近年来,血液系统疾病患者生存期不断延长,反复输血及无效造血相关铁过载和去铁治疗对骨髓造血功能和患者生活质量的影响备受关注,本文我们对铁过载影响骨髓造血的特点、机制及去铁治疗方式进行综述。
一、铁过载影响骨髓造血的特点
铁过载常见于骨髓增生异常综合征(MDS)、地中海贫血、再生障碍性贫血(AA)和骨髓纤维化(MF)等血液系统疾病。MDS患者红系无效造血及输血依赖均可导致铁过载,铁过载的发生可早于输血依赖,然而输血依赖仍是MDS患者铁过载的最主要原因,血清铁蛋白(SF)超过1 000 µg/L提示MDS患者预后不良[1]。地中海贫血患者因长期反复输血引发继发性铁过载,致多脏器功能损伤甚至危及生命[2]。获得性AA患者多存在输血依赖,Jin等[3]分析550例AA患者铁过载相关因素时发现,高输血负荷与铁过载明显相关,输血2年内发生铁过载风险急剧升高,而脱离输血6个月后,患者红细胞生成与铁负荷即呈负相关,并持续超过3年。在原发性MF患者中,贫血、红细胞输注和铁代谢异常亦很常见,铁调素和SF升高均提示患者预后差,并独立于MF患者修订的动态国际预后积分系统(DIPSS-plus)风险分层系统或炎症因子水平的升高[4]。
通过对体外建立的骨髓单个核细胞(BMMNC)铁过载模型的观察发现,铁过载损伤BMMNC集落形成、数量及造血功能[5]。另一项研究表明铁过载可影响MDS患者骨髓CD34+造血干细胞数量和功能,促进MDS患者向急性髓系白血病(AML)转化[6]。铁过载还可影响骨髓红系祖细胞增殖,引起MDS患者及地中海贫血小鼠骨髓红系无效造血[7]–[8]。
铁过载影响骨髓造血细胞的同时,也可损伤骨髓造血微环境,影响其对骨髓造血功能的支持作用。铁过载可影响MDS患者骨髓间充质干细胞(MSC)的数量及功能[9],通过影响骨髓成骨细胞分化相关基因表达,特异性抑制MSC诱导成骨分化功能[10],外源性铁剂可增加破骨祖细胞的增殖并表达巨噬细胞样表型,使其向破骨细胞分化的功能下降,参与调节RANKL诱导破骨细胞分化[11]。
铁过载影响骨髓移植的疗效及预后。Zhang等[12]回顾性分析了重型AA患者输血史对异基因造血干细胞移植(HSCT)疗效的影响,在确诊2个月内行骨髓移植患者,高SF组(SF≥1 000 µg/L)死亡风险明显增加,且高风险发生血流感染。而在确诊2个月后行骨髓移植患者,输血史与患者预后呈负相关,高风险发生急性移植物抗宿主病(aGVHD)。在急性白血病和淋巴瘤患者中,移植前患者铁过载将显著增加患者病死率、复发率和GVHD发生率,总生存率和无病生存率均与骨髓铁评分(BMIS)呈负相关[13]。而在移植后骨髓造血功能尚未完全重建的铁过载白血病患者中,地拉罗司(DFX)能明显提高患者HGB水平,减少并脱离红细胞、血小板输注及生长因子促造血治疗[14]。去铁治疗能在一定程度上改善铁过载患者移植后骨髓造血功能,表明铁过载可能通过抑制骨髓造血功能影响骨髓移植患者的疗效及预后。
二、铁过载损伤骨髓造血的机制
铁过载可通过影响骨髓造血细胞的数量、功能、端粒长度及表观遗传学等途径损伤骨髓造血,影响骨髓微环境、诱导免疫及铁调素调节异常,同时促进肿瘤细胞增殖等多方面影响骨髓造血功能。其中氧化应激发挥重要作用,而去铁和抗氧化处理均能在一定程度上改善铁过载引起的骨髓造血功能损伤。
1.活性氧自由基(ROS)相关损伤:铁过载可诱导细胞内ROS水平增加引起细胞损伤。Ivars等[15]研究表明,低危或中危-1铁过载MDS患者超氧阴离子水平明显升高,而抗氧化物过氧化氢酶和谷胱甘肽均较对照组明显下降,且仅在铁过载MDS患者中检测到线粒体损伤。在铁过载MDS小鼠模型研究中,铁过载明显影响骨髓正常造血干祖细胞,尤其是骨髓红系造血功能,在一定程度上可能与生长分化因子11(GDF11)诱导细胞内ROS生成增加有关[16]。铁过载诱导MDS/AML细胞内ROS水平增加,抑制细胞增殖,诱导细胞凋亡和周期停滞,而过表达缺氧诱导因子1a(HIF-1a)能显著降低细胞内ROS水平,减轻铁过载对MDS/AML细胞的损伤。此外,HIF-1a/ROS信号通路在铁过载诱导MDS患者骨髓红系凋亡中也发挥重要作用[17]。Hua等[6]研究显示铁过载可通过诱导细胞内ROS增加损伤MDS患者骨髓CD34+造血干细胞,影响细胞内JNK和P38信号通路参与MDS患者向AML转化。铁过载,依赖ROS增加引起MSC线粒体损伤和自噬活化,通过AMPK/MFF/Drp1信号通路诱导MSC凋亡和活力下降,从而损伤MDS患者MSC,而去铁和抗氧化处理均可减弱AMPK/MFF/Drp1信号通路活化[9]。
2.诱导细胞凋亡:铁过载通过影响凋亡相关信号通路诱导细胞凋亡。在MDS患者中,铁过载通过激活内源性凋亡通路中凋亡蛋白酶活化因子1(APAF-1)诱导骨髓红系凋亡,且在MDS细胞系铁过载模型中得到印证[7]。铁过载可通过激活成骨细胞内NAPDH氧化酶-4诱导ROS生成增加,激活线粒体凋亡相关信号通路Caspase-3、Bax和细胞色素c表达上调,Bcl-2表达下调诱导体外成骨细胞系凋亡,而抗氧化处理可部分缓解铁过载相关成骨细胞损伤[18]。
3.影响细胞端粒长度:Lange等[19]研究表明,MDS患者端粒长度均较正常人明显缩短,且影响MDS患者所有造血细胞,其中-7患者端粒长度较正常核型MDS患者明显延长,而不同WHO分型MDS患者端粒长度无明显差异。白细胞端粒长度可反应细胞老化和氧化应激状态,Shin及Baik[20]在一项横断面研究受试人群铁代谢与白细胞端粒长度时发现,转铁蛋白饱和度异常增高(>45%)和正常高值(35%~45%)受试者较正常低值(<30%)受试者端粒长度均明显缩短,表明细胞衰老不仅受铁过载影响,也与转铁蛋白饱和度增高相关。
