Abstract
目的
研究CYP2C19基因型对血液病患者伏立康唑血药浓度的影响,并探讨伏立康唑血药浓度监测在侵袭性真菌病(IFD)防治中的价值。
方法
回顾性分析2016年1月至12月接受伏立康唑静脉注射的65例血液病合并IFD患者临床资料。应用焦磷酸测序检测患者CYP2C19基因型,超高效液相色谱-串联质谱法监测患者伏立康唑血清谷浓度。
结果
65例患者中,CYP2C19基因型伏立康唑快代谢型30例,中代谢型33例,慢代谢型2例,将中代谢型与慢代谢型归于非快代谢型组。共检测伏立康唑血药浓度169次,快代谢型组患者伏立康唑血清谷浓度明显低于非快代谢型组[0.98(0.38~2.08)mg/L对2.19(1.53~4.27)mg/L,z=10.286,P<0.001]。26例伏立康唑平均血清谷浓度<1.5 mg/L患者,其治疗失败率(50.0%)明显高于伏立康唑平均血清谷浓度≥1.5 mg/L患者(20.5%)(P=0.052)。5例伏立康唑平均血清谷浓度>5.5 mg/L患者中,4例出现视觉障碍;60例伏立康唑平均血清谷浓度≤5.5 mg/L患者中,4例(6.1%)出现视觉障碍,1例(1.5%)出现中枢神经系统毒性,不良反应发生率差异有统计学意义(χ2=11.689,P=0.020)。
结论
CYP2C19基因快代谢型患者伏立康唑血清谷浓度明显低于CYP2C19基因非快代谢型,恰当的伏立康唑血清谷浓度能减少药物不良反应,并降低抗真菌治疗的失败率。
Keywords: 伏立康唑, CYP2C19基因多态性, 血药浓度, 不良反应
Abstract
Objective
To evaluate the effects of CYP2C19 genetic polymorphism on the plasma concentration of voriconazole in patients with hematological disease and the value of serial monitoring plasma concentrations in the treatment and prevention of invasive fungal disease (IFD).
Methods
From January 2016 to December 2016, 65 hematological patients who received voriconazole intravenous administration for the treatment of invasive fungal disease were enrolled in this study. The population CYP2C19 polymorphism of voriconazole were performed using PCR-Pyrosequencing. The trough plasma concentrations of vriconazole (Ctrough) was detected by ultra performance liquid chromatography tandem mass spectrometry.
Results
Based on the genotype analysis, 65 subjects were identified as extensive metabolizers' group (30 cases) and poor metabolizers' group (35 cases). The Ctrough of the 65 patients were detected for 169 times totally, and there was a significant difference of Ctrough values between the two groups [0.98(0.38–2.08) mg/L vs 2.19(1.53–4.27) mg/L, z=10.286, P<0.001]. The medium of Ctrough in 65 hematological patients were described. Lack of response to therapy was more frequent in patients with voriconazole levels <1.5 mg/L (50.0%) than in those with voriconazole levels >1.5 mg/L (20.5%) (P=0.052). And the risk of adverse events was more frequent in patients with voriconazole levels >5.5 mg/L (80.0%) than in those with voriconazole levels ≤5.5 mg/L (8.3%) (χ2=11.689, P=0.020).
Conclusion
Patients with CYP2C19 wild-type phenotype are extensive metabolizers, their Ctrough of voriconazole are significantly lower than patients with CYP2C19 non-wild-type phenotype (poor metabolizers). Appropriate concentrations of vriconazole can improve the efficacy and safety during treatment.
