于JAK2V617F突变组,在未检出JAK2、CALR及MPL基因突变的MPN患者中,异常核型检出率为5.3%(5/94)。
与西方国家相比,本组MPN患者具有以下特点:①CALR及MPL基因突变的总体检出率较低,JAK2、CALR及MPL基因突变均阴性患者比例较低,考虑与临床病例样本量及临床资料完整性欠缺导致的入组困难相关;②不同类型CALR突变组间临床参数差异无统计学意义,与既往西方国家研究报道[13]的Ⅱ型CALR突变ET患者更年轻并具有更高的血小板计数不同,考虑与样本量较少有关,人种差异亦不能排除。③本组PV及ET患者最常见的核型异常为+9,PMF患者则以复杂核型为主,+9及+8异常仅见于JAK2V617F突变阳性组。基因突变与预后、临床进展的相关性有待于进一步的随访观察。
References
- 1.Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms[J] Leukemia. 2008;22(1):14–22. doi: 10.1038/sj.leu.2404955. [DOI] [PubMed] [Google Scholar]
- 2.Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders[J] Lancet. 2005;365(9464):1054–1061. doi: 10.1016/S0140-6736(05)71142-9. [DOI] [PubMed] [Google Scholar]
- 3.Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients[J] Blood. 2006;108(10):3472–3476. doi: 10.1182/blood-2006-04-018879. [DOI] [PubMed] [Google Scholar]
- 4.Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms[J] N Engl J Med. 2013;369(25):2379–2390. doi: 10.1056/NEJMoa1311347. [DOI] [PubMed] [Google Scholar]
- 5.Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes[J] Blood. 2014;123(10):1544–1551. doi: 10.1182/blood-2013-11-539098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis[J] Blood. 2014;124(7):1062–1069. doi: 10.1182/blood-2014-05-578435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera[J] Nature. 2005;434(7037):1144–1148. doi: 10.1038/nature03546. [DOI] [PubMed] [Google Scholar]
- 8.Zhao R, Xing S, Li Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera[J] J Biol Chem. 2005;280(24):22788–22792. doi: 10.1074/jbc.C500138200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders[J] Lancet. 2005;365(9464):1054–1061. doi: 10.1016/S0140-6736(05)71142-9. [DOI] [PubMed] [Google Scholar]
- 10.Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis[J] Cancer Cell. 2005;7(4):387–397. doi: 10.1016/j.ccr.2005.03.023. [DOI] [PubMed] [Google Scholar]
- 11.Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1[J] Leukemia. 2010;24(6):1128–1138. doi: 10.1038/leu.2010.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2[J] N Engl J Med. 2013;369(25):2391–2405. doi: 10.1056/NEJMoa1312542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms[J] Leukemia. 2016;30(2):431–438. doi: 10.1038/leu.2015.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Qiao C, Sun C, Ouyang Y, et al. Clinical importance of different calreticulin gene mutation types in wild-type JAK2 essential thrombocythemia and myelofibrosis patients[J] Haematologica. 2014;99(10):e182–184. doi: 10.3324/haematol.2014.109199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Guo H, Chen X, Tian R, et al. Frequencies, laboratory features, and granulocyte activation in chinese patients with CALR-mutated myeloproliferative neoplasms[J] PLoS One. 2015;10(9):e0138250. doi: 10.1371/journal.pone.0138250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Pardanani A, Lasho TL, Finke C, et al. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera[J] Leukemia. 2007;21(9):1960–1963. doi: 10.1038/sj.leu.2404810. [DOI] [PubMed] [Google Scholar]
- 17.Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia[J] PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients[J] Blood. 2006;108(10):3472–3476. doi: 10.1182/blood-2006-04-018879. [DOI] [PubMed] [Google Scholar]
- 19.Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort[J] Blood. 2008;112(1):141–149. doi: 10.1182/blood-2008-01-131664. [DOI] [PubMed] [Google Scholar]
- 20.Shen H, Chao H, Ding Z, et al. CALR and ASXL1 mutation analysis in 190 patients with essential thrombocythemia[J] Leuk Lymphoma. 2015;56(3):820–822. doi: 10.3109/10428194.2014.939963. [DOI] [PubMed] [Google Scholar]
- 21.Fu R, Xuan M, Zhou Y, et al. Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment[J] Leukemia. 2014;28(9):1912–1914. doi: 10.1038/leu.2014.138. [DOI] [PubMed] [Google Scholar]
- 22.Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons[J] Leukemia. 2014;28(7):1472–1477. doi: 10.1038/leu.2014.3. [DOI] [PubMed] [Google Scholar]