4.影响细胞表观遗传学:铁在糖代谢中起重要作用,Yamamoto等[21]对铁过载小鼠骨髓造血细胞全RNA测序发现参与糖代谢的PGM1、IDH1表达均升高,PCR证实IDH1和顺乌头酸酶mRNA表达水平上升,三羧酸循环和DNA甲基化相关酶活性升高,而去铁处理能逆转上述现象,说明铁能激活糖代谢,增加羟戊二酸和DNA甲基化。
5.影响免疫细胞功能:铁过载可导致免疫细胞不同程度的功能异常。Shaw等[22]研究发现铁过载可诱导地中海贫血患者外周血淋巴细胞氧化损伤,导致DNA断裂,细胞功能受到抑制,致患者免疫功能失调增加感染风险,去铁处理能部分改善铁过载相关氧化损伤。铁过载诱导MDS患者外周血NK细胞内ROS水平升高,诱导JNK表达升高,p38表达降低[6]。Nybakken等[23]研究表明MDS患者骨髓CD163+巨噬细胞及其表达的血红素加氧酶-1(HO-1)和H-铁蛋白与骨髓铁沉积量呈正相关,并诱导细胞氧化损伤,且高水平HO-1与MDS患者预后呈负相关。铁过载MDS患者外周血T淋巴细胞内ROS水平升高,CD3+ T比例下降;而在铁过载小鼠中,CD3+ T淋巴细胞比例、Th1/Th2和Tc1/Tc2比值均下降,而调节性T细胞和CD4/CD8比例均增加;铁过载增加T淋巴细胞内ROS水平诱导细胞凋亡,而去铁和抗氧化处理能在一定程度上恢复T淋巴细胞功能[24]。
6.影响铁调素表达:铁调素是由肝脏合成并分泌的一类多肽激素,参与调节细胞铁代谢和炎症反应。膜铁转运蛋白表达于肠上皮细胞、巨噬细胞和肝细胞,铁调素能结合膜铁转运蛋白,并将其内化降解,参与调节铁代谢。针对HO-1对铁过载鼠模型MSC损伤的研究中发现,HO-1通过减少细胞内ROS而增加IL-10分泌,降低铁过载诱导MSC凋亡。HO-1通过激活ERK信号通路诱导IL-10分泌,铁调素依赖IL-10分泌下调细胞内铁水平[25]。地中海贫血患者在输血前,铁调素水平与HGB和SF呈正相关,与红系造血呈负相关,而在输血后,HGB和铁调素水平增加,红系造血和GDF15水平均下降,地中海贫血患者铁调素水平的动态改变反映了骨髓红系造血、贫血和铁过载之间的矛盾关系[26]。
7.促进肿瘤细胞增殖:铁代谢异常在肿瘤性疾病的发生发展中发挥重要作用,肿瘤细胞需增加铁摄入以满足其增殖需要。多发性骨髓瘤(MM)细胞存在铁代谢异常,细胞内铁蛋白水平较正常细胞升高,DFX能通过抑制细胞内ROS生成,抑制富含脯氨酸的酪氨酸激酶(Pyk2)和Wnt/β-catenin信号通路抑制MM细胞增殖,并诱导MM细胞凋亡[27]。T淋巴细胞通过下调IFN-γ R2信号链,对IFN-γ/信号转导和转录活化因子信号通路产生不应性使其对IFN-γ耐受,而参与铁吸收的转铁蛋白受体信号可导致IFN-γ R2内化。铁剂能减少IFN-γ诱导的恶性T淋巴细胞凋亡,而去铁处理能消除恶性T淋巴细胞对IFN-γ的耐受[28]。
三、去铁治疗方式及机制
铁过载在多种血液系统疾病发生、发展中起重要作用,去铁治疗是降低患者铁负荷最主要的方式,在一定程度上可阻止疾病进展、改善疗效及预后。血液病患者去铁治疗方式主要包括铁螯合剂、上调铁调素和输注转铁蛋白,上述方式通过多种机制改善过量铁沉积对骨髓造血细胞的损伤。
1.铁螯合剂:铁螯合剂通过与细胞内过量游离铁结合形成螯合物,减少铁过载引起的细胞损伤,而去铁治疗不仅能降低患者SF水平,且能在一定程度上改善MDS或AA患者血象,延缓MDS疾病进展。Lee等[29]在DFX去铁治疗的患者疗效评估(EPIC)研究的析因分析中发现,在DFX单药治疗AA患者中,45.8%患者获得部分血液学反应并脱离输血,SF水平较治疗前明显下降。而在DFX治疗55例输血依赖低危MDS患者中,在DFX治疗3个月内,MDS患者血象无明显改善,而在随访12个月后,31.5%患者获得红系治疗反应,10例患者HGB水平升高[30]。而去铁治疗也可在一定程度上延缓MDS患者向AML转化[31]。
在低危MDS患者中,铁过载明显影响骨髓红系造血功能,低剂量DFX通过降低细胞内ROS水平,激活红系祖细胞内NF-κB信号通路,诱导抗凋亡和抗炎信号表达,减少骨髓红系祖细胞凋亡及增加分裂期细胞,促进红系细胞增殖[32]。而去铁胺(DFO)能显著增加铁过载MDS患者骨髓红系细胞内HIF-1a水平,抑制细胞内ROS生成,减少骨髓红系凋亡[17]。在铁过载AA小鼠模型研究中表明,DFO较DFX能更好地发挥抗骨髓凋亡的作用,改善骨髓造血,而DFX协同DFO仅能快速减低铁负荷,对改善血象的作用有限[33]。
急性白血病细胞存在分化功能严重受损,去铁治疗可通过调节细胞内ROS水平,激活丝裂原活化蛋白激酶(MAPK)信号通路,诱导原始细胞分化[34]。Messa等[35]研究表明,DFX还可通过抑制NF-κB信号通路促进白血病细胞系凋亡,且不依赖于降低细胞内ROS水平和铁负荷发挥作用。
2.上调铁调素:铁调素通过与肠上皮细胞和巨噬细胞膜表面膜铁转运蛋白结合,内化并降解膜铁转运蛋白,抑制肠道上皮细胞及巨噬细胞铁释放,降低铁负荷。Gardenghi等[36]在地中海贫血鼠模型中发现,适当增加铁调素水平,不仅能改善铁过载,同时也能减少细胞内ROS生成,延长红细胞寿命,逆转红系无效造血及脾大,增加HGB水平。同样发现降低地中海贫血小鼠铁调素抑制物丝氨酸蛋白酶TMPRSS6基因表达水平,可协同去铁酮改善贫血及继发性铁过载[37]。