Keywords: Voriconazole, CYP2C19 genetic polymorphisms, Plasma concentrations, Adverse events
伏立康唑常用于血液病患者化疗及造血干细胞移植过程中侵袭性真菌病(IFD)的预防及治疗[1]–[2],其血清药物谷浓度与IFD临床疗效及不良反应相关[3]。伏立康唑主要通过细胞色素P450(CYP450)的同工酶CYP2C19、CYP2C9和CYP3A4代谢,其中CYP2C19基因型是影响伏立康唑药代动力学的主要因素[4]–[5]。CYP2C19的遗传多态性决定了其酶活性存在显著的个体差异,从而导致伏立康唑在体内的代谢存在差异[6]–[9]。根据CYP2C19基因型可分为伏立康唑极快代谢型(*1/*17、*17/*17)、快代谢型(*1/*1)、中代谢型(*1/*2、*1/*3)及慢代谢型(*2/*2、*3/*3、*2/*3),在亚洲人群中CYP2C19*2、CYP2C19*3检出率高[10]–[11]。而目前CYP2C19基因多态性和伏立康唑血药浓度监测在血液病患者中的应用鲜有报道。本研究中,我们通过检测血液病患者的CYP2C19基因型并监测伏立康唑血清谷浓度,探索CYP2C19基因多态性对伏立康唑血药浓度的影响以及伏立康唑血清谷浓度监测在IFD治疗中的价值。
病例与方法
1.病例资料:以2016年1月至12月苏州大学附属第一医院诊治的血液病合并IFD并接受伏立康唑静脉注射治疗的65例患者为研究对象。疾病类型:急性髓系白血病38例(58.5%),急性淋巴细胞白血病16例(24.6%),急性混合细胞白血病3例(4.6%),再生障碍性贫血4例(6.2%),慢性髓性白血病3例(4.6%),骨髓增生异常综合征1例(1.5%)。IFD诊断标准参照《血液病/恶性肿瘤患者侵袭性真菌感染的诊断标准与治疗原则(第四次修订)》[12],其中确诊IFD 5例,临床诊断IFD 18例,拟诊IFD 31例,未确定IFD 11例。排除标准:①有明显肝肾功能损伤和(或)免疫缺陷等疾病的患者;②联合应用苯巴比妥、奥美拉唑等其他影响CYP2C19酶药物的患者。
2.焦磷酸测序检测CYP2C19基因型:提取患者外周血DNA,参照文献[13]方法进行PCR及焦磷酸测序。由于亚洲人群极快代谢型比例较低,我们未常规开展极快代谢型检测。
3.伏立康唑治疗方法及血药浓度检测:伏立康唑注射液第1天予6 mg/kg每12 h 1次;第2天起予4 mg/kg每12 h 1次。全部65例患者均治疗14 d以上,中位治疗23(18~53)d。参照文献[14]方法,采用超高效液相色谱-串联质谱法,利用Acquity UPLC超高效液相色谱仪及Xevo TQS三重四级杆串联质谱仪(美国Waters公司产品)检测伏立康唑给药第7、14、21、28 d的(根据伏立康唑使用时间)血清谷浓度。参照文献[15]定义伏立康唑有效治疗浓度为1.5~5.5 mg/L。
4.疗效及不良反应评价标准:参照文献[12]标准评价IFD疗效,不良反应参照PRO-CTCAE标准[16]进行评价。
5.统计学处理:采用SPSS 21.0软件进行统计学分析,符合正态分布的计量资料以x±s表示,采用t检验进行组间比较;不满足正态分布的计量资料以中位数(范围)表示,采用秩和检验进行组间比较。构成比以例数(百分比)表示,采用卡方检验或Fisher精确概率法进行比较。
结果
1.不同CYP2C19基因型患者一般特征:65例患者中,快代谢型30例,中代谢型33例,慢代谢型2例,将中代谢型与慢代谢型归于非快代谢型组,与快代谢型患者一般临床特征比较见表1,差异均无统计学意义。
表1. CYP2C19基因型中伏立康唑快代谢型及非快代谢型患者一般临床特征比较.
临床特征 | 伏立康唑快代谢型(30例) | 伏立康唑非快代谢型(35例) | 统计量 | P值 |
年龄[岁,M(范围)] | 50.5(11~77) | 53(13~78) | 0.040 | 0.968 |
体质指数(x±s) | 21.65±3.24 | 22.18±3.12 | −0.671 | 0.505 |
性别[例(%)] | 0.015 | 0.901 | ||
男 | 21(70.0) | 24(68.6) | ||
女 | 9(30.0) | 11(31.4) | ||
疾病类型[例(%)] | 3.628 | 0.604 | ||
急性髓系白血病 | 15(50.0) | 23(65.7) | ||
急性淋巴细胞白血病 | 9(30.0) | 7(20.0) | ||
急性混合细胞白血病 | 2(6.7) | 1(2.9) | ||
再生障碍性贫血 | 2(6.7) | 2(5.7) | ||
慢性髓性白血病 | 2(6.7) | 1(2.9) | ||
骨髓增生异常综合征 | 0(0) | 1(2.9) | ||
治疗方式[例(%)] | 5.576 | 0.062 | ||
化疗 | 15(50.0) | 18(51.4) | ||
移植 | 15(50.0) | 13(37.2) | ||
CAR-T治疗 | 0(0) | 4(11.4) | ||
真菌感染情况[例(%)] | 6.670 | 0.083 | ||
确诊IFD | 0(0) | 5(14.3) | ||
临床诊断IFD | 9(30.0) | 9(25.7) | ||
拟诊IFD | 15(50.0) | 16(45.7) | ||
未确定IFD | 6(20.0) | 5(14.3) | ||
用药前合并肝损伤[例(% | )] | 0.093 | ||
是 | 3(10.0) | 0(0) | ||
否 | 27(90.0) | 35(100.0) | ||
药物间相互作用[例(%)] | 1.676 | 0.195 | ||
有 | 18(60.0) | 15(43.3) | ||
无 | 12(40.0) | 20(56.7) |
注:IFD:侵袭性真菌病
