Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2019 Aug;40(8):673–677. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2019.08.009

两种重组人凝血因子Ⅷ制剂在血友病A患者中的群体药代动力学研究

Population pharmacokinetics of two recombinant human coagulation factor Ⅷ preparations in patients with hemophilia A

华 宝来 1,2,, Pierre Chelle 3, Cindy HT Yeung 4, 顾 健 1, 赵 永强 2, Alfonso Iorio 4
Editor: 徐 茂强
PMCID: PMC7342877  PMID: 31495135

Abstract

目的

比较两种重组人凝血因子Ⅷ(FⅧ)制剂拜科奇(Kogenate® FS)与百因止(Advate®)在血友病A患者中的群体药代动力学差异,以期为血友病A患者精准个体化治疗提供理论依据。

方法

以WAPPS-Hemo项目中自2015年1月至2017年12月共纳入全球41个血友病中心至少接受过1次拜科奇或百因止注射的中间型/重型血友病A患者作为研究对象。计算两种FⅧ制剂的半衰期以及FⅧ活性到达2%的时间(TAT2%),并进一步分析不同年龄层和不同注射剂量下两种药物的药代动力学差异。

结果

①拜科奇组117例,平均年龄为(27.6±17.7)岁;百因止组120例,平均年龄为(23.4±16.2)岁。两组患者均为男性。②拜科奇组、百因止组给药剂量分别为(31.5±13.1)IU/kg、(38.17±14.83)IU/kg,半衰期分别为(12.3±3.5)h、(10.8±2.9)h,TAT2%分别为(65.2±21.7)h、(57.0±17.9)h。③拜科奇组中≥12岁、<12岁患者的半衰期分别为(12.7±3.7)h、(11.1±2.5)h,TAT2%分别为(68.6±22.9)h、(55.8±14.6)h;百因止组中≥12岁、<12岁患者的半衰期分别为(11.4±3.1)h、(9.4±1.8)h,TAT2%分别为(61.1±18.0)h、(45.2±11.3)h。④拜科奇组中<20 IU/kg、20~29 IU/kg、30~39 IU/kg、≥40 IU/kg剂量组的半衰期分别为(13.3±4.0)h、(12.3±3.6)h、(12.2±3.5)h、(11.6±2.6)h,TAT2%分别为(61.5±21.4)h、(63.9±22.4)h、(67.0±24.3)h、(68.0±19.5)h;百因止组中<20 IU/kg、20~29 IU/kg、30~39 IU/kg、≥40 IU/kg剂量组的半衰期分别为(11.5±3.8)h、(11.4±3.7)h、(11.0±2.9)h、(10.4±2.3)h,TAT2%分别为(50.8±19.2)h、(56.7±21.0)h、(58.2±18.8)h、(58.1±15.8)h。

结论

在不同年龄组和不同注射剂量组,拜科奇的药代动力学参数均优于百因止。

Keywords: 血友病A, 因子Ⅷ, 药代动力学


血友病A是一种X染色体连锁隐性遗传性出血性疾病,主要由凝血因子Ⅷ(FⅧ)基因突变所致[1]。目前,血友病患者的主要治疗方式是输注凝血因子替代治疗[2][3]。由于患者年龄、出血表型、静脉通路、药物药代动力学特点以及凝血因子制剂不同,导致了凝血因子替代治疗方案具有个体差异性[4]。因此,临床上推荐在保证对凝血因子浓度和药代动力学参数进行定期随访和评估的基础上,根据患者自身的病情和凝血因子的药代动力学参数为每例患者制定个性化的治疗方案[5]