3.输注转铁蛋白:转铁蛋白是机体内最主要的载铁蛋白,可将铁转运至包括骨髓在内的多个脏器。铁过载时,转铁蛋白相对饱和,导致过量游离铁诱导ROS生成增加,引起脏器损伤。而输注转铁蛋白能增加转铁蛋白与游离铁的结合,减轻过量铁沉积引起的组织损伤。在地中海贫血小鼠模型中发现,输注转铁蛋白不仅能降低血浆游离铁浓度,增加铁调素水平,而且能改善红细胞寿命、提高HGB水平,同时降低网织红细胞和红细胞生成素水平[38]。
四、小结
铁过载在血液系统疾病中常见。铁过载广泛损伤骨髓造血细胞及骨髓微环境,同时影响骨髓造血功能。铁过载可诱导细胞内ROS生成增加,诱导细胞凋亡,影响造血细胞端粒长度,改变细胞表观遗传学,诱导免疫及铁调素调节异常,同时促进恶性肿瘤细胞增殖。而铁螯合剂、上调铁调素水平及输注转铁蛋白等方式均可在一定程度上改善铁过载对骨髓造血功能的损伤。
References
- 1.Waszczuk-Gajda A, Mądry K, Machowicz R, et al. Red Blood Cell Transfusion Dependency and Hyperferritinemia Are Associated with Impaired Survival in Patients Diagnosed with Myelodysplastic Syndromes: Results from the First Polish MDS-PALG Registry[J] Adv Clin Exp Med. 2016;25(4):633–641. doi: 10.17219/acem/62397. [DOI] [PubMed] [Google Scholar]
- 2.Bonifazi F, Conte R, Baiardi P, et al. Pattern of complications and burden of disease in patients affected by beta thalassemia major[J] Curr Med Res Opin. 2017;33(8):1525–1533. doi: 10.1080/03007995.2017.1326890. [DOI] [PubMed] [Google Scholar]
- 3.Jin P, Wang J, Li X, et al. Evolution of iron burden in acquired aplastic anemia: a cohort study of more than 3-year follow-up[J] Int J Hematol. 2015;101(1):13–22. doi: 10.1007/s12185-014-1708-6. [DOI] [PubMed] [Google Scholar]
- 4.Pardanani A, Finke C, Abdelrahman RA, et al. Associations and prognostic interactions between circulating levels of hepcidin, ferritin and inflammatory cytokines in primary myelofibrosis[J] Am J Hematol. 2013;88(4):312–316. doi: 10.1002/ajh.23406. [DOI] [PubMed] [Google Scholar]
- 5.Lu W, Zhao M, Rajbhandary S, et al. Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients[J] Eur J Haematol. 2013;91(3):249–261. doi: 10.1111/ejh.12159. [DOI] [PubMed] [Google Scholar]
- 6.Hua Y, Wang C, Jiang H, et al. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes[J] Int J Hematol. 2017;106(2):248–257. doi: 10.1007/s12185-017-2237-x. [DOI] [PubMed] [Google Scholar]
- 7.Gu S, Zhao Y, Guo J, et al. High expression of APAF-1 elevates erythroid apoptosis in iron overload myelodysplastic syndrome[J] Tumour Biol. 2014;35(3):2211–2218. doi: 10.1007/s13277-013-1294-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Garcia-Santos D, Hamdi A, Saxova Z, et al. Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model[J] Blood. 