2.不同CYP2C19基因型患者伏立康唑血清谷浓度比较:30例伏立康唑快代谢型组患者中共检测伏立康唑血药浓度92次,中位血清谷浓度为0.98(0.38~2.08)mg/L,35例伏立康唑非快代谢型组患者中共检测伏立康唑血药浓度77次,中位血清谷浓度为2.19(1.53~4.27)mg/L,快代谢型组明显低于非快代谢型组(z=10.286,P<0.001)。
3.是否达有效浓度对疗效的影响:65例患者中,26例伏立康唑平均血清谷浓度<1.5 mg/L,其中13例(50.0%)伏立康唑治疗失败,6例为目标治疗,7例为经验性治疗;39例伏立康唑平均血清谷浓度≥1.5 mg/L,8例(20.5%)伏立康唑治疗失败,3例为目标治疗,5例为经验性、预防性治疗。伏立康唑平均血清谷浓度<1.5 mg/L的患者疗效较差(P=0.052)(表2)。
表2. 伏立康唑不同平均血清谷浓度分组临床疗效及药物不良反应比较.
组别 | 例数 | 疗效[有效例数/总例数(%)] |
不良反应[例(%)] |
||||
目标治疗 | 经验/诊断驱动治疗 | 预防治疗 | 肝损伤 | 视觉障碍 | 中枢神经系统毒性 | ||
伏立康唑血浓度<1.5 mg/L | 26 | 2/8(25.0) | 4/11(36.4) | 7/7(100.0) | 0(0) | 3(4.6) | 2(3.1) |
伏立康唑血浓度1.5~5.5 mg/L | 34 | 3/5(60.0) | 15/18(83.3) | 10/11(90.9) | 0(0) | 4(6.1) | 1(1.5) |
伏立康唑血浓度>5.5 mg/L | 5 | 2/3(66.7) | 1/2(50.0) | 无病例 | 0(0) | 4(6.1) | 0(0) |
4.不良反应:65例静脉使用伏立康唑的患者中,19例出现不同程度的肝酶、胆红素升高,但均未达到常见不良反应的标准。5例伏立康唑平均血清谷浓度>5.5 mg/L患者中,4例出现视觉障碍;60例伏立康唑平均血清谷浓度≤5.5 mg/L患者中,4例(6.1%)出现视觉障碍,1例(1.5%)出现中枢神经系统毒性。伏立康唑平均血清谷浓度大于治疗浓度上限时,患者药物相关的不良反应发生率升高(χ2=11.689,P=0.020)(表2)。
讨论
CYP2C19基因型是影响伏立康唑代谢的主要因素,不同基因型对伏立康唑药代动力学的影响十分显著。CYP2C19慢代谢型与快代谢型相比,代谢伏立康唑的能力减弱,导致清除率下降,半衰期和达峰时间延长,平均驻留时间延长,药-时曲线下面积增大[17]。Lee等[18]研究表明,在相同剂量下快代谢型与慢代谢型患者伏立康唑平均血清谷浓度分别为2.80(95%CI 1.52~5.14)mg/L和5.10(95%CI2.78~9.27)mg/L。本组患者中,非快代谢组伏立康唑谷浓度明显高于快代谢组[2.19(1.53~4.27)mg/L对0.98(0.38~2.08)mg/L,z=−10.286,P<0.001],提示CYP2C19的遗传多态性显著影响伏立康唑的药代动力学。伏立康唑疗效和不良反应与血药浓度密切相关,伏立康唑平均血清谷浓度<1.5 mg/L的患者疗效较差,而伏立康唑平均血清谷浓度大于治疗浓度上限时,患者药物相关的不良反应发生率升高(χ2=11.689,P=0.020)。因此应根据个体的CYP2C19基因型,制定个体化治疗方案[19]。如患者为快代谢型,建议按常规剂量给药,但需密切观察伏立康唑血药浓度,如浓度过低,则需及时增加剂量;对于中代谢型患者,按常规剂量给药即可;对于慢代谢型患者,初始剂量可以低于常规用量,密切监测(每周2次)药物浓度,根据结果及时调整伏立康唑用量,并观察不良反应。
伏立康唑的浓度治疗窗狭窄,将伏立康唑的血药谷浓度控制在有效浓度范围内是非常必要的。一般认为,快代谢型患者代谢药物较快,不易发生不良反应;而慢代谢型患者代谢药物缓慢,容易出现药物的蓄积导致不良反应的发生。Luong等[20]Meta分析结果显示伏立康唑浓度处于治疗浓度区间病例的IFD临床有效率是伏立康唑浓度小于治疗浓度下限病例的2倍,而一旦伏立康唑浓度超过治疗浓度上限,不良反应的发生风险明显增高(OR=4.60)。Autmizguine等[15]研究发现伏立康唑有效治疗浓度范围为1.0~5.5 mg/L。相关研究显示低伏立康唑血药浓度与治疗失败相关,而伏立康唑血药浓度>5.5 mg/L的患者中枢神经毒性、肝损伤等不良反应发生率明显升高[21]–[23]。本研究中65例接受静脉伏立康唑治疗的血液病患者,26例伏立康唑平均血清谷浓度低于治疗浓度下限,其中13例(50.0%)伏立康唑治疗失败,治疗失败发生率较伏立康唑平均血清谷浓度>1.5 mg/L的患者高;5例伏立康唑平均血清谷浓度>5.5 mg/L患者中4例发生药物不良反应,不良反应发生率较伏立康唑平均血清谷浓度≤5.5 mg/L患者高。其中有3例伏立康唑平均血清谷浓度≤5.5 mg/L患者发生中枢神经系统毒性,均为儿童患者,考虑可能与血脑屏障发育不完善有关;但由于样本量较少,可能存在偏倚。因此,需要通过大样本、年龄分层研究,探讨伏立康唑在儿童及老年人群中的疗效及安全性,指导临床实践。
综上,CYP2C19基因多态性对机体内伏立康唑血药浓度的影响作用显著,临床医师可根据患者的CYP2C19基因型制定个体化的药物剂量。同时,有必要对应用伏立康唑的患者进行血药浓度监测,根据血药浓度结果及时调整给药剂量,以确保疗效,并尽可能减少不良反应的发生,进一步提高用药的合理性。
Funding Statement
基金项目:国家重点研发计划(2016YFC0902800);江苏省创新能力建设专项(BM2015004);国家自然科学基金面上项目(81270645、81000222);国家自然科学基金重大国际合作和交流项目(81320108023);江苏省科技厅临床前沿技术项目(BE201765);江苏省自然科学基金(BK20141202);苏州市科技计划(SYS201457)