血友病患者的管理目标是尽量减少关节和重要器官的出血,从而改善患者的生活质量,并延长其寿命,预防性应用凝血因子是减少患者出血的首要方法[6]。为达到这一目标,不同患者、甚至同一患者的不同治疗阶段,所需的凝血因子的剂量和给药频率不同[7],需要根据其药代动力学情况确定最佳的给药方案。当前市售凝血因子的平均药代动力学特征并不适合于每例患者,不能仅根据药品说明书对每例患者进行治疗,而应该根据每例患者实际的药代动力学特征确定给药方案[8]。体外实验发现不同凝血因子或替代物的药代动力学差异很大[9],而临床试验已证实不同患者以及不同凝血因子的药代动力学差异也很大[2]。可网络访问的血友病群体药代动力学服务平台(Web Accessible Population Pharmacokinetic Service-Hemophilia,WAPPS-Hemo)是加拿大McMaster大学开发的针对血友病患者进行药代动力学参数计算的项目(www.wapps-hemo.org[10]。WAPPS拥有主动调整的中心数据库,利用比实际数量少的血浆样本以及专有的自动化群体药代动力学工具对个体药代动力学参数进行可靠估计,并对估计值进行手动验证,已经得到广泛的认可和应用[11]。本研究对WAPPS-Hemo数据库中两种重组人FⅧ制剂拜科奇®(Kogenate® FS,拜耳医药保健有限公司产品)、百因止®(Advate®,夏尔制药公司产品)治疗血友病A患者的群体药代动力学参数进行比较,以期为血友病A的精准个体化治疗选择提供数据支持。

对象与方法

1.研究对象:本研究对于WAPPS-Hemo数据库中的数据进行回顾性分析,遵循WAPPS协议。纳入自2015年1月至2017年12月以来全球41个血友病中心至少接受过1次拜科奇或百因止治疗的中间/重型血友病A患者。患者需至少接受过1次凝血试验检测,至少取样1次,且至少有1次取样时间超过20 h。抑制物阳性者或不同意将其数据用于本研究者除外。所有患者在接受治疗时已被告知其数据会被纳入WAPPS-Hemo数据库并将用于研究,但个人信息不会暴露。

2.药物及给药方法:拜科奇和百因止均按照药物临床试验质量管理规范的标准进行静脉注射给药。两种药物均用于患者的常规治疗方案中。

3.数据收集:收集患者一般信息(年龄、性别、身高、体重、体重指数和无脂肪体重)、注射剂量以及每位患者的取样数。拜科奇组、百因止组的药代动力学信息均由WAPPS-Hemo研究的各中心自行输入,分别于给药前及给药后6、12、24、48 h检测FⅧ活性水平,计算半衰期以及到达2%的时间(TAT2%)。

4.统计学处理:本研究的所有数据均使用SPSS软件分析。以描述性分析为主,不涉及组间比较。符合正态分布的计量资料采用x±s表示。

结果

1.一般资料:本研究共计纳入236例患者,其中1例患者两种药物的治疗均有接受,即拜科奇组有117例患者,平均年龄(27.6±17.7)岁,百因止组120例患者,平均年龄(23.4±16.2)岁。所有患者均为男性,一般资料见表1

表1. 两组接受重组人凝血因子Ⅷ制剂治疗血友病A患者的一般资料(x±s).

组别 例数 年龄(岁) 身高a(cm) 体重(kg) 体重指数a(kg/m2 无脂肪体重a(kg) 剂量(IU/kg) 每例患者取样数
拜科奇组 117 27.6±17.7 162.3±21.1 63.6±24.2 47.5±16.7 22.3±5.1 31.5±13.1 3.3±1.4
百因止组 120 23.4±16.2 158.7±27.2 61.1±26.8 45.4±18.5 22.0±5.9 38.2±14.8 3.7±1.8

注:a拜科奇组85例,百因止组89例

2.拜科奇和百因止的半衰期和TAT2%的比较:拜科奇、百因止的半衰期分别为(12.3±3.5)h、(10.8±2.9)h,TAT2%分别为(65.2±21.7)h、(57.0±17.9)h。拜科奇药时曲线见图1,百因止的药时曲线见图2

图1. 拜科奇药时曲线.

图1

BLQ:低于正常下限值

图2. 百因止药时曲线.

图2

BLQ:低于正常下限值

3.不同年龄组拜科奇和百因止的半衰期和TAT2%:为比较年龄对凝血因子PK参数的影响,本研究将研究对象按年龄分为<12岁组、≥12岁组,比较拜科奇和百因止的半衰期和TAT2%。结果表明,在<12岁、≥12岁两个年龄组中,拜科奇的半衰期、TAT2%均长于百因止(表2)。

表2. 不同年龄组的半衰期和凝血因子Ⅷ活性到达2%的时间(TAT2%)(h,x±s).