2018;131(2):236–246. doi: 10.1182/blood-2017-07-798728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Zheng Q, Zhao Y, Guo J, et al. Iron overload promotes mitochondrial fragmentation in mesenchymal stromal cells from myelodysplastic syndrome patients through activation of the AMPK/MFF/Drp1 pathway[J] Cell Death Dis. 2018;9(5):515. doi: 10.1038/s41419-018-0552-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Balogh E, Tolnai E, Nagy B, Jr, et al. Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin[J] Biochim Biophys Acta. 2016;1862(9):1640–1649. doi: 10.1016/j.bbadis.2016.06.003. [DOI] [PubMed] [Google Scholar]
- 11.Xie W, Lorenz S, Dolder S, et al. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells[J] Calcif Tissue Int. 2016;98(3):275–283. doi: 10.1007/s00223-015-0087-1. [DOI] [PubMed] [Google Scholar]
- 12.Zhang X, Shi Y, Huang Y, et al. Serum ferritin is a different predictor from transfusion history for allogeneic transplantation outcome in patients with severe aplastic anemia[J] Hematology. 2018;23(5):291–298. doi: 10.1080/10245332.2017.1390929. [DOI] [PubMed] [Google Scholar]
- 13.Sivgin S, Nazlim S, Zararsiz G, et al. Increased Bone Marrow Iron Scores Are Strongly Correlated With Elevated Serum Ferritin Levels and Poorer Survival in Patients With Iron Overload That Underwent Allogeneic Hematopoietic Stem Cell Transplantation: A Single Center Experience[J] Clin Lymphoma Myeloma Leuk. 2016;16(10):582–587. doi: 10.1016/j.clml.2016.08.002. [DOI] [PubMed] [Google Scholar]
- 14.Visani G, Guiducci B, Giardini C, et al. Deferasirox improves hematopoiesis after allogeneic hematopoietic SCT[J] Bone Marrow Transplant. 2014;49(4):585–587. doi: 10.1038/bmt.2013.213. [DOI] [PubMed] [Google Scholar]
- 15.Ivars D, Orero MT, Javier K, et al. Oxidative imbalance in low/intermediate-1-risk myelodysplastic syndrome patients: The influence of iron overload[J] Clin Biochem. 2017;50(16-17):911–917. doi: 10.1016/j.clinbiochem.2017.05.018. [DOI] [PubMed] [Google Scholar]
- 16.Jin X, He X, Cao X, et al. Iron overload impairs normal hematopoietic stem and progenitor cells through reactive oxygen species and shortens survival in myelodysplastic syndrome mice[J] Haematologica. 2018;103(10):1627–1634. doi: 10.3324/haematol.2018.193128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Zheng QQ, Zhao YS, Guo J, et al. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome[J] Leuk Res. 2017;58:55–62. doi: 10.1016/j.leukres.2017.04.005. [DOI] [PubMed] [Google Scholar]