Fund program: National Key Progject of R & D (2016YFC0902800); Innovation Capacity Building Progjec of Jiangsu Province(BM2015004); Major Natural Science Foundation of China (81270645, 81000222); Major Inernational Cooperation and Exchange Project of National Natural Science Foundation of China (81320108023); Frontier Technology Project of Department of Science and Technology of Jiangsu Province (BE201765); Natural Science Foundation of Jiangsu Province (BK20141202); Suzhou Science and Technology Plan (SYS201457)
References
- 1.Sili U, Bilgin H, Masania R, et al. Successful treatment of an invasive fungal infection caused by Talaromyces sp. with voriconazole[J] Med Mycol Case Rep. 2015;8:21–23. doi: 10.1016/j.mmcr.2015.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Barreto JN, Beach CL, Wolf RC, et al. The incidence of invasive fungal infections in neutropenic patients with acute leukemia and myelodysplastic syndromes receiving primary antifungal prophylaxis with voriconazole[J] Am J Hematol. 2013;88(4):283–288. doi: 10.1002/ajh.23388. [DOI] [PubMed] [Google Scholar]
- 3.Hicks JK, Crews KR, Flynn P, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes[J] Pharmacogenomics. 2014;15(8):1065–1078. doi: 10.2217/pgs.14.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Thompson GR, Lewis JS. Pharmacology and clinical use of voriconazole[J] Expert Opin Drug Metab Toxicol. 2010;6(1):83–94. doi: 10.1517/17425250903463878. [DOI] [PubMed] [Google Scholar]
- 5.Weiss J, Ten HMM, Burhenne J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole[J] J Clin Pharmacol. 2009;49(2):196–204. doi: 10.1177/0091270008327537. [DOI] [PubMed] [Google Scholar]
- 6.Hoenigl M, Duettmann W, Raggam RB, et al. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies[J] Antimicrob Agents Chemother. 2013;57(7):3262–3267. doi: 10.1128/AAC.00251-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kim SH, Lee DG, Kwon JC, et al. Clinical Impact of Cytochrome P450 2C19 Genotype on the Treatment of Invasive Aspergillosis under Routine Therapeutic Drug Monitoring of Voriconazole in a Korean Population[J] Infect Chemother. 2013;45(4):406–414. doi: 10.3947/ic.2013.45.4.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Wang T, Zhu H, Sun J, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections[J] Int J Antimicrob Agents. 2014;44(5):436–442. doi: 10.1016/j.ijantimicag.2014.07.013. [DOI] [PubMed] [Google Scholar]
- 9.Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation[J] Pharmacol Ther. 2013;138(1):103–141. doi: 10.1016/j.pharmthera.2012.12.007. [DOI] [PubMed] [Google Scholar]
- 10.Wang T, Zhu H, Sun J, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections[J] Int J Antimicrob Agents. 2014;44(5):436–442. doi: 10.1016/j.ijantimicag.2014.07.013. [DOI] [PubMed] [Google Scholar]