组别 例数 半衰期 TAT2%
拜科奇
 <12岁 31 11.1±2.5 55.8±14.6
 ≥12岁 86 12.7±3.7 68.6±22.9
百因止
 <12岁 31 9.4±1.8 45.2±11.3
 ≥12岁 89 11.4±3.1 61.1±18.0

4.不同注射剂量组拜科奇、百因止的半衰期和TAT2%:为探讨注射剂量对拜科奇、百因止PK参数的影响,将两组患者分为<20 IU/kg、20~29 IU/kg、30~39 IU/kg、≥40 IU/kg四个剂量组。在每个剂量组,拜科奇的半衰期和TAT2%均长于百因止(表3)。

表3. 不同注射剂量拜科奇、百因止的半衰期和凝血因子Ⅷ活性到达2%的时间(TAT2%)(h,x±s).

组别 例数 半衰期 TAT2%
拜科奇
 <20 IU/kg 23 13.3±4.0 61.5±21.4
 20~29 IU/kg 38 12.3±3.6 63.9±22.4
 30~39 IU/kg 25 12.2±3.5 67.0±24.3
 ≥40 IU/kg 31 11.6±2.6 68.0±19.5
百因止
 <20 IU/kg 14 11.5±3.8 50.8±19.2
 20~29 IU/kg 22 11.4±3.7 56.7±21.0
 30~39 IU/kg 30 11.0±2.9 58.2±18.8
 ≥40 IU/kg 54 10.4±2.3 58.1±15.8

讨论

血友病A是一种X染色体连锁隐性遗传的出血性疾病,其发病机制是FⅧ基因突变[1]。目前,血友病的治疗主要使用凝血因子替代治疗。但不同患者、不同凝血因子制剂的药代动力学差异很大[2],而凝血因子药代动力学参数是实施血友病个体精准治疗的重要依据之一。在我国,拜科奇和百因止是目前临床上使用较多的基因重组人FⅧ制剂,对其药代动力学差异的研究具有实际意义。

本研究中,拜科奇、百因止的半衰期分别为(12.3±3.5)h、(10.8±2.9)h,TAT2%分别为(65.2±21.7)h、(57.0±17.9)h,而且拜科奇的半衰期、TAT2%在不同年龄组和不同注射剂量组中均长于百因止。从机制上来说,原因在于拜科奇表面唾液酸和糖基化水平较百因止高[12],多聚唾液酸在抗人体免疫系统识别和生物降解性上具有明显优势;而蛋白质的糖基化是真核生物一种常见的翻译后修饰,修饰后的蛋白具有更长的半衰期[13][14],因此唾液酸含量和糖基化水平更高的药物具有较长的半衰期。

迄今为止,替代治疗的剂量主要是根据患者体重和凝血因子水平目标值进行计算。不同患者凝血因子的PK参数存在明显差异,虽然一般认为FⅧ半衰期为8~12 h,但最近研究显示FⅧ的半衰期为6~25 h[15][16]。优化血友病的预防治疗,除考虑患者的出血事件外,药代动力学参数可作为预防治疗个体化的重要参考指标。针对患者的药代动力学分析研究发现,不同个体间存在较大的差异,年龄、体重、血型及vWF水平等都可能为其影响因素[15],[17][18]。本研究拜科奇和百因止组中年龄≥12岁的患者的半衰期均长于<12岁年龄组患者。由于结构及性质差异,不同凝血因子制剂在相同个体中的药代动力学分析也不同。而儿童患者的凝血因子半衰期比成人短、体内回收率比成人低、清除率比成人高[19],且随年龄变化,应每2年进行1次药代动力学分析评估以更新数据[15],[17][18]。本研究结果表明FⅧ的药代动力学参数存在个体差异。

通过比较不同剂量FⅧ组患者的药代动力学曲线,我们首次用群体药代动力学的资料证实了已知的凝血因子的药代动力学参数并不依赖于输注剂量的特征。同时,我们的资料也首次显示了众所周知的凝血因子在血浆中等比清除的结果之一,即增加剂量对于达到非常低活性水平所需时间的影响是微不足道的;剂量越高,开始阶段血浆因子浓度下降越快、越显著,但对后续达到较低水平但仍有保护作用的因子水平(如20 IU/L)所需时间没有太大影响。在拜科奇或百因止组达到20 IU/L的时间都只相差6~7 h(终末半衰期的60%)。