- 18.Tian Q, Wu S, Dai Z, et al. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway[J] PeerJ. 2016;4:e2611. doi: 10.7717/peerj.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lange K, Holm L, Vang Nielsen K, et al. Telomere shortening and chromosomal instability in myelodysplastic syndromes[J] Genes Chromosomes Cancer. 2010;49(3):260–269. doi: 10.1002/gcc.20737. [DOI] [PubMed] [Google Scholar]
- 20.Shin C, Baik I. Transferrin saturation concentrations associated with telomeric ageing: a population-based study[J] Br J Nutr. 2017;117(12):1693–1701. doi: 10.1017/S0007114517001696. [DOI] [PubMed] [Google Scholar]
- 21.Yamamoto M, Tanaka H, Toki Y, et al. Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase[J] Int J Hematol. 2016;104(4):491–501. doi: 10.1007/s12185-016-2054-7. [DOI] [PubMed] [Google Scholar]
- 22.Shaw J, Chakraborty A, Nag A, et al. Intracellular iron overload leading to DNA damage of lymphocytes and immune dysfunction in thalassemia major patients[J] Eur J Haematol. 2017;99(5):399–408. doi: 10.1111/ejh.12936. [DOI] [PubMed] [Google Scholar]
- 23.Nybakken G, Gratzinger D. Myelodysplastic syndrome macrophages have aberrant iron storage and heme oxygenase-1 expression[J] Leuk Lymphoma. 2016;57(8):1893–1902. doi: 10.3109/10428194.2015.1121259. [DOI] [PubMed] [Google Scholar]
- 24.Chen J, Lu WY, Zhao MF, et al. Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes[J] Ann Hematol. 2017;96(7):1085–1095. doi: 10.1007/s00277-017-2985-y. [DOI] [PubMed] [Google Scholar]
- 25.Yu ZY, Ma D, He ZC, et al. Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species a nd promoting IL-10 generation[J] Exp Cell Res. 2018;362(1):28–42. doi: 10.1016/j.yexcr.2017.10.029. [DOI] [PubMed] [Google Scholar]
- 26.Pasricha SR, Frazer DM, Bowden DK, et al. Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study[J] Blood. 2013;122(1):124–133. doi: 10.1182/blood-2012-12-471441. [DOI] [PubMed] [Google Scholar]
- 27.Kamihara Y, Takada K, Sato T, et al. The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma[J] Oncotarget. 2016;7(39):64330–64341. doi: 10.18632/oncotarget.11830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Regis G, Bosticardo M, Conti L, et al. Iron regulates T-lymphocyte sensitivity to the IFN-gamma/STAT1 signaling pathway in vitro and in vivo[J] Blood. 2005;105(8):3214–3221. doi: 10.1182/blood-2004-07-2686. [DOI] [PubMed] [Google Scholar]