- 11.Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism[J] Clin Pharmacokinet. 2002;41(12):913–958. doi: 10.2165/00003088-200241120-00002. [DOI] [PubMed] [Google Scholar]
- 12.中国侵袭性真菌感染工作组. 血液病/恶性肿瘤患者侵袭性真菌病的诊断标准与治疗原则(第四次修订版)[J] 中华内科杂志. 2013;52(8):704–709. doi: 10.3760/cma.j.issn.0578-1426.2013.08.030. [DOI] [Google Scholar]
- 13.许 景峰, 赵 刚涛, 许 茜, et al. 焦磷酸测序技术检测UGT1A3和UGT2B7在中国汉族人群中的基因多态性[J] 中南药学. 2011;9(10):728–733. doi: 10.3969/j.issn.1672-2981.2011.10.003. [DOI] [Google Scholar]
- 14.浦 尤彬, 董 吉, 缪 丽燕. 超高效液相色谱–串联质谱法测定人血浆中尼洛替尼的研究[J] 中国临床药理学杂志. 2015;31(21):2143–2145. doi: 10.13699/j.cnki.1001-6821.2015.21.018. [DOI] [Google Scholar]
- 15.Autmizguine J, Krajinovic M, Rousseau J, et al. Pharmacogenetics and beyond: variability of voriconazole plasma levels in a patient with primary immunodeficiency[J] Pharmacogenomics. 2012;13(16):1961–1965. doi: 10.2217/pgs.12.175. [DOI] [PubMed] [Google Scholar]
- 16.Basch E, Reeve BB, Mitchell SA, et al. Development of the National Cancer Institute's Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)[J] J Natl Cancer Inst. 2014;106(9):dju244. doi: 10.1093/jnci/dju244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.李 晓菲, 于 彩媛, 程 毅, et al. 细胞色素基因多态性对健康受试者伏立康唑药代动力学影响的系统评价[J] 中国临床药理学杂志. 2016;32(3):267–269. doi: 10.13699/j.cnki.1001-6821.2016.03.023. [DOI] [Google Scholar]
- 18.Lee S, Kim BH, Nam WS, et al. The effect of CYP2C19 polymorphism of the pharmacokinetics and tolerability of voriconazole after multiple orel adminstions in healthy volunteers[J] J Clin pharmacol. 2010;87(suppl l):s26–s27. doi: 10.1177/0091270010395510. [DOI] [PubMed] [Google Scholar]
- 19.梁 峰华, 孟 冬梅, 谢 慧, et al. CYP2C19基因多态性对侵袭性真菌感染重症患者伏立康唑血药浓度的影响[J] 中国医院药学杂志. 2015;35(16):1456–1461. doi: 10.13286/j.cnki.chinhosppharmacyj.2015.16.05. [DOI] [Google Scholar]
- 20.Luong ML, Al-Dabbagh M, Groll AH, et al. Utility of voriconazole therapeutic drug monitoring: a meta-analysis[J] J Antimicrob Chemother. 2016;71(7):1786–1799. doi: 10.1093/jac/dkw099. [DOI] [PubMed] [Google Scholar]
- 21.Chu HY, Jain R, Xie H, et al. Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events[J] BMC Infect Dis. 2013;13:105. doi: 10.1186/1471-2334-13-105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Lat A, Thompson GR. Update on the optimal use of voriconazole for invasive fungal infections[J] Infect Drug Resist. 2011;4:43–53. doi: 10.2147/IDR.S12714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Pascual A, Calandra T, Bolay S, et al. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes[J] Clin Infect Dis. 2008;46(2):201–211. doi: 10.1086/524669. [DOI] [PubMed] [Google Scholar]