总之,本研究提示从群体PK资料看在不同年龄层和不同注射剂量下,拜科奇的PK参数均优于百因止。

Acknowledgments

衷心感谢以下作者和血友病中心同意研究方案并提供数据: Amy Dunn, Nationwide Children's Hospital, Columbus, United States; Anjali Sharathkumar, University of Iowa Children's Hospital, United States; Arlette Ruiz-Saez, Centro. Nacional de Hemofilia, Caracas, Venezuela; Barbara Faganel Kotnik, Haemophilia Comprehensive Care, Ljubljana, Slovenia; Cristina Catarino, Hospital de Santa Maria, Lisbon, Portugal; Emmanuelle de Raucourt, Centre de traitement des Hemophiles Hopital, Mignot, France; Giuseppe Lassandro, U.O. Pediatria Generale e Specialistica “B. Trambusti”, Bari, Italy; John Wu, BC Children's Hospital, Vancouver, Canada; Karim Kentouche, Klinik für Kinder-und Jugendmedizin Universitätsklinikum Jena, Jena, Germany; Raimondo De Cristofaro, Fondazione Policlinico universitario “Agostino Gemelli”, Rome, Italy; Stacy Croteau, Children's Hospital, Boston; Paula James, Kingston General Hospital; Alberto Tosetto, Ospedale S. Bortolo, Vicenza; Daniel Hart, Royal London, UK; Rainer Kobelt, University Children's Hospital Berne; Adrienne Lee, Foothills Medical Centre, Calgary; Cedric Hermans, St-Luc University Hospital, Brussels; Tim Boonstra, Center for Bleeding & Clotting, Minneapolis; Sharandeep Bhogal, Royal Free Hospital, London; Jennifer Lissick, Children's of Minnesota, Minneapolis; Kathelijne Peerlinck, Hemofiliecentrum, UZ Leuven; Emanuela Marchesini, Haemophilia Centre of Perugia; Ellis Neufeld, St. Jude Children's Research Hospital, Memphis; Birgit Frotscher, CHU, University Hospital of Nancy; Riitta Lassila, Helsinki University Hospital; María Eva Mingot Castellano,Hospital Regional Universitario de Málaga; Treg Harris, Indiana Hemophilia & Thrombosis Center, Indianapolis

Funding Statement

基金项目:北京市自然科学基金(7162151);诺和诺德血友病研究基金(NNHRF)

Fund program: Beijing Natural Science Foundation Project(7162151); Novo Nordisk Hemophilia Research Fund(NNHRF)