- 29.Lee JW, Yoon SS, Shen ZX, et al. Hematologic responses in patients with aplastic anemia treated with deferasirox: a post hoc analysis from the EPIC study[J] Haematologica. 2013;98(7):1045–1048. doi: 10.3324/haematol.2012.077669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Rose C, Lenoir C, Gyan E, et al. Prospective evaluation of the effect of deferasirox on hematologic response in transfusion-dependent patients with low-risk MDS and iron overload[J] Eur J Haematol. 2018 doi: 10.1111/ejh.13088. [DOI] [PubMed] [Google Scholar]
- 31.Lyons RM, Marek BJ, Paley C, et al. Relation between chelation and clinical outcomes in lower-risk patients with myelodysplastic syndromes: Registry analysis at 5 years[J] Leuk Res. 2017;56:88–95. doi: 10.1016/j.leukres.2017.01.033. [DOI] [PubMed] [Google Scholar]
- 32.Meunier M, Ancelet S, Lefebvre C, et al. Reactive oxygen species levels control NF-κB activation by low dose deferasirox in erythroid progenitors of low risk myelodysplastic syndromes[J] Oncotarget. 2017;8(62):105510–105524. doi: 10.18632/oncotarget.22299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Wu D, Wen X, Liu W, et al. Comparison of the effects of deferasirox, deferoxamine, and combination of deferasirox and deferoxamine on an aplastic anemia mouse model complicated with iron overload[J] Drug Des Devel Ther. 2018;12:1081–1091. doi: 10.2147/DDDT.S161086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Callens C, Coulon S, Naudin J, et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia[J] J Exp Med. 2010;207(4):731–750. doi: 10.1084/jem.20091488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Messa E, Carturan S, Maffè C, et al. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging[J] Haematologica. 2010;95(8):1308–1316. doi: 10.3324/haematol.2009.016824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Gardenghi S, Ramos P, Marongiu MF, et al. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice[J] J Clin Invest. 2010;120(12):4466–4477. doi: 10.1172/JCI41717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Schmidt PJ, Racie T, Westerman M, et al. Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of β-thalassemia intermedia[J] Am J Hematol. 2015;90(4):310–313. doi: 10.1002/ajh.23934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice[J] Nat Med. 2010;16(2):177–182. doi: 10.1038/nm.2073. [DOI] [PubMed] [Google Scholar]