References

  • 1.Iorio A, Marcucci M, Cheng J, et al. Patient data meta-analysis of Post-Authorization Safety Surveillance (PASS) studies of haemophilia A patients treated with rAHF-PFM[J] Haemophilia. 2014;20(6):777–783. doi: 10.1111/hae.12480. [DOI] [PubMed] [Google Scholar]
  • 2.Shapiro AD, Schoenig-Diesing C, Silvati-Fidell L, et al. Integrated analysis of safety data from 12 clinical interventional studies of plasma- and albumin-free recombinant factor VIII (rAHF-PFM) in haemophilia A[J] Haemophilia. 2015;21(6):791–798. doi: 10.1111/hae.12724. [DOI] [PubMed] [Google Scholar]
  • 3.Loomans JI, Lock J, Peters M, et al. Haemophilia[J] Ned Tijdschr Geneeskd. 2014;158:A7357. [PubMed] [Google Scholar]
  • 4.中华医学会血液学分会血栓与止血学组, 中国血友病协作组. 血友病诊断与治疗中国专家共识(2017年版)[J] 中华血液学杂志. 2017;38(5):364–370. doi: 10.3760/cma.j.issn.0253-2727.2017.05.002. [DOI] [Google Scholar]
  • 5.Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. Guidelines for the management of hemophilia[J] Haemophilia. 2013;19(1):e1–47. doi: 10.1111/j.1365-2516.2012.02909.x. [DOI] [PubMed] [Google Scholar]
  • 6.Iorio A, Marchesini E, Marcucci M, et al. Clotting factor concentrates given to prevent bleeding and bleeding-related complications in people with hemophilia A or B[J] Cochrane Database Syst Rev. 2011;(9):CD003429. doi: 10.1002/14651858.CD003429.pub4. [DOI] [PubMed] [Google Scholar]
  • 7.Iorio A, Iserman E, Blanchette V, et al. Target plasma factor levels for personalized treatment in haemophilia: a Delphi consensus statement[J] Haemophilia. 2017;23(3):e170–e179. doi: 10.1111/hae.13215. [DOI] [PubMed] [Google Scholar]
  • 8.Iorio A, Mceneny-King A, Keepanasseril A, et al. What is the role for population pharmacokinetics in hemophilia?[J] International Journal of Pharmacokinetics. 2017;2(2):125–136. [Google Scholar]
  • 9.Kovnir SV, Orlova NA, Shakhparonov MI, et al. A Highly Productive CHO Cell Line Secreting Human Blood Clotting Factor IX[J] Acta Naturae. 2018;10(1):51–65. [PMC free article] [PubMed] [Google Scholar]
  • 10.McEneny-King A, Iorio A, Foster G, et al. The use of pharmacokinetics in dose individualization of factor VIII in the treatment of hemophilia A[J] Expert Opin Drug Metab Toxicol. 2016;12(11):1313–1321. doi: 10.1080/17425255.2016.1214711. [DOI] [PubMed] [Google Scholar]
  • 11.Hua B, Lee A, Fan L, et al. Low-dose factor VIII infusion in Chinese adult haemophilia A patients: pharmacokinetics evidence that daily infusion results in higher trough level than with every-other-day infusion with similar factor VIII consumption[J] Haemophilia. 2017;23(3):417–421. doi: 10.1111/hae.13182. [DOI] [PubMed] [Google Scholar]
  • 12.Teare J M, Kates DS, Shah A, et al. Increased branching and sialylation of N-linked glycans correlate with an improved pharmacokinetic profile for BAY 81-8973 compared with other full-length rFVIII products[J] Drug Des Devel Ther. 2019;13:941–948. doi: 10.2147/DDDT.S188171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bovenschen N, Rijken DC, Havekes LM, et al. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor[J] J Thromb Haemost. 2005;3(6):1257–1265. doi: 10.1111/j.1538-7836.2005.01389.x. [DOI] [PubMed] [Google Scholar]
  • 14.魏 莹, 张 哲文, 陆 亚敏, et al. 长效重组蛋白药物发展动态[J] 生物工程学报. 2018;34(3):360–368. doi: 10.13345/j.cjb.170241. [DOI] [PubMed] [Google Scholar]
  • 15.Klamroth R, Simpson M, von Depka-Prondzinski M, et al. Comparative pharmacokinetics of rVIII-SingleChain and octocog alfa (Advate®) in patients with severe haemophilia A[J] Haemophilia. 2016;22(5):730–738. doi: 10.1111/hae.12985. [DOI] [PubMed] [Google Scholar]
  • 16.Stoffman J, Andersson NG, Branchford B, et al. Common themes and challenges in hemophilia care: a multinational perspective[J] Hematology. 2019;24(1):39–48. doi: 10.1080/10245332.2018.1505225. [DOI] [PubMed] [Google Scholar]
  • 17.Croteau SE, Callaghan MU, Davis J, et al. Focusing in on use of pharmacokinetic profiles in routine hemophilia care[J] Res Pract Thromb Haemost. 2018;2(3):607–614. doi: 10.1002/rth2.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Iorio A, Edginton AN, Blanchette V, et al. Performing and interpreting individual pharmacokinetic profiles in patients with Hemophilia A or B: Rationale and general considerations[J] Res Pract Thromb Haemost. 2018;2(3):535–548. doi: 10.1002/rth2.12106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Björkman S, Blanchette VS, Fischer K, et al. Comparative pharmacokinetics of plasma- and albumin-free recombinant factor VIII in children and adults: the influence of blood sampling schedule on observed age-related differences and implications for dose tailoring[J] J Thromb Haemost. 2010;8(4):730–736. doi: 10.1111/j.1538-7836.2010.03757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES