Skip to main content
International Journal of Environmental Research and Public Health logoLink to International Journal of Environmental Research and Public Health
. 2020 Jun 12;17(12):4182. doi: 10.3390/ijerph17124182

Statistical and Network-Based Analysis of Italian COVID-19 Data: Communities Detection and Temporal Evolution

Marianna Milano 1,, Mario Cannataro 1,*,
PMCID: PMC7344815  PMID: 32545441

Abstract

The coronavirus disease (COVID-19) outbreak started in Wuhan, China, and it has rapidly spread across the world. Italy is one of the European countries most affected by COVID-19, and it has registered high COVID-19 death rates and the death toll. In this article, we analyzed different Italian COVID-19 data at the regional level for the period 24 February to 29 March 2020. The analysis pipeline includes the following steps. After individuating groups of similar or dissimilar regions with respect to the ten types of available COVID-19 data using statistical test, we built several similarity matrices. Then, we mapped those similarity matrices into networks where nodes represent Italian regions and edges represent similarity relationships (edge length is inversely proportional to similarity). Then, network-based analysis was performed mainly discovering communities of regions that show similar behavior. In particular, network-based analysis was performed by running several community detection algorithms on those networks and by underlying communities of regions that show similar behavior. The network-based analysis of Italian COVID-19 data is able to elegantly show how regions form communities, i.e., how they join and leave them, along time and how community consistency changes along time and with respect to the different available data.

Keywords: COVID-19, network analysis, community detection

1. Introduction

Coronavirus disease, known as COVID-19, emerged in the city of Wuhan, in China, in November 2019 [1].

The disease is caused by the novel coronavirus Sars-CoV-2 [2] and its clinical manifestations include fever, cough, fatigue, chest distress, diarrhea, nausea, vomiting [3] and also acute respiratory distress syndrome in severe cases [4].

COVID-19 is characterized by a long incubation period, high infectivity, and different transmission methods [5]. The contagion happens mainly through respiratory and blood contact with the coronavirus.

In a few months, COVID-19 epidemic quickly spread to Asian countries and it reached more than 200 countries in the world, causing tens of thousands of deaths.

On 11 March 2020, COVID-19 disease was declared a pandemic by the World Health Organization.

In Italy, COVID-19 was identified in January 2020 [6] and the outbreak started in Lombardi and Veneto at the end of February 2020. From the northern regions of Italy, the disease spread very quickly to the nearest regions and then to the rest ones. Italy was considered one of the main epicenters of the pandemic, with 97,689 infections and 10,799 deaths up to 29th of March. The aim of this study is to provide a graph-based representation of daily data provided by Italian Civil Protection that enables evaluation of which regions show similar behavior and discovery of communities. The data refers to the period 24 February to 29 March 2020. To do this, we designed an analysis pipeline to model Italian COVID-19 data as networks and to perform network-based analysis. At first, for each type of data, we evaluated the similarity among a pair of regions by using statistical tests, and accordingly, we built ten similarity matrices (one for each Italian COVID-19 datum). After that, we mapped the similarity matrices into networks where the nodes represent the Italian region, and the edges connect statistically similar regions. Finally, we evaluated how the networks evolved over the weeks by analyzing the networks at different time points: (i) over the period 24 February to 29 March 2020 (study period); and (ii) in single weeks. Then, network-based analysis was performed mainly to discover communities of regions that show similar behavior. The main contribution of the paper is a network-based representation of COVID-19 diffusion similarity among regions and graph-based visualization to underline similar diffusion regions.

The rest of the paper is organized as follows: Section 1 presents the pipeline to analyze Italian COVID-19 data, Section 2 presents the application of our methodology on Italian COVID-19 data, and Section 3 discusses the results. Finally, Section 4 concludes the paper.

2. Analysis Pipeline

We designed an analysis pipeline with the goal of investigating similarity among Italian regions with respect to data provided by Italian Civil Protection and to identify clusters of regions with similar behavior.

The analysis pipeline includes the following steps:

  1. Building of a similarity matrix. The first step consists of the building of a similarity matrix that records the similarity among a pair of regions with respect to an Italian COVID-19 data measure. The similarity is computed by applying a statistical test. We decided to use the Wilcoxon Sum Rank Test. Therefore, the (i, j) value of the matrix for data k (e.g., swab data) represents the p-value of the Wilcoxon statistical test obtained by performing the test on the swab measures of region i with respect to region j. Lower p-value means that regions are more dissimilar with respect to that measure. Higher p-value means that regions are more similar with respect to that measure. We used the usual significance threshold of 0.05, thus matrices report only p-vales ≥ 0.05, while p-values < 0.05 are mapped to zero.

  2. Mapping similarity matrices to networks. The second step consists of the building networks starting from the similarity matrices. We map each matrix M(i, j) to a network N, where nodes represent the Italian regions and an edge connects two regions (i, j) if the p-value in the similarity matrix is greater than the significance threshold of 0.05. edges are weighted with the p-value.

  3. Temporal analysis of networks. The third step consists of the building of the network at different time intervals. Assuming that the analyzed data presents a temporal evolution, for each one, the corresponding networks at different time points (i.e., at the end of week 1,2, …, 5) and for an study period are built.

  4. Community detection. The fourth step consists of the extraction of community on the network by applying an appropriate community detection algorithm. For each network, we extracted subgroups of regions that form a community based on similarity of point of view. The identification of community is performed on the networks related to the study period and for all single week. Then, we extract the communities at different time points, i.e., at the end of the first week, after three weeks, and after five weeks (the study period).

3. Results

We applied the designed pipeline to analyze the data at different temporal zoom levels e.g., by analyzing the period from 24 February to 29 March 2020 and by focusing on single weeks as well as the entire observation. For convenience, in the rest of paper we refer to the period 24 February to 29 March 2020 as the study period.

3.1. Input DataSet

The present analysis was carried out on the dataset of COVID-19 updated at the https://github.com/pcm-dpc/COVID-19 database, provided by Italian Civil Protection. The dataset consists of:

  • Hospitalized with Symptoms, the numbers of hospitalized patients that present COVID-19 symptoms;

  • Intensive Care, the numbers of hospitalized patients in Intensive Care Units;

  • Total Hospitalized, the total numbers of hospitalized patients;

  • Home Isolation, the numbers of subjects that are in isolation at home;

  • Total Currently Positive, the numbers of subjects that are coronavirus positive;

  • New Currently Positive, the numbers of subjects that are daily coronavirus positive;

  • Discharged/Healed the numbers of subjects that are healed from the disease;

  • Deceased, the numbers of dead patients;

  • Total Cases, the numbers of subjects affected by COVID-19;

  • Swabs, the numbers of test swab carried on positive subjects and on subjects with suspected positivity.

The data is daily provided for each Italian region. The data occupies 47.6 Mbytes of memory.

3.2. Building of Similarity Matrices

To build similarity matrices for Italian COVID-19 data, we performed a set of statistical analyses. All analyses are performed by using R software [7]. At first, we computed the main descriptive statistics for all regions in the study period, reported in Table 1.

Table 1.

Descriptive statistics for all regions in the study period.

Region Statistics Hospitalized with Symptoms Intensive Care Total Hospitalized Home Isolation Total Currently Positive New Currently Positive Discharged/Healed Deceased Total Cases Swabs
Abruzzo sample size 35 35 35 35 35 35 35 35 35 35
mean 198.968 36.079 235.048 664.429 899.476 45.381 105.397 102.571 1107.444 10,235.143
sd 144.026 26.174 167.182 654.035 797.205 38.981 135.614 107.148 1026.840 11,061.168
median 280 41 344 516 860 40 23 63 946 5488
Q1 31 9 26 11 37 7 0 1 38 310
Q3 324 57 375 1309.5 1679.5 68.5 185.5 202 2067 18,764.5
Basilicata sample size 35 35 35 35 35 35 35 35 35 35
mean 27.254 7.905 35.159 96.714 131.873 5.810 18.381 8.016 158.270 2407.730
sd 25.359 6.897 30.277 84.957 114.971 6.862 33.324 9.511 144.778 2857.527
median 22 7 37 95 133 3 0 1 134 1046
Q1 1 0.5 2 5.5 7.5 1 0 0 7.5 151.5
Q3 57.5 14.5 65.5 180.5 246 9 14 16 310 3873
Bolzano sample size 35 35 35 35 35 35 35 35 35 35
mean 130.000 26.063 156.063 592.143 748.206 39.381 221.730 95.270 1065.206 11,782.746
sd 101.958 22.913 124.171 505.379 603.912 35.063 299.997 101.007 940.736 12,108.597
median 146 20 176 525 791 35 67 48 906 7744
Q1 12.5 2.5 15 41.5 56.5 5 0 0 56.5 55.5
Q3 224 45 271 955.5 1275 57 400.5 195.5 1956 21,526
Calabria sample size 35 35 35 35 35 35 35 35 35 35
mean 87.111 9.349 96.460 309.889 406.349 17.286 38.492 30.222 475.063 9352.778
sd 67.007 7.393 72.266 280.259 347.032 19.409 56.738 31.717 422.581 9747.839
median 101 8 124 248 372 13 7 14 393 5933
Q1 9 2 11 4.5 14 2 1 0 16 382.5
Q3 153 15 160.5 606 788.5 26.5 53.5 65.5 908 17,065
Campania sample size 35 35 35 35 35 35 35 35 35 35
mean 322.016 59.381 381.397 1077.333 1458.730 68.746 211.857 122.238 1792.825 18,071.143
sd 249.885 48.701 288.747 995.719 1262.173 58.133 306.788 125.413 1633.241 20,305.951
median 448 58 562 631 1169 61 58 83 1310 8346
Q1 48 9.5 58.5 83.5 137.5 18 2.5 0.5 140.5 1258
Q3 555 100 647 2301 2929.5 98 262.5 234.5 3479.5 32,763
Emilia sample size 35 35 35 35 35 35 35 35 35 35
mean 2249.873 223.810 2473.683 5045.413 7519.095 388.095 2054.937 1348.746 10,922.778 52,816.127
sd 162.468 28.585 188.984 673.216 843.362 40.047 137.073 109.628 1077.360 11,368.142
median 2846 269 3122 5195 8850 350 792 1174 10,816 42,395
Q1 707 101 808 694.5 1502.5 206 34.5 99 1636 6067
Q3 3490.5 329.5 3823.5 9392 13,049.5 547.5 3520 2439 19,381.5 88,821.5
Friuli sample size 35 35 35 35 35 35 35 35 35 35
mean 116.841 25.476 142.317 619.778 762.095 46.302 424.492 98.746 1285.333 17,036.603
sd 78.685 20.716 98.349 480.525 561.032 38.233 501.817 93.203 1087.776 17,808.502
median 140 24 163 688 911 41 197 72 1223 10,721
Q1 20.5 5.5 27 83 110 14 6.5 4.5 121 1837.5
Q3 177.5 42.5 218 1123 1321 66.5 799 182 2371 28,891
Lazio sample size 35 35 35 35 35 35 35 35 35 35
mean 737.000 104.825 841.825 1152.556 1994.381 100.127 371.492 142.333 2508.206 36,767.063
sd 566.172 82.268 647.447 1108.178 1733.590 68.227 432.751 139.154 2283.257 37,361.801
median 878 113 991 844 1835 99 155 106 2096 63
Q1 61 16.5 75 37 112 28 15 6 133 3591
Q3 1254 186.5 1454.5 2229.5 3681.5 157 703.5 268 4653 63,505
Liguria sample size 35 35 35 35 35 35 35 35 35 35
mean 616.730 92.984 709.714 1069.889 1779.603 118.857 716.048 384.111 2879.762 11,983.048
sd 448.690 62.407 508.265 1000.597 1428.992 80.617 881.009 378.883 2602.383 12,820.717
median 761 102 874 875 2027 122 260 280 2567 7304
Q1 67 31.5 97 57.5 154.5 42.5 5 8 167.5 859.5
Q3 1027 149 1178 2106.5 3317 184 1254 721.5 5283.5 20,201
Lombardi sample size 35 35 35 35 35 35 35 35 35 35
mean 7544.905 842.306 8372.113 10,128.694 18,500.806 1160.694 8877.210 5497.323 32,875.339 11,1489.758
sd 4403.531 443.647 4865.273 8412.344 12,634.922 671.258 7941.673 4831.205 25,165.184 97,350.121
median 9266 935.5 10,479 9787 21,390 1157.5 7560 4667.5 33,617.5 84,689.5
Q1 3585.5 513 4098.5 1299.5 5126.5 780 898 542.5 6535.5 23,554
Q3 11,740.5 1219 13,004 16,754.5 29,894 1549.5 16,551.5 10,374.5 56,820 191,313.5
Marche sample size 35 35 35 35 35 35 35 35 35 35
mean 612.333 103.746 840.095 1718.381 2558.476 110.762 859.492 557.111 3975.079 18,888.698
sd 378.014 94.687 1151.257 3262.427 4400.857 122.858 3100.359 1666.182 9097.186 43,559.955
median 742 106 872 1652 2795 92 9 310 3114 8623
Q1 182 56 242 179 421 47.5 0 15.5 436.5 1546.5
Q3 947.5 140.5 1078 2300.5 3230.5 139 1188.5 685.5 5147.5 19,515
Molise sample size 35 35 35 35 35 35 35 35 35 35
mean 17.365 4.778 32.429 113.873 146.302 5.476 49.302 21.508 217.111 2093.238
sd 12.129 7.349 89.911 324.486 413.371 8.942 240.871 109.997 762.507 6553.059
median 21 4 29 46 81 3 14 8 103 670
Q1 4 2 6.5 8 15 0 0 0 15.5 229
Q3 27 6 33.5 161 193 6 38 13.5 244.5 2135
Piemonte sample size 35 35 35 35 35 35 35 35 35 35
mean 2004.476 246.460 2205.762 4051.143 6256.905 387.778 1145.937 830.667 8233.508 33,106.302
sd 1412.884 167.620 1589.582 4300.008 5660.761 277.052 1749.509 914.100 8134.870 38,023.991
median 2633 293 2925 2631 5556 490 75 449 6024 16,655
Q1 312.5 70.5 383 75.5 458 71.5 0 19 477 2402.5
Q3 3285 389 3613 8018 11,873 590 2054.5 1582.5 15,510 60,017
Puglia sample size 35 35 35 35 35 35 35 35 35 35
mean 339.349 50.921 428.397 1033.302 1461.698 68.349 223.746 163.587 1849.032 17,381.683
sd 264.156 47.506 454.876 1681.225 2109.020 62.838 819.326 364.631 3249.349 22,393.542
median 464 55 517 610 1095 70 22 65 1182 9191
Q1 33 3.5 38 25 63 12 1 4 68 828
Q3 593 74.5 668 1663.5 2369 97 242 245.5 2856.5 28,637.5
Sardegna sample size 35 35 35 35 35 35 35 35 35 35
mean 66.063 14.333 86.254 392.190 478.444 20.746 80.698 38.302 597.444 6286.794
sd 48.419 11.939 80.488 404.945 483.277 21.714 127.515 58.416 647.390 8671.555
median 90 19 110 350 462 14 13 19 494 3461
Q1 9.5 0 9.5 19 28.5 3 0 0 28.5 243.5
Q3 110.5 24 134.5 693.5 820 30.5 124 71 1077 9782
Sicilia sample size 35 35 35 35 35 35 35 35 35 35
mean 291.683 36.825 328.508 717.778 1046.286 48.492 117.032 75.238 1238.556 18,631.270
sd 235.386 28.512 259.761 664.821 906.990 39.304 156.846 82.626 1119.763 20,974.102
median 346 39 414 658 1095 45 36 33 1164 9658
Q1 21 1.5 21.5 49 70.5 16.5 2 0 72.5 1074.5
Q3 523.5 62.5 570.5 1359 1984 70.5 198 151 2333 32,471.5
Toscana sample size 35 35 35 35 35 35 35 35 35 35
mean 614.079 157.556 771.635 2347.889 3119.524 145.190 384.857 244.825 3749.206 38,949.286
sd 443.947 106.565 548.316 2159.489 2600.205 102.694 596.281 261.543 3318.192 41,645.213
median 791 182 959 1677 2973 151 95 158 3226 20,952
Q1 95.5 47 136 151 287 54.5 4 1 292 2688.5
Q3 1006.5 253.5 1258.5 4656.5 5907 221.5 475 460.5 6842.5 73,878.5
Trento sample size 35 35 35 35 35 35 35 35 35 35
mean 194.635 36.540 231.175 794.032 1025.206 61.810 364.571 140.905 1530.683 8887.032
sd 141.717 29.422 170.261 682.862 828.585 49.140 511.393 147.494 1397.661 9902.902
median 235 38 279 728 1094 64 117 86 1297 4600
Q1 23.5 3.5 27 35 62 9.5 2.5 0 64.5 463
Q3 330.5 65.5 390 1539.5 1872.5 97.5 584.5 279.5 2893 15,813.5
Umbria sample size 35 35 35 35 35 35 35 35 35 35
mean 83.111 24.143 107.254 304.810 412.063 21.714 266.556 25.857 704.476 9377.429
sd 63.988 17.534 81.024 255.039 334.552 26.258 349.658 24.549 574.593 10,190.101
median 97 24 121 282 407 9 12 20 802 5428
Q1 7.5 3.5 63 29.5 40.5 2 1 0 41.5 300
Q3 140.5 41 180.5 557 737.5 32 516 52 1305.5 16,993
ValleAosta sample size 35 35 35 35 35 35 35 35 35 35
mean 59.381 10.635 70.016 238.905 308.921 17.556 122.937 50.651 482.508 1841.619
sd 45.414 9.612 53.000 190.234 242.055 20.339 190.354 52.707 422.643 1872.617
median 71 9 89 280 375 7 2 28 408 1203
Q1 3 0 0 16 18 1 0 0.5 18.5 94
Q3 97.5 20 116.5 432.5 548.5 29 187.5 107 890.5 3396
Veneto sample size 35 35 35 35 35 35 35 35 35 35
mean 933.127 22.127 103.540 295.921 399.460 19.635 266.048 26.000 691.508 9239.238
sd 625.491 19.072 83.886 261.567 343.965 25.194 350.048 24.410 586.796 10,305.636
median 1189 22 121 278 407 7 12 20 802 5428
Q1 233 67.5 300.5 561 861.5 119.5 50.5 27.5 939.5 19,021.5
Q3 1456 283 1748 8361 9945 415 2084.5 812 13,594.5 185,806

Figure 1 conveys the evolution of all datasets over days.

Figure 1.

Figure 1

The trends of Hospitalized with Symptoms data, Intensive Care data, Total Hospitalized data, Home Isolation data, Total Currently Positive data, New Currently Positive data, Discharged/Healed data, Deceased data, Total Cases data, Swabs data. Day 1 is 24 February 2020.

After that, we analyze the data evolution by focusing on each single week:

  • The first week starts on 24 February and ends on 1 March;

  • The second starts on 1 March and ends on 8 March;

  • The third starts on 9 March and ends on 15 March;

  • The fourth starts on 16 March and ends on 22 March;

  • The fifth starts on 23 March and ends on 29 March.

As a preliminary test, we applied Pearson’s chi-square test. The p-value was less than 0.05 for each distribution data, i.e., data was not normally distributed. According to this, we performed the paired comparison and multiple comparison of data by using two non-parametric tests: Wilcoxon Sum Rank test and Kruskal–Wallis test.

3.2.1. Wilcoxon Sum Rank Test

As an initial step, we used the Wilcoxon Sum Rank test to carry out an analysis within the same type of data for all weeks and then, for each single week. The Wilcoxon test is a non-parametric test designed to evaluate the difference between two treatments or conditions where the samples are correlated. We applied the Wilcoxon test to perform a pair-wise comparison among regions with the goal of highlighting statistically similar distributions among them. For this reason, we built a similarity matrix for each couple of regions, for each of the available COVID-19 data. Figure 2 reports the heat map of similarity value related to Hospitalized with Symptoms network for all regions in the study period. We reported the heat maps for Italian COVID-19 data in the study period in Appendix A, for the lack of space. In addition, we report the Tables of the similarity values computed for Italian COVID-19 data in the study period and in the single weeks in Appendix A.

Figure 2.

Figure 2

The figure shows the heat map related to results obtained by applying Wilcoxon Sum Rank test in the study period on Hospitalized with Symptoms data.

Results show that according to the type of data, a significant difference exists (p-value less than 0.05) among some regions while for others, it is possible to highlight statistically similar distributions. Also, the significance varies by performing the analysis on whole selected time interval and on single week.

3.2.2. Kruskal–Wallis Sum Rank Test

After that, we used the Kruskal–Wallis test performing an analysis on the same type of data for all regions (i.e., carrying out multiple comparisons) for the study period and then, for each single week. The Kruskal–Wallis test is a non-parametric method for analysis of variance used to determine if more samples originate from the same distribution. The results confirmed a significant difference considering all regions on the same type of data for the study period for every single week.

3.2.3. Multiple Linear Regression

Furthermore, we performed multiple linear regression by considering nine indicators: Hospitalized with Symptoms, Intensive Care, Home Isolation, Total Currently Positive, Discharged/Healed, Deceased, Total Cases, Swabs and two geographic factors: population density and number of intensive care beds for regions. We perform a standardization of variables as a preprocessing step. Data related to population density and intensive care beds for regions are reported in Table 2. According to multiple linear regression, we built nine models for each piece of Italian COVID-19 data in order to evaluate an outcome of each indicator on the basis of multiple distinct predictor variables i.e., Population Density and Intensive Care Beds. Table 3 reports the p-values associated with the Population Density and Intensive Care Beds and the Multiple R-squared. It is possible to notice that the intensive care beds variable is significantly related to Hospitalized with Symptoms, Intensive Care Home Isolation, Total Currently Positive, Discharged/Healed, Deceased, Total Cases variables with Multiple R-squared greater than 0.5. Instead, population density is significantly related to the Swabs variable. In this case, Multiple R-squared is equal to 0.318 (i.e., 32% of the data is explained by the explanatory variable). These results demonstrate that the population density does not influence Hospitalized with Symptoms, Intensive Care Home Isolation, Total Currently Positive, Discharged/Healed, Deceased, Total Cases variables which can be affected by other factors such as smog or climate as reported in [8,9].

Table 2.

Multiple linear regression Results.

Regions Population Density People per km2 Intensive Care Beds
Abruzzo 121 73
Basilicata 56 49
Bolzano 71 48
Calabria 128 107
Campania 424 350
Emilia 199 650
Friuli 153 494
Lazio 341 540
Liguria 286 75
Lombardi 422 1067
Marche 162 400
Molise 69 30
Piemonte 172 320
Puglia 206 320
Sardegna 68 150
Sicilia 194 441
Toscana 162 447
Trento 79 75
Umbria 104 69
ValleAosta 39 15
Veneto 267 498
Table 3.

p-values associated with the Population Density and Intensive Care Beds and the Multiple R-squared.

Hospitalized with Symptoms Intensive Care Home Isolation Total Currently Positive Discharged/Healed Deceased Total Cases Swabs
Population Density p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05
Bed p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05 p-value > 0.05
R2 0.617 0.631 0.685 0.666 0.504 0.544 0.627 0.318

3.3. Mapping Similarity Matrices to Networks

To evaluate the evolution of Italian COVID-19 data and evidence which regions show similar behavior, we built networks of each piece of data [10] starting from the result of Wilcoxon test. The nodes of the networks are the Italian regions and the edges link two regions (nodes) with similar trend according to significance level (p-value > 0.05) obtained from the Wilcoxon test, otherwise (p-value < 0.05) there is not connection among nodes. The network analysis is performed using the igraph libraries [11].

At first, we built ten networks, one for each data (Hospitalized with Symptoms, Intensive Care data, Total Hospitalized, Home Isolation, Total Currently Positive, New Currently Positive, Discharged/Healed, Deceased, Total Cases, Swab) by considering the period 24 February to 29 March. Then, we built the same networks by considering single weeks. The ten networks for the study period and for five weeks are reported in Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12.

Figure 3.

Figure 3

Figure 3

Evolution of Hospitalized with Symptoms Network.

Figure 4.

Figure 4

Evolution of Intensive Care Network.

Figure 5.

Figure 5

Evolution of Total Hospitalized Network.

Figure 6.

Figure 6

Evolution of Home Isolation Network.

Figure 7.

Figure 7

Evolution of Total Currently Positive Network.

Figure 8.

Figure 8

Evolution of New Currently Positive Network.

Figure 9.

Figure 9

Evolution of Discharged/Healed Network.

Figure 10.

Figure 10

Evolution of Deceased Network.

Figure 11.

Figure 11

Evolution of Total Cases Network.

Figure 12.

Figure 12

Evolution of Swabs Network.

3.4. Community Detection

Starting from the ten networks related to all five weeks, we wanted to identify which regions form a community from the similarity point of view. For this, we applied the Walktrap community-finding algorithm [12] that identifies densely connected subgraphs, i.e., communities, in a graph via random walks. The idea is that short random walks tend to stay in the same community.

The extracted communities from all Italian COVID-19 networks in the study period are reported in Figure 13.

Figure 13.

Figure 13

Figure 13

The figure shows the communities identified in Italian COVID-19 networks in the study period.

4. Discussion

Figure 3 shows the evolution of Hospitalized with Symptoms network over five weeks. Figure a reports the network that represents the behavior of regions respect to number of hospitalized patients up to 29 March, whereas Figure 3b–f represent the networks on each single week. It is possible to notice that the network structure changes according to the analyzed time interval. At the end of the 35th day, the network has all nodes connected with exception of a single node that represents the Basilicata region. Furthermore, it is possible to highlight different community structures consisting of groups of regions with similar trends. Figure 13a reports five communities: the first one consists of Basilicata; the second one is composed by Piemonte, Marche, Emilia, Lombardi, Veneto; the third one is composed by Liguria, Lazio, Toscana; the fourth one is formed by Campania, Puglia, Sicilia, Abruzzo, Valle d’Aosta, Friuli, Trento, Bolzano; the last one is composed by Umbria, Sardegna, Calabria, Molise.

Figure 4 represents the evolution of the Intensive Care network. It is possible to notice that Lombardi and Veneto, which are the regions most affected by coronavirus disease with the highest numbers hospitalized in Intensive Care Units, are disconnected in the first week. In the second week, Lombardi and Veneto are connected by an edge that represents a level of similarity, whereas in the fifth week Veneto is linked with Emilia and Lombardi and this group of regions becomes a disconnected component among other regions. Thus, while initially Lombardi and Veneto showed a similar trend of Intensive Care data, after Veneto moved far from Lombardi trend. Furthermore, by analyzing the communities in the Intensive Care network (Figure 13b), it is possible to demonstrate four subgraphs formed by (i) Lombardi and Veneto, (ii) Umbria and Lazio, (iii) Marche, Emilia, Piemonte, Toscana and (iv) a large module formed by Campania, Sicilia, Sardegna, Abruzzo, Umbria, Calabria, Basilicata, Bolzano, Valle d’Aosta, Friuli, Trento, Molise.

Figure 5 shows the Total Hospitalized network evolution. Starting form the first week, the structure of the network has two disconnected nodes representing Lombardi and Veneto, whereas, in the second week, the network evolves by presenting a single disconnected node that represent Emilia, and two connected nodes, Lombardi and Veneto, which in turn are disconnected from dense subgraph. In the third and fourth weeks, the network structure presents all connected components, and a high number of nodes are disconnected in the fifth week. Finally, all regions are connected in the final network. By analyzing the communities detected in Total Hospitalized network (Figure 13c), it is possible to notice a similarity with respect to those extracted by Hospitalized with Symptoms networks. In fact, there is a correspondence among three communities: (i) Basilicata and Piemonte, (ii) Marche, Emilia, Lombardi, (iii) Veneto and Liguria, Lazio, Toscana. This means that those regions that form the three communities present the same behavior according to the number of the hospitalized patients with symptoms and the total number of hospitalized patients.

Figure 6 shows the evolution of the Home Isolation network over five weeks. In the first week, Lombardi, Veneto and Emilia each shows a different trend of the number of subjects in isolation at home, both between them and compared to other regions. Next, in the network formed by considering the all weeks, Lombardi, Veneto, Emilia and Marche formed a subgraph disconnected by a different dense subgraph composed by the rest of the regions. However, Veneto represents a single community in Figure 13d. This means that the behavior of Veneto presents a low similarity with respect to Lombardi, Emilia and Marche despite forming a module.

Figure 7 and Figure 8 show the Total Currently Positive network and New Currently Positive network. Both networks evolve over five weeks by forming a structure in which all nodes are connected. According to the extracted communities, four modules are identified in Total Currently Positive network (see Figure 13e) and they are formed by: (i) Piemonte; (ii) Lombardi, Veneto, Marche, Emilia, (iii) Basilicata, Molise, Calabria, Sardegna, (iv) Puglia, Friuli, Valle d’Aosta, Toscana, Lazio, Abruzzo, Umbria, Campania, Trento, Liguria Bolzano, Sicilia. The communities identified in New Currently Positive network in Figure 13f are: (i) Piemonte, Marche, Toscana; (ii) Lombardi, Veneto, Emilia, (iii) Basilicata, Molise, (iv) Puglia, Friuli, Valle d’Aosta, Lazio, Abruzzo, Umbria, Campania, Trento, Liguria Bolzano, Calabria, Sardegna, Sicilia.

It is possible to notice that Lombardi, Veneto, Emilia form a community in both Total Currently Positive network and New Currently Positive network, Piemonte represents a single community in the Total Currently Positive network, while Piemonte is associated with Marche and Toscana in the New Currently Positive network.

Figure 9 represents the Discharged/Healed network over five weeks. In the first week, the network structure presents all nodes connected except for Veneto. In the second week, the Discharged/Healed network is formed by three subgraphs; in the third and fourth weeks the network is very dense; in the fifth week, the network structure is characterized by different disconnected components, and finally, at the end of 35 days the network is composed by a subgraph composed by Lombardi and Veneto and another subgraph highly connected. This means that Lombardi and Veneto have a similar behavior that is different from the rest of the Italian regions. Also, Lombardi and Veneto represent one of the five communities extracted by Discharged/Healed network. The extracted communities are reported in Figure 13g.

Figure 10 shows the evolution of Deceased network. The evolution of this network is different from other Italian COVID-19 networks. In fact, in the first week all nodes are disconnected, so all Italian regions present different trends. In the second week, it is possible to notice that Emilia and Marche nodes are disconnected and there is a subgraph composed by Lombardi and Veneto and then there is a large subgraph formed by other regions. In the third week, all nodes present connections. In the fourth and fifth week the Deceased network presents different disconnected components; then, the final network shows a single disconnected node that represents Basilicata. Also, the Basilicata represents a single community of Deceased network; see Figure 13h. The other extracted communities are: (i) Piemonte, Toscana Liguria, Lazio, Friuli, Puglia, Valle d’Aosta, (ii) Lombardi, Veneto, Emilia, Marche, (iii) Sicilia, Molise, Abruzzo, Umbria, Campania, Trento, Bolzano, Calabria, Sardegna.

Figure 11 represents the Total Cases network over five weeks. The final network demonstrates that the Italian regions present a significant level of similarity respect to the number of total coronavirus cases because all nodes are connected. Figure 13i shows the communities identified in Total Cases. The first community is composed by Lombardi, Veneto, Emilia, Marche; the second community is composed by Piemonte; the third community is composed by Basilicata, Molise; the fourth community is composed by Toscana Liguria, Lazio, Campania, Friuli, Sicilia Puglia, Valle d’Aosta formed, whereas Abruzzo, Umbria, Trento, Bolzano, Calabria, Sardegna formed the fifth community.

Figure 12 shows the evolution of the Swab Network that represents the number of performed swab tests. The network, in the first week, shows Lombardi and Veneto nodes disconnected by other regions. In fact, these ones are the Italian regions that initially performed high number of test swabs. Also, the Veneto region has no connections in the final network and this reflects the policy of Veneto to carry out swab tests on asymptomatic subjects, i.e., it is an outlier with respect to other regions. Figure 13j shows the extracted communities in the Swab network. The first community is composed by Veneto; the second community is composed by Lombardi, Emilia; the third community is composed by Basilicata, Molise; the fourth community is formed by Marche, Toscana, Lazio, Piemonte, Friuli, Valle d’Aosta; the fifth community is formed by Sicilia, Campania, Liguria, Puglia; while Abruzzo, Umbria, Trento, Bolzano, Calabria, Sardegna formed the sixth community.

We want to evaluate: (1) if different data present similar or dissimilar communities and (2) if the communities are similar or dissimilar considering different temporal interval on the same data. The Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23 report the evolution of the communities related to different data.

Figure 14.

Figure 14

Evolution of Hospitalized with Symptoms Network Communities.

Figure 15.

Figure 15

Evolution of Intensive Care Network Communities.

Figure 16.

Figure 16

Evolution of Total Hospitalized Network Communities.

Figure 17.

Figure 17

Evolution of Home Isolation Network Communities.

Figure 18.

Figure 18

Evolution of Total Currently Positive Network Communities.

Figure 19.

Figure 19

Evolution of New Currently Positive Network Communities.

Figure 20.

Figure 20

Evolution of Discharged/Healed Network Communities.

Figure 21.

Figure 21

Evolution of Deceased Network Communities.

Figure 22.

Figure 22

Evolution of Total Cases Network Communities.

Figure 23.

Figure 23

Evolution of Swabs Network Communities.

Figure 14 reports the evolution of Hospitalized with Symptoms Network Communities.

Figure 14a reports six communities extracted in the first week: (i) Lombardi, (ii) Veneto, (iii) Emilia, Marche, (iv) Liguria, Toscana, Piemonte, (v) Puglia, Lazio, Campania, Abruzzo, Bolzano, Sicilia, (vi) Umbria, Sardegna, Calabria, Molise, Valle d’Aosta, Friuli, Basilicata, Trento.

At the end of three weeks, Veneto, after representing a community in the previous week, moves in another community, whereas Emilia leaves the community with Marche and becomes a single community. Also, some regions migrate from fifth and sixth communities to other communities. Therefore, Figure 14b reports the five extracted communities after three weeks: (i) Lombardi, (ii) Emilia, (iii)Veneto, Marche, Piemonte, Liguria, Toscana, Lazio, (iv) Trento, Bolzano, Abruzzo, Friuli, Sicilia, Puglia, (v) Campania, Umbria, Sardegna, Calabria, Molise, Valle d’Aosta, Basilicata. Finally, Figure 14c reports five communities in the study period: the first one consists of Basilicata, which leaves the previous community and becomes a single one; the second one is composed by Piemonte, Marche, Emilia, Lombardi, Veneto; the third one is composed by Liguria, Lazio, Toscana; the fourth one is formed by Campania, Puglia, Sicilia, Abruzzo, Valle d’Aosta, Friuli, Trento, Bolzano; the last one is composed by Umbria, Sardegna, Calabria, Molise.

Figure 15 reports the evolution of Intensive Care Network Communities. It is possible to notice that in the first week (Figure 15a), there is: one large community formed by Umbria, Lazio, Piemonte, Toscana Campania, Sicilia, Sardegna, Abruzzo, Umbria, Calabria, Basilicata, Bolzano, Valle d’Aosta, Friuli, Trento, Molise; two single communities formed by Lombardi and Emilia; and a small community formed by Emilia and Marche.

After three weeks the number of extracted communities increases; see Figure 15b. In fact, Lombardi, Sardegna, Valle d’Aosta represent three single communities, Veneto and Emilia form a community, as well as, Marche and Piemonte. Then, Liguria, Lazio and Toscana form a six community, and the last two are composed by (i) Umbria, Campania, Molise, Abruzzo, Friuli, Trento, Puglia and (ii) Calabria, Sicilia, Bolzano, Basilicata.

Finally, in the study period, five communities are mined (see Figure 15c), formed by (i) Lombardi and Veneto, (ii) Liguria and Lazio, (iii) Marche, Emilia, Piemonte, Toscana and (iv) a large module formed by Campania, Sicilia, Sardegna, Abruzzo, Umbria, Calabria, Basilicata, Bolzano, Valle d’Aosta, Friuli, Trento, Molise.

Figure 16 reports the evolution of Total Hospitalized Network Communities.

Figure 16a shows the six mined communities. The first community is composed by Liguria, Toscana, Piemonte, the second one is formed Sardegna, Umbria, Calabria, Basilicata, Valle d’Aosta, Friuli, Trento, Molise; the third module comprises Lazio, Campania, Sicilia, Abruzzo, Bolzano, Puglia; the fourth community is represented by Marche, Emilia; the fifth is represented by Lombardi and the last one consists of Veneto.

After three weeks (see Figure 16b) the regions move, with the exception of Lombardi, which continues to represent a single community and the communities become eight. In fact, Emilia becomes a single community; Veneto becomes a community among with Piemonte and Marche; Toscana moves in the community with Liguria; Lazio and Campania forms a new community, as well as, Basilicata and Valle d’Aosta; another community is formed by: Abruzzo, Puglia, Sicilia and the last one is formed by Friuli, Bolzano, Trento, Umbria, Sardegna, Calabria, Molise.

At the end of the study period, the five communities reported in Figure 16b are formed. The first one consists of Basilicata that leaves the previous community and becomes a single one; the second one is composed by Toscana, Liguria and Lazio; Sardegna, Calabria, Molise leaves the previous large community and form a smaller one; by the fourth one is formed by Piemonte, Marche, Emilia, Lombardi, Veneto; the last one is composed by Umbria, Puglia, Sicilia, Abruzzo, Valle d’Aosta, Friuli, Trento, Bolzano.

Figure 17 reports the evolution of Home Isolation Network Communities.

Figure 17a reports the mined communities at the end of first week. It is possible to notice that Lombardi, Veneto and Emilia form single communities, and then there are three large communities: the first one is represented by Piemonte, Liguria, Marche, Sicilia, Campania; the second one is composed by Puglia, Valle d’Aosta, Toscana, Umbria, Calabria; the third one Trento, Lazio, Abruzzo, Sardegna, Bolzano, Basilicata and Molise, Friuli, Campania.

At the end of three week, Lombardi, Veneto and Emilia move together to form a unique community, whereas, the other regions form new communities, such as (i) Puglia, Trento, Lazio, Umbria, (ii) Calabria, Abruzzo, Valle d’Aosta, Sardegna, Bolzano, Basilicata and Molise, (iii) Sicilia, Toscana, Friuli, Piemonte, Liguria, Marche, Campania (see Figure 17b).

Figure 17c shows the community topology in the study period. Veneto leaves the community among with Lombardi and Emilia and it becomes a single one, whereas, Lombardi, Emilia forms a new module among with Marche. Basilicata and Molise move together to form a unique community. Sardegna, Calabria, Abruzzo, Bolzano form a fourth community. The fifth community is composed by Puglia, Trento, Lazio, Umbria, Sicilia, and the sixth one is represented by Toscana, Piemonte, Valle d’Aosta, Friuli, Liguria, Campania.

Figure 18 reports the evolution of Total Currently Positive Communities. At the end of first week, there are eight mined communities, and they are reported in Figure 18a. The first community is composed by Umbria, Sardegna, Basilicata, Molise, Friuli Toscana, Calabria, Valle d’Aosta, Trento; the second one is formed by Bolzano, Lazio, Abruzzo, Puglia; the third module comprises Campania, Sicilia Liguria; Piemonte and Lazio represent the fourth community; the fifth one consists of Marche; the sixth community is represented by Emilia; the seventh is represented by Lombardi and the last one consists of Veneto.

After three weeks, the number of communities (see Figure 18b) decreases. In fact, it is possible to notice five subgraphs. Emilia joints with Veneto and Lombardi remains single community. Lazio, Sicilia, Friuli, Puglia form a new community; Piemonte, Toscana, Campania, Marche, Liguria, represent a fourth community; Trento, Abruzzo, Umbria, Calabria, Sardegna, Basilicata, Molise, Bolzano, Campania, Valle d’Aosta, form a fifth community;

In the study period, the number of extracted communities further decreases, see Figure 18c The first community is composed by Veneto, Lombardi, Emilia, Marche; the second community is composed by Piemonte; the third community is composed by Basilicata, Molise, Calabria, Sardegna; the fourth community is formed by Toscana, Lazio, Friuli, Valle d’Aosta, Sicilia, Campania, Liguria Puglia, Abruzzo, Umbria, Trento, Bolzano.

Figure 19 reports the evolution of New Currently Positive Communities. Figure 19a reports the mined communities at the end of first week. It is possible to notice that Lombardi, Veneto and Emilia form single communities, and then there are two large communities: the first one is represented by Marche, Piemonte, Liguria, Campania, Abruzzo, Toscana; the second one is composed by Puglia, Valle d’Aosta, Umbria, Calabria, Sicilia, Campania, Trento, Lazio, Sardegna, Bolzano, Basilicata and Molise, Friuli.

After three weeks, there remain five extracted communities but the regions that form them vary; see Figure 19b. The first community is composed by Lombardi; the second community is composed by Veneto and Emilia; the third community is composed by Basilicata, Molise, Valle d’Aosta, Sardegna, Campania, Bolzano; the fourth community is formed by Marche, Toscana, Piemonte; the fifth community is formed by Sicilia, Liguria, Puglia, Abruzzo, Umbria, Trento, Calabria, Lazio, Friuli.

In the study period, the number of extracted communities further decreases, see Figure 19c and there are: (i) Piemonte, Marche, Toscana; (ii) Lombardi, Veneto, Emilia, (iii) Basilicata, Molise, (iv) Puglia, Friuli, Valle d’Aosta, Lazio, Abruzzo, Umbria, Campania, Trento, Liguria Bolzano, Calabria, Sardegna, Sicilia.

Figure 20 reports the evolution of Discharged/Healed Network Communities. It is possible to notice that in the first week (Figure 20a), there are: a large community formed by Umbria, Piemonte, Toscana Campania, Sicilia, Sardegna, Abruzzo, Umbria, Calabria, Basilicata, Bolzano, Emilia, Valle d’Aosta, Friuli, Trento, Molise; a small community formed by Lombardi, Marche, Lazio; and single communities formed by Veneto.

After three weeks the number of extracted communities increases; see Figure 20b. In fact, Lombardi leaves the previous community and becomes a single one; Lazio, Emilia, Liguria and Veneto get together to form a second community; the third is composed by Friuli, Sicilia, Toscana; the last one is formed by Sardegna, Valle d’Aosta, Marche and Piemonte, Umbria, Campania, Molise, Abruzzo, Trento, Puglia, Calabria, Bolzano, Basilicata.

Finally, Figure 20c shows the communities in the study period. It is possible to notice five communities. The first one consists of Lombardi and Veneto; the second one is composed by Emilia, Liguria, Lazio; the third one is composed by Friuli, Campania, Toscana, Sicilia; the fourth one is formed by, Puglia, Abruzzo, Trento; the last one is composed by Umbria, Sardegna, Calabria, Piemonte, Marche, Valle d’Aosta, Bolzano, Basilicata, Molise.

Figure 21 reports the evolution of Deceased Communities. Figure 21a reports the mined communities at the end of first week. It is possible to notice that there is: one large community formed by Emilia, Piemonte, Liguria, Campania, Abruzzo, Puglia, Valle d’Aosta, Umbria, Calabria, Sicilia, Campania, Trento, Lazio, Sardegna, Bolzano, Basilicata and Molise, Friuli; two single communities represented by Lombardi and Veneto; and a single community composed by Marche and Toscana.

After three weeks, the number of extracted communities increases. In fact, the regions that form them vary by forming new communities; see Figure 21b. The first community is composed by Lombardi that remains a single community; the second community is composed by Veneto and the third one is composed by Emilia; the fourth community is formed by Basilicata, Molise, Sardegna, Calabria; the fifth community is formed by Sicilia, Liguria, Puglia, Abruzzo, Umbria, Trento, Lazio, Friuli, Valle d’Aosta, Campania, Bolzano; Marche, Toscana, Piemonte.

In the study period, the number of extracted communities decreases (see Figure 21c) and there are: (i) Basilicata represents a single community, (ii) Piemonte, Toscana Liguria, Lazio, Friuli, Puglia, Valle d’Aosta, (iii) Lombardi, Veneto, Emilia, Marche, (iv) Sicilia, Molise, Abruzzo, Umbria, Campania, Trento, Bolzano, Calabria, Sardegna.

Figure 22 reports the evolution of Total Cases Network Communities.

Figure 22a shows the five mined communities. The first community is composed by Liguria, Toscana Lazio, Piemonte, Campania, Sicilia; the second one is formed Sardegna, Abruzzo, Umbria, Calabria, Basilicata, Bolzano, Valle d’Aosta, Friuli, Trento, Molise, Puglia; the third module comprises Marche, Emilia; the forth one Lombardi and the last one Veneto.

After three weeks (see Figure 22b) there are six communities. Veneto becomes a community among with Emilia; Marche moves in the community with Liguria, Toscana Lazio, Piemonte, Campania; and three new modules are formed: the first one is composed by Sicilia, Friuli and Puglia, the second one is composed by Abruzzo, Bolzano, Trento and Umbria, the third one is formed by Basilicata, Sardegna, Valle d’Aosta, Calabria, Molise.

At the end of the study period, there are five communities extracted. Figure 22c reports the communities. The first community is composed by Lombardi, Veneto, Emilia, Marche; the second community is composed by Piemonte; the third community is composed by Basilicata, Molise; the fourth community is composed by Toscana Liguria, Lazio, Campania, Friuli, Sicilia Puglia, Valle d’Aosta formed a community, whereas Abruzzo, Umbria, Trento, Bolzano, Calabria, Sardegna formed the fifth community.

Figure 23 reports the evolution of the Swab Network Communities. At the end of first week, there are eight mined communities, and they are reported in Figure 23a. The first community is composed by Umbria, Calabria, Valle d’Aosta, Trento, Sicilia, Abruzzo, Puglia; the second one is formed by Sardegna, Basilicata, Molise, Bolzano; the third module comprises Friuli, Campania, Liguria; Piemonte represents the fourth community; the fifth one consists of Toscana and Lazio; the sixth community is represented by Emilia and Marche; the seventh is represented by Lombardi and the last one consists of Veneto.

After three weeks, the number of communities (see Figure 23b) decreases. In fact, it is possible to notice six subgraphs. Emilia leaves the previous community and forms a single one. Lombardi and Veneto join together. Toscana and Lazio continue to form a community; Piemonte, Friuli, Campania, Marche, Puglia, Liguria, Sicilia form a fourth community; Trento, Abruzzo, Umbria, Calabria, form a fifth community and the last one is composed by Sardegna, Basilicata, Molise, Bolzano, Campania, Valle d’Aosta.

In the study period, there remain six extracted communities but the regions that form them vary; see Figure 23c. The first community is composed by Veneto; the second community is composed by Lombardi, Emilia; the third community is composed by Basilicata, Molise; the fourth community is formed by Marche, Toscana, Lazio, Piemonte, Friuli, Valle d’Aosta; the fifth community is formed by Sicilia, Campania, Liguria Puglia; while Abruzzo, Umbria, Trento, Bolzano, Calabria, Sardegna formed the sixth community.

By analyzing the results, it is possible to demonstrate that the topology of the communities varies, i.e., the regions join and leave them along time and the community consistency changes along time on the same data. For the communities related to the different available data, it is possible to notice that after the first week, the extracted communities are different. This changes, after analyzing the communities after three weeks. In fact, the Total Currently Positive Network Communities and New Currently Positive Network show similar communities as well as Deceased Network and Total Cases Network. Finally, after five weeks, the topology of communities is different for all Italian COVID-19 networks except for the Hospitalized with Symptoms Network and Total Hospitalized Network, which show similar extracted communities.

In the literature, there are different works that apply graph theory to analyze the COVID-19 pandemic spread. For example, Reich et al. [13] modeled the COVID-19 spread by using a SEIR (Susceptible–Exposed–Infectious–Recovered–Susceptible) agent-based model on a graph, which takes into account several important real-life attributes of COVID-19: super-spreaders, realistic epidemiological parameters of the disease, testing, and quarantine policies. The agent is represented as a node in a graph, and infection between contacts is represented by graph edges. Then, the authors have applied the SEIR model to analyze the disease progression. Herrmann et al. [14] modeled the human interaction according to three different networks, i.e., Scale-free, Mitigation Hub, and Mitigation Random, and they applied the SIS (Susceptible–Infected–Susceptible) model. The authors demonstrated that network topology could improve the predictive power of SIR model of COVID-19 by providing novel insights into the potential strategies and policies for mitigating and suppressing the spread of the virus.

Kuzdeuov et al. [15] implemented a network-based stochastic epidemic simulator that models the movement of a disease through the SEIR states of a population. The nodes of the networks represent an administrative unit of the country, such as a city or region, and the edges between nodes represent transit links of roads railways, and air travel routes to model the mobility of inhabitants among cities. In [16], Kumar presents a network-based model for predicting the spread of COVID-19, incorporating human mobility through knowledge of migration and air transport.

The work of Wang et al. [17] applied statistical and network analysis on heterogeneous network containing patients and hospitals as nodes and relationships between relatives, friends or colleagues as edges. Network analysis provided important information about patients, hospitals and their relationships and it was able to provide a guidance for the distribution of epidemic prevention materials.

In summary, different works rely on network-based representation for the application of predictive models, whereas only Wang et al. [17] uses statistical and network-based analysis to evaluate an infected cluster of people in different hospitals. To the best of our knowledge, our work is the first study that provides a network-based representation and visualization of COVID-19 data at the regional level and applies network-based analysis to discover communities of regions that show similar behavior.

In conclusion, with this study, we wanted to give a graph-based representation of the COVID-19 measures considering how the regions behaved differently with respect to ten different datasets provided by Italian Civil Protection. It emerged that the regions where the epidemic had a greater impact, such as the Lombardi, Veneto, Piemonte and Emilia, had a different behavior with respect to other regions. This is evident in the community detection in which the regions most affected by the epidemic form individual communities or they are part of the same community. In addition, this study also led to identifying similar behaviors of regions that are geographically distant but that together form community. An example is represented by Calabria, Sardegna, and Molise that represent a cluster in Hospitalized with Symptoms Network, Total Hospitalized Network, Total Currently Positive Network, Discharged/Healed Network, Total Cases, Deceased Network, Intensive Care Network. This can lead the search for indicators that unite the regions such as factors, age structure, health care facilities, and socioeconomic status. Moreover, our visual representation of data can lead the search for indicators that are responsible for community formation i.e., factors common to regions such as age structure, health care facilities, and socioeconomic status. Furthermore, starting from the regions that form communities, it could be possible to plan common interventions such as the increase in intensive care units or the increase in swab tests.

5. Conclusions

The COVID-19 disease has spread worldwide in a matter of weeks. In Italy, the epidemic of COVID-19 started in the north and quickly involved all regions. In this paper, we evaluated the evolution of Italian COVID-19 data provided daily by Italian Civil Protection. The main goal of this work is the network-based representation of COVID-19 diffusion similarity among regions and graph-based visualization with the aim of underlining similar diffusion regions. We identified similar Italian regions with respect to the available COVID-19 data and we mapped these in different networks. Finally, we performed a network-based analysis to discover communities of regions that show similar behavior. For future work, we plan to extend the study by considering the evolution of the communities at greater time intervals to demonstrate a new pattern of regions with respect to COVID-19 data.

Acknowledgments

The authors wish to thank Italian Civil Protection Department for freely providing online COVID-19 data.

Appendix A. Statistical Analysis

In this section, we reported the results obtained by applying Wilcoxon Sum Rank test. First, we present Figure A1 that shows the heat map related to results obtained by applying Wilcoxon Sum Rank test in the study period (five weeks).

Figure A1.

Figure A1

Figure A1

The figure shows the heat map related to results obtained by applying Wilcoxon Sum Rank test in the study period on Italian COVID-19 networks.

Furthermore, we present different tables that report the results of Wilcoxon Sum Rank test related to Italian COVID-19 data in five temporal intervals: in the study period, in the first week, in the second week, in the third week, in the fourth week, in the fifth week. The tables report the results only with p values > 0.05. We mapped the results only with p values < 0.05 equal to 0.

Table A1, Table A2, Table A3, Table A4, Table A5 and Table A6, report the similarity values related to Hospitalized network in the study period, first, second, third, fourth, fifth weeks.

Table A7, Table A8, Table A9, Table A10, Table A11 and Table A12, report the similarity values related to Intensive Care network in the study period, first, second, third, fourth, fifth weeks.

Table A13, Table A14, Table A15, Table A16, Table A17 and Table A18, report the similarity values related to Total Hospitalized network in the study period, first, second, third, fourth, fifth weeks.

Table A19, Table A20, Table A21, Table A22, Table A23 and Table A24, report the similarity values related to Home Isolation network in the study period, first, second, third, fourth, fifth weeks.

Table A25, Table A26, Table A27, Table A28, Table A29 and Table A30, report the similarity values related to Total Currently Positive network in the study period, first, second, third, fourth, fifth weeks.

Table A31, Table A32, Table A33, Table A34, Table A35 and Table A36, report the similarity values related to New Currently Positive network in the study period, first, second, third, fourth, fifth weeks.

Table A37, Table A38, Table A39, Table A40, Table A41 and Table A42, report the similarity values related to Discharged/Healed network in the study period, first, second, third, fourth, fifth weeks.

Table A43, Table A44, Table A45, Table A46, Table A47 and Table A48, report the similarity values related to Deceased network in the study period, first, second, third, fourth, fifth weeks.

Table A49, Table A50, Table A51, Table A52, Table A53 and Table A54, report the similarity values related to Total Cases in the study period, first, second, third, fourth, fifth weeks.

Table A55, Table A56, Table A57, Table A58, Table A59 and Table A60, report the similarity values related to Swabs in the study period, first, second, third, fourth, fifth weeks.

Table A1.

Similarity values of Hospitalized with Symptoms network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.287 0 0.456 0 0.463 0.092 0 0 0 0 0 0.809 0 0.914 0 0.576 0.06 0.6 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.287 0 1 0.175 0.089 0 0.893 0 0 0 0 0 0 0.209 0.182 0.357 0 0.958 0.303 0.782 0
Calabria 0 0 0.175 1 0 0 0.125 0 0 0 0 0.157 0 0 0.897 0.055 0 0.229 0.718 0.121 0
Campania 0.456 0 0.089 0 1 0 0.252 0.271 0.131 0 0 0 0 0.742 0 0.412 0.106 0.247 0 0.216 0
Emilia 0 0 0 0 0 1 0 0 0 0.273 0.163 0 0.091 0 0 0 0 0 0 0 0.991
Friuli 0.463 0 0.893 0.125 0.252 0 1 0 0 0 0 0 0 0.319 0.113 0.472 0 0.874 0.231 0.871 0
Lazio 0.092 0 0 0 0.271 0 0 1 0.712 0 0 0 0 0.15 0 0.071 0.582 0 0 0 0
Liguria 0 0 0 0 0.131 0 0 0.712 1 0 0 0 0.08 0.051 0 0 0.925 0 0 0 0
Lombardi 0 0 0 0 0 0.273 0 0 0 1 0.149 0 0 0 0 0 0 0 0 0 0.497
Marche 0 0 0 0 0 0.163 0 0 0 0.149 1 0 0.634 0 0 0 0 0 0 0 0
Molise 0 0 0 0.157 0 0 0 0 0 0 0 1 0 0 0.171 0 0 0 0.168 0 0
Piemonte 0 0 0 0 0 0.091 0 0 0.08 0 0.634 0 1 0 0 0 0.075 0 0 0 0.189
Puglia 0.809 0 0.209 0 0.742 0 0.319 0.15 0.051 0 0 0 0 1 0 0.701 0.051 0.343 0 0.329 0
Sardegna 0 0 0.182 0.897 0 0 0.113 0 0 0 0 0.171 0 0 1 0 0 0.226 0.745 0.079 0
Sicilia 0.914 0 0.357 0.055 0.412 0 0.472 0.071 0 0 0 0 0 0.701 0 1 0 0.519 0.089 0.643 0
Toscana 0 0 0 0 0.106 0 0 0.582 0.925 0 0 0 0.075 0.051 0 0 1 0 0 0 0
Trento 0.576 0 0.958 0.229 0.247 0 0.874 0 0 0 0 0 0 0.343 0.226 0.519 0 1 0.353 0.958 0
Umbria 0.06 0 0.303 0.718 0 0 0.231 0 0 0 0 0.168 0 0 0.745 0.089 0 0.353 1 0.209 0
ValleAosta 0.6 0 0.782 0.121 0.216 0 0.871 0 0 0 0 0 0 0.329 0.079 0.643 0 0.958 0.209 1 0
Veneto 0 0 0 0 0 0.991 0 0 0 0.497 0 0 0.189 0 0 0 0 0 0 0 1

Table A2.

Similarity values of Hospitalized with Symptoms network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.287 0 0.456 0 0.463 0.092 0 0 0 0 0 0.809 0 0.914 0 0.576 0.06 0.6 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.287 0 1 0.175 0.089 0 0.893 0 0 0 0 0 0 0.209 0.182 0.357 0 0.958 0.303 0.782 0
Calabria 0 0 0.175 1 0 0 0.125 0 0 0 0 0.157 0 0 0.897 0.055 0 0.229 0.718 0.121 0
Campania 0.456 0 0.089 0 1 0 0.252 0.271 0.131 0 0 0 0 0.742 0 0.412 0.106 0.247 0 0.216 0
Emilia 0 0 0 0 0 1 0 0 0 0.273 0.163 0 0.091 0 0 0 0 0 0 0 0.991
Friuli 0.463 0 0.893 0.125 0.252 0 1 0 0 0 0 0 0 0.319 0.113 0.472 0 0.874 0.231 0.871 0
Lazio 0.092 0 0 0 0.271 0 0 1 0.712 0 0 0 0 0.15 0 0.071 0.582 0 0 0 0
Liguria 0 0 0 0 0.131 0 0 0.712 1 0 0 0 0.08 0.051 0 0 0.925 0 0 0 0
Lombardi 0 0 0 0 0 0.273 0 0 0 1 0.149 0 0 0 0 0 0 0 0 0 0.497
Marche 0 0 0 0 0 0.163 0 0 0 0.149 1 0 0.634 0 0 0 0 0 0 0 0
Molise 0 0 0 0.157 0 0 0 0 0 0 0 1 0 0 0.171 0 0 0 0.168 0 0
Piemonte 0 0 0 0 0 0.091 0 0 0.08 0 0.634 0 1 0 0 0 0.075 0 0 0 0.189
Puglia 0.809 0 0.209 0 0.742 0 0.319 0.15 0.051 0 0 0 0 1 0 0.701 0.051 0.343 0 0.329 0
Sardegna 0 0 0.182 0.897 0 0 0.113 0 0 0 0 0.171 0 0 1 0 0 0.226 0.745 0.079 0
Sicilia 0.914 0 0.357 0.055 0.412 0 0.472 0.071 0 0 0 0 0 0.701 0 1 0 0.519 0.089 0.643 0
Toscana 0 0 0 0 0.106 0 0 0.582 0.925 0 0 0 0.075 0.051 0 0 1 0 0 0 0
Trento 0.576 0 0.958 0.229 0.247 0 0.874 0 0 0 0 0 0 0.343 0.226 0.519 0 1 0.353 0.958 0
Umbria 0.06 0 0.303 0.718 0 0 0.231 0 0 0 0 0.168 0 0 0.745 0.089 0 0.353 1 0.209 0
ValleAosta 0.6 0 0.782 0.121 0.216 0 0.871 0 0 0 0 0 0 0.329 0.079 0.643 0 0.958 0.209 1 0
Veneto 0 0 0 0 0 0.991 0 0 0 0.497 0 0 0.189 0 0 0 0 0 0 0 1

Table A3.

Similarity values of Hospitalized with Symptoms network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0.08 0 0 0 0 0 0 0 0 0.25 0 0.27 0 0 0 0.12 0
Basilicata 0 1 0 0.37 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0 0
Bolzano 0 0 1 0.21 0 0 0.95 0 0 0 0 0.95 0 0.12 0.64 0.13 0 0.79 0.78 0 0
Calabria 0 0.37 0.21 1 0 0 0.1 0 0 0 0 0.09 0 0 0.46 0 0 0.24 0.35 0 0
Campania 0.08 0 0 0 1 0 0 0.34 0.65 0 0 0 0 0.05 0 0.06 0.22 0 0 0.34 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.95 0.1 0 0 1 0 0 0 0 0.43 0 0.33 0.2 0.22 0 0.6 0.19 0 0
Lazio 0 0 0 0 0.34 0 0 1 0.48 0 0 0 0.18 0 0 0 0.61 0 0 0.8 0
Liguria 0 0 0 0 0.65 0 0 0.48 1 0 0 0 0 0 0 0 0.4 0 0 0.44 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.53
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.26 0 0 0 0 0 0 0 0
Molise 0 0 0.95 0.09 0 0 0.43 0 0 0 0 1 0 0.13 0.12 0.11 0 0.9 0.1 0 0
Piemonte 0 0 0 0 0 0 0 0.18 0 0 0.26 0 1 0 0 0 0.31 0 0 0.25 0
Puglia 0.25 0 0.12 0 0.05 0 0.33 0 0 0 0 0.13 0 1 0 0.74 0 0.16 0 0 0
Sardegna 0 0.06 0.64 0.46 0 0 0.2 0 0 0 0 0.12 0 0 1 0 0 0.56 0.89 0 0
Sicilia 0.27 0 0.13 0 0.06 0 0.22 0 0 0 0 0.11 0 0.74 0 1 0 0.09 0 0.05 0
Toscana 0 0 0 0 0.22 0 0 0.61 0.4 0 0 0 0.31 0 0 0 1 0 0 0.85 0
Trento 0 0 0.79 0.24 0 0 0.6 0 0 0 0 0.9 0 0.16 0.56 0.09 0 1 0.64 0 0
Umbria 0 0 0.78 0.35 0 0 0.19 0 0 0 0 0.1 0 0 0.89 0 0 0.64 1 0 0
ValleAosta 0.12 0 0 0 0.34 0 0 0.8 0.44 0 0 0 0.25 0 0 0.05 0.85 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0 0 1

Table A4.

Similarity values of Hospitalized with Symptoms network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.14 0 0.083 0 0.848 0 0 0 0 0 0 0.179 0 0.607 0 0.654 0 0.337 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.14 0 1 0.561 0 0 0.11 0 0 0 0 0 0 0 0.14 0.159 0 0.084 0.518 0.654 0
Calabria 0 0 0.561 1 0 0 0 0 0 0 0 0 0 0 0.479 0 0 0 0.747 0.179 0
Campania 0.083 0 0 0 1 0 0.277 0.11 0 0 0 0 0 0.848 0 0 0 0.37 0 0.096 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0.848 0 0.11 0 0.277 0 1 0 0 0 0 0 0 0.318 0 0.701 0 0.902 0 0.37 0.056
Lazio 0 0 0 0 0.11 0 0 1 0.62 0 0 0 0 0.165 0 0 0.456 0 0 0 0.056
Liguria 0 0 0 0 0 0 0 0.62 1 0 0 0 0 0.097 0 0 0.609 0 0 0 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.056
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.805 0 0 0 0 0 0 0 0.056
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0.805 0 1 0 0 0 0 0 0 0 0.056
Puglia 0.179 0 0 0 0.848 0 0.318 0.165 0.097 0 0 0 0 1 0 0.073 0 0.276 0 0 0.056
Sardegna 0 0 0.14 0.479 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.949 0 0
Sicilia 0.607 0 0.159 0 0 0 0.701 0 0 0 0 0 0 0.073 0 1 0 0.337 0 0.442 0.056
Toscana 0 0 0 0 0 0 0 0.456 0.609 0 0 0 0 0 0 0 1 0 0 0 0.056
Trento 0.654 0 0.084 0 0.37 0 0.902 0 0 0 0 0 0 0.276 0 0.337 0 1 0 0.481 0.056
Umbria 0 0 0.518 0.747 0 0 0 0 0 0 0 0 0 0 0.949 0 0 0 1 0.179 0
ValleAosta 0.337 0 0.654 0.179 0.096 0 0.37 0 0 0 0 0 0 0 0 0.442 0 0.481 0.179 1 0
Veneto 0 0 0 0 0 0.056 0.056 0.056 0.056 0.056 0.056 0 0.056 0.056 0 0.056 0.056 0.056 0 0 1

Table A5.

Similarity values of Hospitalized with Symptoms network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.084 0 0.337 0 0.62 0 0 0 0.209 0 0 0.456 0 1 0 0.535 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0.159 0.276 0 0 0 0 0 0 0 0 0
Bolzano 0.084 0 1 0 0 0 0 0 0 0 0.209 0 0 0 0 0.128 0 0 0.383 0.096 0.096
Calabria 0 0 0 1 0 0 0 0 0 0 0.179 0 0 0 0.2 0 0 0 0.2 0.565 0.565
Campania 0.337 0 0 0 1 0 0.565 0 0 0 0.179 0 0 0.654 0 0.337 0 1 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0.535 0 0 0 0 0 0 0 0
Friuli 0.62 0 0 0 0.565 0 1 0 0 0 0.209 0 0 0 0 0.798 0 0.259 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.902 0 0.201 0 0 0 0 0 0.62 0 0 0 0
Liguria 0 0 0 0 0 0 0 0.902 1 0 0.318 0 0 0 0 0 0.805 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.209 0.159 0.209 0.179 0.179 0 0.209 0.201 0.318 0 1 0.179 0 0.209 0.209 0.209 0.259 0.209 0.209 0.209 0.209
Molise 0 0.276 0 0 0 0 0 0 0 0 0.179 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0.535 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.456 0 0 0 0.654 0 0 0 0 0 0.209 0 0 1 0 0.259 0 0.71 0 0 0
Sardegna 0 0 0 0.2 0 0 0 0 0 0 0.209 0 0 0 1 0 0 0 0.055 0.318 0.318
Sicilia 1 0 0.128 0 0.337 0 0.798 0 0 0 0.209 0 0 0.259 0 1 0 0.535 0 0 0
Toscana 0 0 0 0 0 0 0 0.62 0.805 0 0.259 0 0 0 0 0 1 0 0 0 0
Trento 0.535 0 0 0 1 0 0.259 0 0 0 0.209 0 0 0.71 0 0.535 0 1 0 0 0
Umbria 0 0 0.383 0.2 0 0 0 0 0 0 0.209 0 0 0 0.055 0 0 0 1 0.443 0.443
ValleAosta 0 0 0.096 0.565 0 0 0 0 0 0 0.209 0 0 0 0.318 0 0 0 0.443 1 1
Veneto 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A6.

Similarity values of Hospitalized with Symptoms network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.06 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0
Campania 0 0 0 0 1 0 0 0 0 0 0 0 0 0.32 0 0.14 0 0.08 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.32 0 0.53 0 0 0 0 0 0.07 0 0 0 0
Liguria 0 0 0 0 0 0 0 0.32 1 0 0.62 0 0 0 0 0 0.26 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0.53 0.62 0 1 0 0 0 0 0 0.16 0 0 0 0
Molise 0 0.07 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0 0 0 0 0.32 0 0 0 0 0 0 0 0 1 0 0.08 0 0.08 0 0 0
Sardegna 0 0 0 0.14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Sicilia 0.11 0 0 0 0.14 0 0 0 0 0 0 0 0 0.08 0 1 0 0.56 0 0 0
Toscana 0 0 0 0 0 0 0 0.07 0.26 0 0.16 0 0 0 0 0 1 0 0 0 0
Trento 0.06 0 0 0 0.08 0 0 0 0 0 0 0 0 0.08 0 0.56 0 1 0 0 0
Umbria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ValleAosta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A7.

Similarity values of Intensive Care network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.052 0.251 0.146 0.758 0 0.764 0.197 0 0 0 0.111 0 0.863 0 0.848 0 0.779 0.989 0.868 0
Basilicata 0.052 1 0.185 0.245 0 0 0 0 0 0 0 0.193 0 0 0.581 0.118 0 0 0 0 0
Bolzano 0.251 0.185 1 0.547 0.192 0 0.339 0 0 0 0 0.522 0 0.372 0.073 0.514 0 0.423 0.184 0.2 0
Calabria 0.146 0.245 0.547 1 0.061 0 0.158 0 0 0 0 0.765 0 0.183 0.158 0.317 0 0.208 0.059 0 0
Campania 0.758 0 0.192 0.061 1 0 0.608 0.375 0.066 0 0 0 0 0.509 0 0.461 0.073 0.493 0.839 0.736 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.798 0 0.6 0 0 0 0 0 0 0 0
Friuli 0.764 0 0.339 0.158 0.608 0 1 0.093 0 0 0 0.118 0 0.945 0 0.922 0 0.919 0.701 0.789 0
Lazio 0.197 0 0 0 0.375 0 0.093 1 0.238 0 0 0 0 0.058 0 0.07 0.198 0.062 0.12 0.139 0
Liguria 0 0 0 0 0.066 0 0 0.238 1 0 0 0 0.059 0 0 0 0.539 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0.115 0 0 0 0 0 0 0 0 0 0.608
Marche 0 0 0 0 0 0.798 0 0 0 0.115 1 0 0.785 0 0 0 0.141 0 0 0 0
Molise 0.111 0.193 0.522 0.765 0 0 0.118 0 0 0 0 1 0 0.233 0.216 0.392 0 0.272 0 0 0
Piemonte 0 0 0 0 0 0.6 0 0 0.059 0 0.785 0 1 0 0 0 0.192 0 0 0 0
Puglia 0.863 0 0.372 0.183 0.509 0 0.945 0.058 0 0 0 0.233 0 1 0 0.745 0 0.84 0.754 0.571 0
Sardegna 0 0.581 0.073 0.158 0 0 0 0 0 0 0 0.216 0 0 1 0 0 0 0 0 0
Sicilia 0.848 0.118 0.514 0.317 0.461 0 0.922 0.07 0 0 0 0.392 0 0.745 0 1 0 0.94 0.574 0.688 0
Toscana 0 0 0 0 0.073 0 0 0.198 0.539 0 0.141 0 0.192 0 0 0 1 0 0 0 0
Trento 0.779 0 0.423 0.208 0.493 0 0.919 0.062 0 0 0 0.272 0 0.84 0 0.94 0 1 0.692 0.577 0
Umbria 0.989 0 0.184 0.059 0.839 0 0.701 0.12 0 0 0 0 0 0.754 0 0.574 0 0.692 1 0.912 0
ValleAosta 0.868 0 0.2 0 0.736 0 0.789 0.139 0 0 0 0 0 0.571 0 0.688 0 0.577 0.912 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.608 0 0 0 0 0 0 0 0 0 0 1

Table A8.

Similarity values of Intensive Care network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Basilicata 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Bolzano 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Calabria 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Campania 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Lazio 0.14 0.14 0.14 0.14 0.14 0 0.14 1 1 0 0.12 0.14 0.66 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0
Liguria 0.14 0.14 0.14 0.14 0.14 0 0.14 1 1 0 0.12 0.14 0.66 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.02 0.02 0.02 0.02 0.02 0.37 0.02 0.12 0.12 0 1 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0
Molise 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Piemonte 0.32 0.32 0.32 0.32 0.32 0 0.32 0.66 0.66 0 0.06 0.32 1 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0
Puglia 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Sardegna 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Sicilia 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Toscana 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Trento 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Umbria 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
ValleAosta 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0.32 0 0 0 0 0 0 0 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A9.

Similarity values of Intensive Care network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0 0 0.32 0 0.14 0 0 0 0 0.06 0 0 0 0 0 0.14 0 0 0
Basilicata 0 0 0 0 0.32 0 0.14 0 0 0 0 0.06 0 0 0 0 0 0.14 0 0 0
Bolzano 0 0 0 0 0.32 0 0.14 0 0 0 0 0.06 0 0 0 0 0 0.14 0 0 0
Calabria 0 0 0 0 0.32 0 0.14 0 0 0 0 0.06 0 0 0 0 0 0.14 0 0 0
Campania 0.32 0.32 0.32 0.32 1 0 0.66 0 0 0 0 0.38 0 0.2 0.32 0.32 0.08 0.66 0 0.12 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0
Friuli 0.14 0.14 0.14 0.14 0.66 0 1 0 0 0 0 0.33 0 0.2 0.14 0.14 0 0.87 0 0.12 0
Lazio 0.01 0.01 0.01 0.01 0 0 0 1 0.75 0 0 0.05 0.05 0.09 0.01 0.01 0.3 0 0.17 0.79 0
Liguria 0 0 0 0 0 0 0 0.75 1 0 0 0 0.05 0 0 0 0.65 0 0 0.61 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.9
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.85 0 0 0 0 0 0 0 0
Molise 0.06 0.06 0.06 0.06 0.38 0 0.33 0.05 0 0 0 1 0 0.78 0.06 0.06 0.08 0.45 0.19 0.19 0
Piemonte 0 0 0 0 0 0.13 0 0.05 0.05 0 0.85 0 1 0 0 0 0 0 0 0.05 0
Puglia 0.02 0.02 0.02 0.02 0.2 0 0.2 0.09 0 0 0 0.78 0 1 0.02 0.02 0.13 0.29 0.2 0.32 0
Sardegna 0 0 0 0 0.32 0 0.14 0 0 0 0 0.06 0 0 0 0 0 0.14 0 0 0
Sicilia 0 0 0 0 0.32 0 0.14 0 0 0 0 0.06 0 0 0 0 0 0.14 0 0 0
Toscana 0.01 0.01 0.01 0.01 0.08 0 0 0.3 0.65 0 0 0.08 0 0.13 0.01 0.01 1 0 0.26 0.95 0
Trento 0.14 0.14 0.14 0.14 0.66 0 0.87 0 0 0 0 0.45 0 0.29 0.14 0.14 0 1 0 0.12 0
Umbria 0 0 0 0 0 0 0 0.17 0 0 0 0.19 0 0.2 0 0 0.26 0 1 0.65 0
ValleAosta 0.03 0.03 0.03 0.03 0.12 0 0.12 0.79 0.61 0 0 0.19 0.05 0.32 0.03 0.03 0.95 0.12 0.65 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 1

Table A10.

Similarity values of Intensive Care network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0.847 0 0.158 0.084 0 0 0 0 0 0 0 0.158 0 0.2 0.481 0.403 0
Basilicata 0 1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0.068 0 0 0 0 0
Bolzano 0 0.05 1 0.398 0 0 0 0 0 0 0 0.234 0 0.36 0 0.478 0 0.272 0 0 0
Calabria 0 0 0.398 1 0 0 0 0 0 0 0 0.419 0 0.108 0 0.4 0 0.06 0 0 0
Campania 0.847 0 0 0 1 0 0.062 0.108 0 0 0 0 0 0 0 0 0 0.054 0.176 0.332 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0.456 0 0 0 0 0 0 0 0.056
Friuli 0.158 0 0 0 0.062 0 1 0 0 0 0 0 0 0.132 0 0.442 0 0.608 0.48 0.564 0.056
Lazio 0.084 0 0 0 0.108 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.062 0.056
Liguria 0 0 0 0 0 0 0 0 1 0 0.48 0 0 0 0 0 0.209 0 0 0 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.056
Marche 0 0 0 0 0 0 0 0 0.48 0 1 0 0 0 0 0 0.179 0 0 0 0
Molise 0 0 0.234 0.419 0 0 0 0 0 0 0 1 0 0.143 0 0.601 0 0.062 0 0 0
Piemonte 0 0 0 0 0 0.456 0 0 0 0 0 0 1 0 0 0 0.128 0 0 0 0.056
Puglia 0 0 0.36 0.108 0 0 0.132 0 0 0 0 0.143 0 1 0 0.948 0 0.693 0.06 0 0
Sardegna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sicilia 0.158 0.068 0.478 0.4 0 0 0.442 0 0 0 0 0.601 0 0.948 0.003 1 0 0.564 0.223 0.124 0.056
Toscana 0 0 0 0 0 0 0 0 0.209 0 0.179 0 0.128 0 0.001 0 1 0 0 0 0.056
Trento 0.2 0 0.272 0.06 0.054 0 0.608 0 0 0 0 0.062 0 0.693 0.001 0.564 0 1 0.405 0.124 0.056
Umbria 0.481 0 0 0 0.176 0 0.48 0 0 0 0 0 0 0.06 0.001 0.223 0 0.405 1 0.949 0.056
ValleAosta 0.403 0 0 0 0.332 0 0.564 0.062 0 0 0 0 0 0 0.001 0.124 0 0.124 0.949 1 0
Veneto 0 0 0 0 0 0.056 0.056 0.056 0.056 0.056 0 0 0.056 0 0.005 0.056 0.056 0.056 0.056 0 1

Table A11.

Similarity values of Intensive Care network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0.37 0 0 0.521 0 0 0.179 0 0 0 0 0.306 0 0 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0.177 0.237 0 0 0.157 0 0 0 0 0 0
Bolzano 0 0 1 0 0 0 0.073 0 0 0 0.178 0 0 0.248 0 0 0 0.072 0.157 0.797 0.797
Calabria 0 0 0 1 0 0 0 0 0 0 0.179 0 0 0.063 0.244 0 0 0 0 0.084 0.084
Campania 0.37 0 0 0 1 0 0.406 0.276 0 0 0.405 0 0 0.276 0 1 0 0.275 0.138 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0.805 0 0 0 0 0 0 0 0
Friuli 0 0 0.073 0 0.406 0 1 0 0 0 0.179 0 0 0.798 0 0.306 0 0.898 0.651 0 0
Lazio 0.521 0 0 0 0.276 0 0 1 0 0 0.2 0 0 0 0 0.11 0 0 0 0 0
Liguria 0 0 0 0 0 0 0 0 1 0 0.11 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.179 0.177 0.178 0.179 0.405 0 0.179 0.2 0.11 0 1 0.174 0 0.179 0.14 0.179 0 0.179 0.177 0.179 0.179
Molise 0 0.237 0 0 0 0 0 0 0 0 0.174 1 0 0 0.195 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0.805 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0 0 0.248 0.063 0.276 0 0.798 0 0 0 0.179 0 0 1 0 0.277 0 0.608 0.847 0.096 0.096
Sardegna 0 0.157 0 0.244 0 0 0 0 0 0 0.14 0.195 0 0 1 0 0 0 0 0 0
Sicilia 0.306 0 0 0 1 0 0.306 0.11 0 0 0.179 0 0 0.277 0 1 0 0.337 0.177 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0 0 0.072 0 0.275 0 0.898 0 0 0 0.179 0 0 0.608 0 0.337 0 1 0.563 0.055 0.055
Umbria 0 0 0.157 0 0.138 0 0.651 0 0 0 0.177 0 0 0.847 0 0.177 0 0.563 1 0.072 0.072
ValleAosta 0 0 0.797 0.084 0 0 0 0 0 0 0.179 0 0 0.096 0 0 0 0.055 0.072 1 1
Veneto 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A12.

Similarity values of Intensive Care network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0 0 0.276 0 0.094 0 0.848 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.133 0 0 0 0 0.082 0
Campania 0 0 0 0 1 0 0 0.249 0 0 0 0 0 0 0 0 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.096
Friuli 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.096 0 0 0
Lazio 0 0 0 0 0.249 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0 0 0 1 0 0.335 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0.335 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.276 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.564 0 0.337 0 0 0
Sardegna 0 0 0 0.133 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Sicilia 0.094 0 0 0 0 0 0 0 0 0 0 0 0 0.564 0 1 0 0.305 0 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0.848 0 0 0 0 0 0.096 0 0 0 0 0 0 0.337 0 0.305 0 1 0 0 0
Umbria 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ValleAosta 0 0 0 0.082 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Veneto 0 0 0 0 0 0.096 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A13.

Similarity values of Total Hospitalized network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.225 0 0.472 0 0.427 0.098 0 0 0 0 0 0.957 0 0.819 0 0.494 0.119 0.609 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0.077 0 0 0 0 0 0 0 0 0
Bolzano 0.225 0 1 0.186 0.099 0 0.845 0 0 0 0 0 0 0.251 0.171 0.317 0 0.958 0.567 0.652 0
Calabria 0 0 0.186 1 0 0 0.128 0 0 0 0 0.24 0 0 0.833 0.052 0 0.219 0.457 0.099 0
Campania 0.472 0 0.099 0 1 0 0.247 0.295 0.093 0 0 0 0 0.6 0 0.39 0.087 0.204 0 0.279 0
Emilia 0 0 0 0 0 1 0 0 0 0.22 0.217 0 0.129 0 0 0 0 0 0 0 0.837
Friuli 0.427 0 0.845 0.128 0.247 0 1 0 0 0 0 0 0 0.381 0.12 0.501 0 0.91 0.357 0.973 0
Lazio 0.098 0 0 0 0.295 0 0 1 0.615 0 0 0 0 0.116 0 0.065 0.46 0 0 0 0
Liguria 0 0 0 0 0.093 0 0 0.615 1 0 0 0 0.077 0 0 0 0.877 0 0 0 0
Lombardi 0 0 0 0 0 0.22 0 0 0 1 0.14 0 0 0 0 0 0 0 0 0 0.486
Marche 0 0 0 0 0 0.217 0 0 0 0.14 1 0 0.634 0 0 0 0 0 0 0 0
Molise 0 0.077 0 0.24 0 0 0 0 0 0 0 1 0 0 0.27 0 0 0.07 0.138 0 0
Piemonte 0 0 0 0 0 0.129 0 0 0.077 0 0.634 0 1 0 0 0 0.09 0 0 0 0.161
Puglia 0.957 0 0.251 0 0.6 0 0.381 0.116 0 0 0 0 0 1 0 0.803 0 0.385 0.11 0.447 0
Sardegna 0 0 0.171 0.833 0 0 0.12 0 0 0 0 0.27 0 0 1 0 0 0.233 0.398 0.058 0
Sicilia 0.819 0 0.317 0.052 0.39 0 0.501 0.065 0 0 0 0 0 0.803 0 1 0 0.486 0.191 0.732 0
Toscana 0 0 0 0 0.087 0 0 0.46 0.877 0 0 0 0.09 0 0 0 1 0 0 0 0
Trento 0.494 0 0.958 0.219 0.204 0 0.91 0 0 0 0 0.07 0 0.385 0.233 0.486 0 1 0.49 0.947 0
Umbria 0.119 0 0.567 0.457 0 0 0.357 0 0 0 0 0.138 0 0.11 0.398 0.191 0 0.49 1 0.307 0
ValleAosta 0.609 0 0.652 0.099 0.279 0 0.973 0 0 0 0 0 0 0.447 0.058 0.732 0 0.947 0.307 1 0
Veneto 0 0 0 0 0 0.837 0 0 0 0.486 0 0 0.161 0 0 0 0 0 0 0 1

Table A14.

Similarity values of Total Hospitalized network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.89 0 0.55 0 0 0.59 0 0 0 0 0 0.58 0 0.73 0.06 0 0 0.08 0
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Bolzano 0.89 0 1 0 0.5 0 0 0.5 0 0 0 0 0 0.25 0 0.59 0 0 0 0 0
Calabria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Campania 0.55 0.02 0.5 0.02 1 0 0.02 0.89 0.05 0 0 0.02 0.09 0.28 0.02 0.6 0.19 0.02 0.02 0.06 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.11 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Lazio 0.59 0.02 0.5 0.02 0.89 0 0.02 1 0.05 0 0 0.02 0.09 0.28 0.02 0.59 0.19 0.02 0.02 0.06 0
Liguria 0 0 0 0 0.05 0 0 0.05 1 0 0.08 0 0.8 0 0 0.05 0.33 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0.11 0 0 0.08 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Piemonte 0 0 0 0 0.09 0 0 0.09 0.8 0 0 0 1 0 0 0 0.53 0 0 0 0
Puglia 0.58 0.02 0.25 0.02 0.28 0 0.02 0.28 0 0 0 0.02 0 1 0.02 0.17 0 0.02 0.02 0.11 0
Sardegna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Sicilia 0.73 0 0.59 0 0.6 0 0 0.59 0.05 0 0 0 0 0.17 0 1 0 0 0 0 0
Toscana 0.06 0 0 0 0.19 0 0 0.19 0.33 0 0 0 0.53 0 0 0 1 0 0 0 0
Trento 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Umbria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
ValleAosta 0.08 0.32 0 0.32 0.06 0 0.32 0.06 0 0 0 0.32 0 0.11 0.32 0 0 0.32 0.32 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A15.

Similarity values of Total Hospitalized network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0.08 0 0.05 0 0 0 0 0 0 0.37 0 0.27 0 0 0 0.12 0
Basilicata 0 1 0 0.37 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0 0
Bolzano 0 0 1 0.21 0 0 0.74 0 0 0 0 0.7 0 0.12 0.64 0.13 0 1 0.43 0 0
Calabria 0 0.37 0.21 1 0 0 0.1 0 0 0 0 0.05 0 0 0.46 0 0 0.24 0 0 0
Campania 0.08 0 0 0 1 0 0 0.28 0.06 0 0 0 0 0.07 0 0.06 0.18 0 0 0.34 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.05 0 0.74 0.1 0 0 1 0 0 0 0 1 0 0.33 0.2 0.33 0 0.7 0.84 0 0
Lazio 0 0 0 0 0.28 0 0 1 0.48 0 0 0 0.13 0 0 0 0.7 0 0 0.9 0
Liguria 0 0 0 0 0.06 0 0 0.48 1 0 0 0 0 0 0 0 0.52 0 0 0.85 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.53
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.46 0 0 0 0 0 0 0 0
Molise 0 0 0.7 0.05 0 0 1 0 0 0 0 1 0 0.3 0.07 0.27 0 0.65 0.56 0 0
Piemonte 0 0 0 0 0 0 0 0.13 0 0 0.46 0 1 0 0 0 0.32 0 0 0.16 0
Puglia 0.37 0 0.12 0 0.07 0 0.33 0 0 0 0 0.3 0 1 0 0.95 0 0.16 0.18 0 0
Sardegna 0 0.06 0.64 0.46 0 0 0.2 0 0 0 0 0.07 0 0 1 0 0 0.56 0.06 0 0
Sicilia 0.27 0 0.13 0 0.06 0 0.33 0 0 0 0 0.27 0 0.95 0 1 0 0.16 0.13 0.05 0
Toscana 0 0 0 0 0.18 0 0 0.7 0.52 0 0 0 0.32 0 0 0 1 0 0 0.9 0
Trento 0 0 1 0.24 0 0 0.7 0 0 0 0 0.65 0 0.16 0.56 0.16 0 1 0.56 0 0
Umbria 0 0 0.43 0 0 0 0.84 0 0 0 0 0.56 0 0.18 0.06 0.13 0 0.56 1 0 0
ValleAosta 0.12 0 0 0 0.34 0 0 0.9 0.85 0 0 0 0.16 0 0 0.05 0.9 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.53 0 0 0 0 0 0 0 0 0 0 1

Table A16.

Similarity values of Total Hospitalized network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0.141 0 0.949 0 0 0 0 0 0 0.336 0 0.224 0 0.848 0 0.406 0
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0.001 1 0.481 0 0 0.083 0 0 0 0 0 0 0 0.054 0.249 0 0.124 1 0.306 0
Calabria 0 0.001 0.481 1 0 0 0 0 0 0 0 0 0 0 0.198 0 0 0 0.368 0.073 0.056
Campania 0.141 0.001 0 0 1 0 0.177 0.11 0 0 0 0 0 0.701 0 0 0 0.179 0 0.141 0
Emilia 0 0.001 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0.949 0.001 0.083 0 0.177 0 1 0 0 0 0 0 0 0.277 0 0.478 0 0.949 0.096 0.521 0
Lazio 0 0.001 0 0 0.11 0 0 1 0.383 0 0 0 0 0.053 0 0 0.165 0 0 0 0.056
Liguria 0 0.001 0 0 0 0 0 0.383 1 0 0 0 0 0 0 0 0.535 0 0 0 0.056
Lombardi 0 0.001 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.056
Marche 0 0.001 0 0 0 0 0 0 0 0 1 0 0.383 0 0 0 0 0 0 0 0.056
Molise 0 0.001 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0.001 0 0 0 0 0 0 0 0 0.383 0 1 0 0 0 0 0 0 0 0.056
Puglia 0.336 0.001 0 0 0.701 0 0.277 0.053 0 0 0 0 0 1 0 0.084 0 0.456 0 0.125 0.056
Sardegna 0 0.001 0.054 0.198 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Sicilia 0.224 0.001 0.249 0 0 0 0.478 0 0 0 0 0 0 0.084 0 1 0 0.482 0.179 0.949 0
Toscana 0 0.001 0 0 0 0 0 0.165 0.535 0 0 0 0 0 0 0 1 0 0 0 0.056
Trento 0.848 0.001 0.124 0 0.179 0 0.949 0 0 0 0 0 0 0.456 0 0.482 0 1 0.084 0.805 0.056
Umbria 0 0.001 1 0.368 0 0 0.096 0 0 0 0 0 0 0 0 0.179 0 0.084 1 0.306 0.056
ValleAosta 0.406 0.001 0.306 0.073 0.141 0 0.521 0 0 0 0 0 0 0.125 0 0.949 0 0.805 0.306 1 0.056
Veneto 0 0.005 0 0.056 0 0.056 0 0.056 0.056 0.056 0.056 0 0.056 0.056 0 0 0.056 0.056 0.056 0.056 1

Table A17.

Similarity values of Total Hospitalized network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0.482 0 0.383 0 0 0 0.209 0 0 0.902 0 0.805 0 0.805 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0.179 0.109 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0 0 0.053 0 0 0 0.209 0 0 0 0 0.073 0 0 0.62 0.201 0.201
Calabria 0 0 0 1 0 0 0 0 0 0 0.209 0 0 0 0.165 0 0 0 0 0.535 0.535
Campania 0.482 0 0 0 1 0 0.442 0 0 0 0.179 0 0 0.949 0 0.482 0 0.749 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0.62 0 0 0 0 0 0 0 0
Friuli 0.383 0 0.053 0 0.442 0 1 0 0 0 0.209 0 0 0.128 0 0.701 0 0.306 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.456 0 0.201 0 0 0 0 0 0.165 0 0 0 0
Liguria 0 0 0 0 0 0 0 0.456 1 0 0.383 0 0 0 0 0 0.71 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.209 0.179 0.209 0.209 0.179 0 0.209 0.201 0.383 0 1 0.209 0 0.209 0.209 0.209 0.805 0.209 0.209 0.209 0.209
Molise 0 0.109 0 0 0 0 0 0 0 0 0.209 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0.62 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.902 0 0 0 0.949 0 0.128 0 0 0 0.209 0 0 1 0 0.535 0 0.805 0 0 0
Sardegna 0 0 0 0.165 0 0 0 0 0 0 0.209 0 0 0 1 0 0 0 0 0.318 0.318
Sicilia 0.805 0 0.073 0 0.482 0 0.701 0 0 0 0.209 0 0 0.535 0 1 0 0.701 0.053 0 0
Toscana 0 0 0 0 0 0 0 0.165 0.71 0 0.805 0 0 0 0 0 1 0 0 0 0
Trento 0.805 0 0 0 0.749 0 0.306 0 0 0 0.209 0 0 0.805 0 0.701 0 1 0 0 0
Umbria 0 0 0.62 0 0 0 0 0 0 0 0.209 0 0 0 0 0.053 0 0 1 0.306 0.306
ValleAosta 0 0 0.201 0.535 0 0 0 0 0 0 0.209 0 0 0 0.318 0 0 0 0.306 1 1
Veneto 0 0 0.201 0.535 0 0 0 0 0 0 0.209 0 0 0 0.318 0 0 0 0.306 1 1

Table A18.

Similarity values of Total Hospitalized network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.128 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0.402 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0 0 0.609 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0 0 0 0
Campania 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.609 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.179 0 0.141 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0 0 0.179 1 0 0.71 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0.141 0.71 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0.402 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0.141 0 0.097 0 0 0
Sardegna 0 0 0 0.11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.337 0
Sicilia 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0.141 0 1 0 0.565 0 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0.128 0 0 0 0 0 0 0 0 0 0 0 0 0.097 0 0.565 0 1 0 0 0
Umbria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ValleAosta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.337 0 0 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A19.

Similarity values of Home Isolation network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.262 0.607 0.914 0 0 0 0.151 0 0 0 0.135 0 0.154 0.973 0.08 0 0.224 0.144 0 0
Basilicata 0.262 1 0.19 0.279 0 0 0 0 0 0 0 0.919 0 0 0.164 0 0 0 0 0 0
Bolzano 0.607 0.19 1 0.699 0.106 0 0.217 0.438 0.143 0 0 0.106 0.072 0.383 0.533 0.338 0 0.522 0.537 0.309 0
Calabria 0.914 0.279 0.699 1 0 0 0 0.119 0 0 0 0.156 0 0.074 0.813 0 0 0.172 0.067 0 0
Campania 0 0 0.106 0 1 0 0.778 0.357 0.648 0 0 0 0.717 0.173 0 0.268 0.333 0.301 0.213 0.677 0
Emilia 0 0 0 0 0 1 0 0 0 0.793 0.259 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.217 0 0.778 0 1 0.608 0.946 0 0 0 0.55 0.329 0 0.424 0.226 0.484 0.37 0.962 0
Lazio 0.151 0 0.438 0.119 0.357 0 0.608 1 0.595 0 0 0 0.145 0.783 0.165 1 0.099 0.797 0.815 0.54 0
Liguria 0 0 0.143 0 0.648 0 0.946 0.595 1 0 0 0 0.472 0.271 0 0.436 0.304 0.275 0.429 0.851 0
Lombardi 0 0 0 0 0 0.793 0 0 0 1 0.677 0 0 0 0 0 0 0 0 0 0.053
Marche 0 0 0 0 0 0.259 0 0 0 0.677 1 0 0 0 0 0 0 0 0 0 0
Molise 0.135 0.919 0.106 0.156 0 0 0 0 0 0 0 1 0 0 0.063 0 0 0 0 0 0
Piemonte 0 0 0.072 0 0.717 0 0.55 0.145 0.472 0 0 0 1 0.072 0 0.158 0.989 0.115 0.115 0.793 0
Puglia 0.154 0 0.383 0.074 0.173 0 0.329 0.783 0.271 0 0 0 0.072 1 0.2 0.722 0.05 0.984 0.874 0.326 0
Sardegna 0.973 0.164 0.533 0.813 0 0 0 0.165 0 0 0 0.063 0 0.2 1 0.095 0 0.25 0.177 0 0
Sicilia 0.08 0 0.338 0 0.268 0 0.424 1 0.436 0 0 0 0.158 0.722 0.095 1 0.091 0.752 0.826 0.314 0
Toscana 0 0 0 0 0.333 0 0.226 0.099 0.304 0 0 0 0.989 0.05 0 0.091 1 0.062 0.068 0.245 0
Trento 0.224 0 0.522 0.172 0.301 0 0.484 0.797 0.275 0 0 0 0.115 0.984 0.25 0.752 0.062 1 0.903 0.493 0
Umbria 0.144 0 0.537 0.067 0.213 0 0.37 0.815 0.429 0 0 0 0.115 0.874 0.177 0.826 0.068 0.903 1 0.382 0
ValleAosta 0 0 0.309 0 0.677 0 0.962 0.54 0.851 0 0 0 0.793 0.326 0 0.314 0.245 0.493 0.382 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.053 0 0 0 0 0 0 0 0 0 0 1

Table A20.

Similarity values of Home Isolation network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.32 0.32 0.38 0.1 0 0.92 0.32 0 0 0 0.32 0 0.25 0.32 0 0.2 0.32 0.53 0.42 0
Basilicata 0.32 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0.06 0 0 0.06 0 0.14 0.14 0
Bolzano 0.32 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0.06 0 0 0.06 0 0.14 0.14 0
Calabria 0.38 0.06 0.06 1 0.27 0 0.38 0.06 0.05 0 0 0.06 0 0.52 0.06 0 0.52 0.06 0.94 0.94 0
Campania 0.1 0.03 0.03 0.27 1 0 0.12 0.03 0.39 0 0.19 0.03 0.56 0.49 0.03 0.84 0.58 0.03 0.26 0.32 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.92 0.32 0.32 0.38 0.12 0 1 0.32 0 0 0 0.32 0 0.38 0.32 0 0.38 0.32 0.66 0.42 0
Lazio 0.32 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0.06 0 0 0.06 0 0.14 0.14 0
Liguria 0 0.01 0.01 0.05 0.39 0 0 0.01 1 0 0.75 0.01 0.4 0.05 0.01 0.17 0.06 0.01 0 0.08 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0.19 0 0 0 0.75 0 1 0 0.51 0.08 0 0.24 0.08 0 0 0 0
Molise 0.32 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0.06 0 0 0.06 0 0.14 0.14 0
Piemonte 0 0 0 0 0.56 0 0 0 0.4 0 0.51 0 1 0.17 0 0.74 0.26 0 0.06 0.18 0
Puglia 0.25 0.06 0.06 0.52 0.49 0 0.38 0.06 0.05 0 0.08 0.06 0.17 1 0.06 0.31 0.67 0.06 0.59 0.94 0
Sardegna 0.32 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0.06 0 0 0.06 0 0.14 0.14 0
Sicilia 0 0 0 0 0.84 0 0 0 0.17 0 0.24 0 0.74 0.31 0 1 0.47 0 0.1 0.28 0
Toscana 0.2 0.06 0.06 0.52 0.58 0 0.38 0.06 0.06 0 0.08 0.06 0.26 0.67 0.06 0.47 1 0.06 0.41 0.94 0
Trento 0.32 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0.06 0 0 0.06 0 0.14 0.14 0
Umbria 0.53 0.14 0.14 0.94 0.26 0 0.66 0.14 0 0 0 0.14 0.06 0.59 0.14 0.1 0.41 0.14 1 0.75 0
ValleAosta 0.42 0.14 0.14 0.94 0.32 0 0.42 0.14 0.08 0 0 0.14 0.18 0.94 0.14 0.28 0.94 0.14 0.75 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A21.

Similarity values of Home Isolation network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.32 0.41 0.13 0 0 0 0 0 0 0 0.22 0 0 0.41 0 0 0 0 0 0
Basilicata 0.32 1 0 0.62 0 0 0 0 0 0 0 0.51 0 0 0.95 0 0 0 0 0 0
Bolzano 0.41 0 1 0 0 0 0 0 0 0 0 0.12 0 0 0.15 0 0 0 0 0 0
Calabria 0.13 0.62 0 1 0 0 0 0.05 0 0 0 0.75 0 0 0.65 0 0 0 0 0 0
Campania 0 0 0 0 1 0 0.14 0 0 0 0.18 0 0.11 0 0 0 0.8 0 0 0.25 0
Emilia 0 0 0 0 0 1 0 0 0 0.16 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0.14 0 1 0.2 0 0 0 0 0 0 0 0.25 0.52 0 0.16 0.06 0
Lazio 0 0 0 0.05 0 0 0.2 1 0.4 0 0 0 0 0.4 0 0.75 0.11 0.16 0.85 0 0
Liguria 0 0 0 0 0 0 0 0.4 1 0 0 0.12 0 0.48 0 0.34 0 0.11 0.17 0 0
Lombardi 0 0 0 0 0 0.16 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0.18 0 0 0 0 0 1 0 0.8 0 0 0 0.14 0 0 0.8 0
Molise 0.22 0.51 0.12 0.75 0 0 0 0 0.12 0 0 1 0 0.18 0.42 0 0 0.6 0 0 0
Piemonte 0 0 0 0 0.11 0 0 0 0 0 0.8 0 1 0 0 0 0.13 0 0 0.71 0
Puglia 0 0 0 0 0 0 0 0.4 0.48 0 0 0.18 0 1 0 0.27 0 0.61 0.08 0 0
Sardegna 0.41 0.95 0.15 0.65 0 0 0 0 0 0 0 0.42 0 0 1 0 0 0.06 0 0 0
Sicilia 0 0 0 0 0 0 0.25 0.75 0.34 0 0 0 0 0.27 0 1 0.14 0.14 0.95 0 0
Toscana 0 0 0 0 0.8 0 0.52 0.11 0 0 0.14 0 0.13 0 0 0.14 1 0 0.16 0.21 0
Trento 0 0 0 0 0 0 0 0.16 0.11 0 0 0.6 0 0.61 0.06 0.14 0 1 0 0 0
Umbria 0 0 0 0 0 0 0.16 0.85 0.17 0 0 0 0 0.08 0 0.95 0.16 0 1 0 0
ValleAosta 0 0 0 0 0.25 0 0.06 0 0 0 0.8 0 0.71 0 0 0 0.21 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A22.

Similarity values of Home Isolation network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.064 0.404 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0
Basilicata 0 1 0 0.521 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.064 0 1 0 0.209 0 0.165 1 0.609 0 0 0 0.62 0.25 0.109 0.798 0 1 0.71 0.71 0.056
Calabria 0.404 0.521 0 1 0 0 0 0 0 0 0 0.647 0 0 0.158 0 0 0 0 0 0
Campania 0 0 0.209 0 1 0 0.71 0.128 0.443 0 0 0 0.383 0 0 0.055 0.053 0.209 0 0.522 0.056
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0 0 0.165 0 0.71 0 1 0.073 0.318 0 0 0 0.25 0 0 0.073 0.073 0.209 0 0.62 0.056
Lazio 0 0 1 0 0.128 0 0.073 1 0.535 0 0 0 0.456 0.128 0 1 0 0.902 0.701 0.805 0.056
Liguria 0 0 0.609 0 0.443 0 0.318 0.535 1 0 0 0 1 0.063 0 0.383 0 0.609 0.318 1 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.056
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.71 0 0 0.073 0.056
Molise 0 0 0 0.647 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0.62 0 0.383 0 0.25 0.456 1 0 0 0 1 0 0 0.165 0 0.318 0.097 0.71 0.056
Puglia 0 0 0.25 0 0 0 0 0.128 0.063 0 0 0 0 1 0.249 0.097 0 0.224 0.209 0.259 0.056
Sardegna 0.33 0 0.109 0.158 0 0 0 0 0 0 0 0 0 0.249 1 0 0 0.063 0 0.084 0
Sicilia 0 0 0.798 0 0.055 0 0.073 1 0.383 0 0 0 0.165 0.097 0 1 0 0.902 0.62 0.701 0.056
Toscana 0 0 0 0 0.053 0 0.073 0 0 0 0.71 0 0 0 0 0 1 0 0 0.097 0.056
Trento 0 0 1 0 0.209 0 0.209 0.902 0.609 0 0 0 0.318 0.224 0.063 0.902 0 1 0.902 0.805 0.056
Umbria 0 0 0.71 0 0 0 0 0.701 0.318 0 0 0 0.097 0.209 0 0.62 0 0.902 1 0.71 0.056
ValleAosta 0 0 0.71 0 0.522 0 0.62 0.805 1 0 0.073 0 0.71 0.259 0.084 0.701 0.097 0.805 0.71 1 0.056
Veneto 0 0 0.056 0 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0 0.056 0.056 0 0.056 0.056 0.056 0.056 0.056 1

Table A23.

Similarity values of Home Isolation network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0.159 0 0 0 0 0 0 0.179 0 0.084 0.159 0.805 0.609 0 0 0.053 0.165 0.165
Basilicata 0 1 0 0 0 0 0 0 0 0 0.179 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0.277 0 0.71 0.902 1 0 0.179 0 0.848 0.383 0 0 0 0.71 0.456 0.128 0.128
Calabria 0.159 0 0 1 0 0 0 0 0 0 0.179 0 0 0 0.209 0 0 0 0 0 0
Campania 0 0 0.277 0 1 0 0.565 0.141 0.565 0 0.276 0 0.654 0.11 0 0 0 0.949 0.2 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.71 0 0.565 0 1 0.535 1 0 0.224 0 0.654 0.259 0 0 0 0.805 0.383 0.053 0.053
Lazio 0 0 0.902 0 0.141 0 0.535 1 0.535 0 0.2 0 0.898 0.62 0 0 0 0.318 0.71 0.318 0.318
Liguria 0 0 1 0 0.565 0 1 0.535 1 0 0.179 0 0.654 0.383 0 0 0 0.902 0.535 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.179 0.179 0.179 0.179 0.276 0 0.224 0.2 0.179 0 1 0.178 0.564 0.179 0.179 0.179 0.124 0.277 0.179 0.179 0.179
Molise 0 0 0 0 0 0 0 0 0 0 0.178 1 0 0 0 0 0 0 0 0 0
Piemonte 0.084 0 0.848 0 0.654 0 0.654 0.898 0.654 0 0.564 0 1 0.337 0.084 0 0.654 0.654 0.565 0.749 0.749
Puglia 0.159 0 0.383 0 0.11 0 0.259 0.62 0.383 0 0.179 0 0.337 1 0.097 0.165 0 0.318 1 0.902 0.902
Sardegna 0.805 0 0 0.209 0 0 0 0 0 0 0.179 0 0.084 0.097 1 0.805 0 0 0.053 0.097 0.097
Sicilia 0.609 0 0 0 0 0 0 0 0 0 0.179 0 0 0.165 0.805 1 0 0 0.073 0.073 0.073
Toscana 0 0 0 0 0 0 0 0 0 0 0.124 0 0.654 0 0 0 1 0 0 0 0
Trento 0 0 0.71 0 0.949 0 0.805 0.318 0.902 0 0.277 0 0.654 0.318 0 0 0 1 0.306 0 0
Umbria 0.053 0 0.456 0 0.2 0 0.383 0.71 0.535 0 0.179 0 0.565 1 0.053 0.073 0 0.306 1 0.383 0.383
ValleAosta 0.165 0 0.128 0 0 0 0.053 0.318 0 0 0.179 0 0.749 0.902 0.097 0.073 0 0 0.383 1 1
Veneto 0.165 0 0.128 0 0 0 0.053 0.318 0 0 0.179 0 0.749 0.902 0.097 0.073 0 0 0.383 1 1

Table A24.

Similarity values of Home Isolation network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.535 0 0.128 0 0 0 0 0 0 0 0 0.165 0.073 0.209 0 0 0.456 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.535 0 1 0 0.209 0 0 0 0 0 0 0 0 0.125 0 0.535 0 0 1 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.165 0 0 0 0 0.456 0
Campania 0.128 0 0.209 0 1 0 0.71 0.128 0.073 0 0 0 0 0.535 0 0.71 0 0.456 0.259 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.073
Friuli 0 0 0 0 0.71 0 1 0.128 0.055 0 0 0 0 0.209 0 0.259 0 0.71 0.073 0 0
Lazio 0 0 0 0 0.128 0 0.128 1 0.805 0 0 0 0 0 0 0 0 0.209 0 0 0
Liguria 0 0 0 0 0.073 0 0.055 0.805 1 0 0 0 0 0 0 0 0 0.097 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.902 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.165 0 0.125 0 0.535 0 0.209 0 0 0 0 0 0 1 0 0.902 0 0.073 0.456 0 0
Sardegna 0.073 0 0 0.165 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.259 0
Sicilia 0.209 0 0.535 0 0.71 0 0.259 0 0 0 0 0 0 0.902 0 1 0 0.165 0.535 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0.902 0 0 0 0 0 1 0 0 0 0
Trento 0 0 0 0 0.456 0 0.71 0.209 0.097 0 0 0 0 0.073 0 0.165 0 1 0 0 0
Umbria 0.456 0 1 0 0.259 0 0.073 0 0 0 0 0 0 0.456 0 0.535 0 0 1 0 0
ValleAosta 0 0 0 0.456 0 0 0 0 0 0 0 0 0 0 0.259 0 0 0 0 1 0
Veneto 0 0 0 0 0 0.073 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A25.

Similarity values of Total Currently Positive network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.898 0.16 0.103 0 0.336 0.147 0 0 0 0 0 0.596 0.213 0.541 0 0.968 0.945 0.307 0
Basilicata 0 1 0 0.094 0 0 0 0 0 0 0 0.49 0 0 0.104 0 0 0 0 0 0
Bolzano 0.898 0 1 0.213 0.119 0 0.471 0.122 0 0 0 0 0 0.497 0.222 0.371 0 0.989 0.967 0.531 0
Calabria 0.16 0.094 0.213 1 0 0 0 0 0 0 0 0.198 0 0.067 0.84 0 0 0.257 0.179 0 0
Campania 0.103 0 0.119 0 1 0 0.48 0.914 0.485 0 0 0 0 0.304 0 0.295 0.214 0.247 0.109 0.554 0
Emilia 0 0 0 0 0 1 0 0 0 0.478 0.266 0 0 0 0 0 0 0 0 0 0.071
Friuli 0.336 0 0.471 0 0.48 0 1 0.468 0.197 0 0 0 0 0.783 0 0.717 0.077 0.625 0.367 0.936 0
Lazio 0.147 0 0.122 0 0.914 0 0.468 1 0.61 0 0 0 0 0.337 0 0.368 0.235 0.19 0.132 0.485 0
Liguria 0 0 0 0 0.485 0 0.197 0.61 1 0 0 0 0.104 0.096 0 0.097 0.573 0.052 0 0.248 0
Lombardi 0 0 0 0 0 0.478 0 0 0 1 0.241 0 0 0 0 0 0 0 0 0 0.626
Marche 0 0 0 0 0 0.266 0 0 0 0.241 1 0 0.218 0 0 0 0 0 0 0 0
Molise 0 0.49 0 0.198 0 0 0 0 0 0 0 1 0 0 0.153 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0.104 0 0.218 0 1 0 0 0 0.262 0 0 0 0
Puglia 0.596 0 0.497 0.067 0.304 0 0.783 0.337 0.096 0 0 0 0 1 0.091 0.963 0 0.703 0.615 0.697 0
Sardegna 0.213 0.104 0.222 0.84 0 0 0 0 0 0 0 0.153 0 0.091 1 0.068 0 0.255 0.232 0 0
Sicilia 0.541 0 0.371 0 0.295 0 0.717 0.368 0.097 0 0 0 0 0.963 0.068 1 0 0.65 0.577 0.605 0
Toscana 0 0 0 0 0.214 0 0.077 0.235 0.573 0 0 0 0.262 0 0 0 1 0 0 0.083 0
Trento 0.968 0 0.989 0.257 0.247 0 0.625 0.19 0.052 0 0 0 0 0.703 0.255 0.65 0 1 0.925 0.607 0
Umbria 0.945 0 0.967 0.179 0.109 0 0.367 0.132 0 0 0 0 0 0.615 0.232 0.577 0 0.925 1 0.331 0
ValleAosta 0.307 0 0.531 0 0.554 0 0.936 0.485 0.248 0 0 0 0 0.697 0 0.605 0.083 0.607 0.331 1 0
Veneto 0 0 0 0 0 0.071 0 0 0 0.626 0 0 0 0 0 0 0 0 0 0 1

Table A26.

Similarity values of Total Currently Positive network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.89 0.36 0.42 0 0.2 0.69 0 0 0 0 0 0.79 0 0.1 0.06 0 0.39 0.67 0
Basilicata 0 0 0 0.06 0 0 0.32 0 0 0 0 NA 0 0 NA 0 0 NA 0.14 0.14 0
Bolzano 0.89 0 1 0.11 0.5 0 0 0.5 0 0 0 0 0 0.78 0 0 0 0 0.27 0.27 0
Calabria 0.36 0.06 0.11 1 0.19 0 0.38 0.19 0 0 0 0.06 0 0.27 0.06 0 0 0.06 0.94 0.94 0
Campania 0.42 0.03 0.5 0.19 1 0 0.12 0.35 0.09 0 0 0.03 0.44 0.38 0.03 0.79 0.9 0.03 0.12 0.32 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0
Friuli 0.2 0.32 0 0.38 0.12 0 1 0.2 0 0 0 0.32 0 0.2 0.32 0 0 0.32 0.66 0.42 0
Lazio 0.69 0.02 0.5 0.19 0.35 0 0.2 1 0.05 0 0 0.02 0 0.89 0.02 0.28 0.19 0.02 0.2 0.67 0
Liguria 0 0 0 0 0.09 0 0 0.05 1 0 0.25 0 0.56 0 0 0.12 0.16 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0.07 0 0 0.25 0 1 0 0.09 0 0 0 0 0 0 0 0
Molise 0 NA 0 0.06 0 0 0.32 0 0 0 0 NA 0 0 NA 0 0 NA 0.14 0.14 0
Piemonte 0 0 0 0 0.44 0 0 0 0.56 0 0.09 0 1 0 0 0.06 0.24 0 0 0 0
Puglia 0.79 0.02 0.78 0.27 0.38 0 0.2 0.89 0 0 0 0.02 0 1 0.02 0.35 0.19 0.02 0.2 0.67 0
Sardegna 0 NA 0 0.06 0 0 0.32 0 0 0 0 NA 0 0 NA 0 0 NA 0.14 0.14 0
Sicilia 0.1 0 0 0 0.79 0 0 0.28 0.12 0 0 0 0.06 0.35 0 1 0.59 0 0 0.25 0
Toscana 0.06 0 0 0 0.9 0 0 0.19 0.16 0 0 0 0.24 0.19 0 0.59 1 0 0 0.09 0
Trento 0 NA 0 0.06 0 0 0.32 0 0 0 0 NA 0 0 NA 0 0 NA 0.14 0.14 0
Umbria 0.39 0.14 0.27 0.94 0.12 0 0.66 0.2 0 0 0 0.14 0 0.2 0.14 0 0 0.14 1 0.75 0
ValleAosta 0.67 0.14 0.27 0.94 0.32 0 0.42 0.67 0 0 0 0.14 0 0.67 0.14 0.25 0.09 0.14 0.75 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A27.

Similarity values of Total Currently Positive network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0.61 0 0.48 0 0.22 0 0.65 0.05 0 0
Basilicata 0 1 0.41 0.35 0 0 0 0 0 0 0 0.07 0 0 0.33 0 0 0 0 0 0
Bolzano 0 0.41 1 0.95 0 0 0 0 0 0 0 0.22 0 0 0.74 0 0 0.15 0 0 0
Calabria 0 0.35 0.95 1 0 0 0 0 0 0 0 0.18 0 0 0.7 0 0 0.08 0 0 0
Campania 0 0 0 0 1 0 0.07 0.62 0.18 0 0 0 0 0 0 0 0.62 0 0 0.31 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0.07 0 1 0.46 0.52 0 0 0 0 0.13 0 0.48 0.12 0 0.25 0.05 0
Lazio 0 0 0 0 0.62 0 0.46 1 0.48 0 0 0 0 0.1 0 0.28 0.38 0 0.11 0.16 0
Liguria 0 0 0 0 0.18 0 0.52 0.48 1 0 0 0 0 0 0 0.22 0.31 0 0.2 0.08 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.62 0 0 0 0 0 0 0.62 0
Molise 0.61 0.07 0.22 0.18 0 0 0 0 0 0 0 1 0 0.18 0.16 0 0 0.75 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0.62 0 1 0 0 0 0.16 0 0 0.62 0
Puglia 0.48 0 0 0 0 0 0.13 0.1 0 0 0 0.18 0 1 0 0.48 0 0.31 0.34 0 0
Sardegna 0 0.33 0.74 0.7 0 0 0 0 0 0 0 0.16 0 0 1 0 0 0.16 0 0 0
Sicilia 0.22 0 0 0 0 0 0.48 0.28 0.22 0 0 0 0 0.48 0 1 0 0.11 0.95 0 0
Toscana 0 0 0 0 0.62 0 0.12 0.38 0.31 0 0 0 0.16 0 0 0 1 0 0 0.46 0
Trento 0.65 0 0.15 0.08 0 0 0 0 0 0 0 0.75 0 0.31 0.16 0.11 0 1 0.06 0 0
Umbria 0.05 0 0 0 0 0 0.25 0.11 0.2 0 0 0 0 0.34 0 0.95 0 0.06 1 0 0
ValleAosta 0 0 0 0 0.31 0 0.05 0.16 0.08 0 0.62 0 0.62 0 0 0 0.46 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A28.

Similarity values of Total Currently Positive network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.406 0 0 0 0 0 0 0 0 0 0 0.224 0.178 0.141 0 0.277 0.48 0.224 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.406 0 1 0 0 0 0.11 0.097 0 0 0 0 0 1 0.096 0.805 0 0.798 0.609 0.71 0.056
Calabria 0 0 0 1 0 0 0 0 0 0 0 0.244 0 0 0.306 0 0 0 0 0 0.056
Campania 0 0 0 0 1 0 0.565 0.902 0.306 0 0 0 0 0 0 0 0 0.209 0 0.306 0.056
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0 0 0.11 0 0.565 0 1 0.654 0.277 0 0 0 0 0.11 0 0.179 0 0.277 0 0.482 0
Lazio 0 0 0.097 0 0.902 0 0.654 1 0.456 0 0 0 0 0.073 0 0.128 0 0.259 0 0.383 0.056
Liguria 0 0 0 0 0.306 0 0.277 0.456 1 0 0 0 0 0 0 0 0.128 0.097 0 0.165 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.667
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.805 0 0 0 0.053 0 0 0 0.056
Molise 0 0 0 0.244 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0.805 0 1 0 0 0 0.097 0 0 0 0.056
Puglia 0.224 0 1 0 0 0 0.11 0.073 0 0 0 0 0 1 0 0.902 0 0.805 0.62 1 0.056
Sardegna 0.178 0 0.096 0.306 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.053 0.056
Sicilia 0.141 0 0.805 0 0 0 0.179 0.128 0 0 0 0 0 0.902 0 1 0 1 0.456 1 0.056
Toscana 0 0 0 0 0 0 0 0 0.128 0 0.053 0 0.097 0 0 0 1 0 0 0 0.056
Trento 0.277 0 0.798 0 0.209 0 0.277 0.259 0.097 0 0 0 0 0.805 0 1 0 1 0.535 1 0.056
Umbria 0.48 0 0.609 0 0 0 0 0 0 0 0 0 0 0.62 0 0.456 0 0.535 1 0.62 0.056
ValleAosta 0.224 0 0.71 0 0.306 0 0.482 0.383 0.165 0 0 0 0 1 0.053 1 0 1 0.62 1 0.056
Veneto 0 0 0.056 0.056 0.056 0.056 0 0.056 0.056 0.667 0.056 0 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 1

Table A29.

Similarity values of Total Currently Positive network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.306 0 0 0 0.128 0 0 0 0.209 0 0 0.318 0.073 1 0 0.073 0.71 0.805 0.805
Basilicata 0 1 0 0 0 0 0 0 0 0 0.209 0.609 0 0 0 0 0 0 0 0 0
Bolzano 0.306 0 1 0 0.11 0 0.535 0 0 0 0.209 0 0 0.902 0 0.259 0 0.25 0.535 0.165 0.165
Calabria 0 0 0 1 0 0 0 0 0 0 0.209 0 0 0 0.383 0 0 0 0 0 0
Campania 0 0 0.11 0 1 0 0.277 0.141 0 0 0.179 0 0 0.224 0 0 0 0.848 0.064 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.128 0 0.535 0 0.277 0 1 0.053 0 0 0.209 0 0 0.71 0 0.073 0 0.71 0.165 0 0
Lazio 0 0 0 0 0.141 0 0.053 1 0.456 0 0.201 0 0 0 0 0 0 0.073 0 0 0
Liguria 0 0 0 0 0 0 0 0.456 1 0 0.259 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.209 0.209 0.209 0.209 0.179 0 0.209 0.201 0.259 0 1 0.209 0 0.209 0.209 0.209 0.456 0.209 0.209 0.209 0.209
Molise 0 0.609 0 0 0 0 0 0 0 0 0.209 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.318 0 0.902 0 0.224 0 0.71 0 0 0 0.209 0 0 1 0 0.318 0 0.456 0.456 0.128 0.128
Sardegna 0.073 0 0 0.383 0 0 0 0 0 0 0.209 0 0 0 1 0.096 0 0 0 0.128 0.128
Sicilia 1 0 0.259 0 0 0 0.073 0 0 0 0.209 0 0 0.318 0.096 1 0 0.053 0.71 0.805 0.805
Toscana 0 0 0 0 0 0 0 0 0 0 0.456 0 0 0 0 0 1 0 0 0 0
Trento 0.073 0 0.25 0 0.848 0 0.71 0.073 0 0 0.209 0 0 0.456 0 0.053 0 1 0.165 0 0
Umbria 0.71 0 0.535 0 0.064 0 0.165 0 0 0 0.209 0 0 0.456 0 0.71 0 0.165 1 0.383 0.383
ValleAosta 0.805 0 0.165 0 0 0 0 0 0 0 0.209 0 0 0.128 0.128 0.805 0 0 0.383 1 1
Veneto 0.805 0 0.165 0 0 0 0 0 0 0 0.209 0 0 0.128 0.128 0.805 0 0 0.383 1 1

Table A30.

Similarity values of Total Currently Positive network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 1 0 0 0 0.306 0 0 0 0 0 0 0 0 0.165 0 0 0.456 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 1 0 1 0 0 0 0.073 0 0 0 0 0 0 0 0 0.097 0 0 0.383 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.318 0 0 0 0 0.482 0
Campania 0 0 0 0 1 0 0.053 0 0 0 0 0 0 0.71 0 0.318 0 0.456 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.306 0 0.073 0 0.053 0 1 0 0 0 0 0 0 0.209 0 0.535 0 0.097 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.62 0 0 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0 0 0.62 1 0 0 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.456 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.805
Puglia 0 0 0 0 0.71 0 0.209 0 0 0 0 0 0 1 0 0.443 0 0.805 0 0 0
Sardegna 0 0 0 0.318 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.277 0
Sicilia 0.165 0 0.097 0 0.318 0 0.535 0 0 0 0 0 0 0.443 0 1 0 0.805 0 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0.456 0 0 0 0 0 1 0 0 0 0
Trento 0 0 0 0 0.456 0 0.097 0 0 0 0 0 0 0.805 0 0.805 0 1 0 0 0
Umbria 0.456 0 0.383 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ValleAosta 0 0 0 0.482 0 0 0 0 0 0 0 0 0 0 0.277 0 0 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0.805 0 0 0 0 0 0 0 1

Table A31.

Similarity values of New Currently Positive network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.62 0.147 0.236 0 0.603 0.051 0 0 0 0 0 0.526 0.22 0.671 0 0.953 0.809 0.345 0
Basilicata 0 1 0 0.069 0 0 0 0 0 0 0 0.208 0 0 0.068 0 0 0 0 0 0
Bolzano 0.62 0 1 0.178 0.153 0 0.426 0 0 0 0 0 0 0.305 0.395 0.649 0 0.718 0.549 0.251 0
Calabria 0.147 0.069 0.178 1 0 0 0 0 0 0 0 0 0 0.05 0.935 0.104 0 0.193 0.086 0 0
Campania 0.236 0 0.153 0 1 0 0.562 0.336 0.219 0 0 0 0 0.721 0 0.488 0 0.279 0.252 0.793 0
Emilia 0 0 0 0 0 1 0 0 0 0.398 0 0 0 0 0 0 0 0 0 0 0.131
Friuli 0.603 0 0.426 0 0.562 0 1 0.139 0.104 0 0 0 0 0.877 0.059 0.845 0 0.565 0.643 0.686 0
Lazio 0.051 0 0 0 0.336 0 0.139 1 0.737 0 0 0 0.07 0.211 0 0.197 0.172 0.082 0.061 0.231 0
Liguria 0 0 0 0 0.219 0 0.104 0.737 1 0 0 0 0.084 0.125 0 0.097 0.285 0.058 0 0.13 0
Lombardi 0 0 0 0 0 0.398 0 0 0 1 0.082 0 0 0 0 0 0 0 0 0 0.741
Marche 0 0 0 0 0 0 0 0 0 0.082 1 0 0.567 0 0 0 0.084 0 0 0 0
Molise 0 0.208 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0.07 0.084 0 0.567 0 1 0 0 0 0.279 0 0 0 0
Puglia 0.526 0 0.305 0.05 0.721 0 0.877 0.211 0.125 0 0 0 0 1 0.07 0.898 0 0.547 0.516 0.893 0
Sardegna 0.22 0.068 0.395 0.935 0 0 0.059 0 0 0 0 0 0 0.07 1 0.11 0 0.283 0.123 0 0
Sicilia 0.671 0 0.649 0.104 0.488 0 0.845 0.197 0.097 0 0 0 0 0.898 0.11 1 0 0.781 0.809 0.581 0
Toscana 0 0 0 0 0 0 0 0.172 0.285 0 0.084 0 0.279 0 0 0 1 0 0 0 0
Trento 0.953 0 0.718 0.193 0.279 0 0.565 0.082 0.058 0 0 0 0 0.547 0.283 0.781 0 1 0.844 0.424 0
Umbria 0.809 0 0.549 0.086 0.252 0 0.643 0.061 0 0 0 0 0 0.516 0.123 0.809 0 0.844 1 0.481 0
ValleAosta 0.345 0 0.251 0 0.793 0 0.686 0.231 0.13 0 0 0 0 0.893 0 0.581 0 0.424 0.481 1 0
Veneto 0 0 0 0 0 0.131 0 0 0 0.741 0 0 0 0 0 0 0 0 0 0 1

Table A32.

Similarity values of New Currently Positive network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.06 0.23 0.23 0.34 0 0.38 0.57 0.46 0 0 0.06 0.78 0.6 0.06 0.67 0.34 0.06 0.3 0.71 0
Basilicata 0.06 0 0.32 0.32 0 0 0.32 0.53 0.12 0 0 0 0.26 0.14 0 0.53 0 0 0.32 0.14 0
Bolzano 0.23 0.32 1 1 0.07 0 0.92 0.81 0.2 0 0 0.32 0.41 0.48 0.32 0.81 0.06 0.32 0.92 0.48 0
Calabria 0.23 0.32 1 1 0.07 0 0.92 0.81 0.2 0 0 0.32 0.41 0.48 0.32 0.81 0.06 0.32 0.92 0.48 0
Campania 0.34 0.03 0.07 0.07 1 0 0.16 0.17 0.79 0 0.07 0.03 0.79 0.18 0.03 0.27 0.84 0.03 0.09 0.29 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.38 0.32 0.92 0.92 0.16 0 1 0.94 0.23 0 0 0.32 0.5 0.66 0.32 0.94 0.2 0.32 0.92 0.66 0
Lazio 0.57 0.53 0.81 0.81 0.17 0 0.94 1 0.32 0 0 0.53 0.41 0.88 0.53 0.78 0.22 0.53 0.87 0.71 0
Liguria 0.46 0.12 0.2 0.2 0.79 0 0.23 0.32 1 0 0.25 0.12 0.84 0.34 0.12 0.32 0.74 0.12 0.23 0.34 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0.07 0 0 0 0.25 0 1 0 0.17 0 0 0 0.05 0 0 0 0
Molise 0.06 0 0.32 0.32 0 0 0.32 0.53 0.12 0 0 0 0.26 0.14 0 0.53 0 0 0.32 0.14 0
Piemonte 0.78 0.26 0.41 0.41 0.79 0 0.5 0.41 0.84 0 0.17 0.26 1 0.57 0.26 0.54 0.95 0.26 0.41 0.67 0
Puglia 0.6 0.14 0.48 0.48 0.18 0 0.66 0.88 0.34 0 0 0.14 0.57 1 0.14 0.94 0.15 0.14 0.59 0.94 0
Sardegna 0.06 0 0.32 0.32 0 0 0.32 0.53 0.12 0 0 0 0.26 0.14 0 0.53 0 0 0.32 0.14 0
Sicilia 0.67 0.53 0.81 0.81 0.27 0 0.94 0.78 0.32 0 0 0.53 0.54 0.94 0.53 1 0.37 0.53 0.81 0.77 0
Toscana 0.34 0.02 0.06 0.06 0.84 0 0.2 0.22 0.74 0 0.05 0.02 0.95 0.15 0.02 0.37 1 0.02 0.08 0.29 0
Trento 0.06 0 0.32 0.32 0 0 0.32 0.53 0.12 0 0 0 0.26 0.14 0 0.53 0 0 0.32 0.14 0
Umbria 0.3 0.32 0.92 0.92 0.09 0 0.92 0.87 0.23 0 0 0.32 0.41 0.59 0.32 0.81 0.08 0.32 1 0.53 0
ValleAosta 0.71 0.14 0.48 0.48 0.29 0 0.66 0.71 0.34 0 0 0.14 0.67 0.94 0.14 0.77 0.29 0.14 0.53 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A33.

Similarity values of New Currently Positive network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.13 0.18 0.28 0.09 0 0 0 0.56 0 0 0.95 0 0.08 0.54 0.6 0 0.21 0.17 0 0
Basilicata 0.13 1 0.94 0.78 0 0 0 0 0.19 0 0 0.22 0 0 0.45 0.32 0 0 0 0 0
Bolzano 0.18 0.94 1 0.77 0 0 0 0 0.32 0 0 0.39 0 0 0.44 0.25 0 0.1 0.06 0 0
Calabria 0.28 0.78 0.77 1 0 0 0 0 0.33 0 0 0.45 0 0 0.63 0.32 0 0.1 0.07 0 0
Campania 0.09 0 0 0 1 0 0.65 0.65 0.41 0 0.1 0.08 0.13 0.37 0.05 0.27 0.2 0.18 0.22 0.1 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0.65 0 1 0.18 0.22 0 0 0 0.07 0.25 0 0.75 0.06 0.08 0.16 0.06 0
Lazio 0 0 0 0 0.65 0 0.18 1 0.25 0 0.14 0 0.11 0.06 0 0.22 0.22 0 0 0.18 0
Liguria 0.56 0.19 0.32 0.33 0.41 0 0.22 0.25 1 0 0 0.8 0 0.65 0.47 1 0.08 0.75 0.85 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.38
Marche 0 0 0 0 0.1 0 0 0.14 0 0 1 0 0.85 0 0 0 0.53 0 0 0.8 0
Molise 0.95 0.22 0.39 0.45 0.08 0 0 0 0.8 0 0 1 0 0.2 0.74 0.4 0 0.44 0.3 0 0
Piemonte 0 0 0 0 0.13 0 0.07 0.11 0 0 0.85 0 1 0 0 0 0.46 0 0 0.9 0
Puglia 0.08 0 0 0 0.37 0 0.25 0.06 0.65 0 0 0.2 0 1 0.07 0.95 0 0.65 0.7 0 0
Sardegna 0.54 0.45 0.44 0.63 0.05 0 0 0 0.47 0 0 0.74 0 0.07 1 0.43 0 0.17 0.13 0 0
Sicilia 0.6 0.32 0.25 0.32 0.27 0 0.75 0.22 1 0 0 0.4 0 0.95 0.43 1 0 0.65 0.8 0 0
Toscana 0 0 0 0 0.2 0 0.06 0.22 0.08 0 0.53 0 0.46 0 0 0 1 0 0 0.71 0
Trento 0.21 0 0.1 0.1 0.18 0 0.08 0 0.75 0 0 0.44 0 0.65 0.17 0.65 0 1 0.95 0 0
Umbria 0.17 0 0.06 0.07 0.22 0 0.16 0 0.85 0 0 0.3 0 0.7 0.13 0.8 0 0.95 1 0 0
ValleAosta 0 0 0 0 0.1 0 0.06 0.18 0 0 0.8 0 0.9 0 0 0 0.71 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.38 0 0 0 0 0 0 0 0 0 0 1

Table A34.

Similarity values of New Currently Positive network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0.159 0.275 0.109 0 0.125 0.063 0 0 0 0 0.073 0.201 0.337 0.535 0 0.053 0.609 0.608 0.056
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0.164 0 0 0 0 0 0 0 0 0
Bolzano 0.159 0 1 0 0.949 0 0.37 0.37 0 0 0 0 0.159 0.482 0 0.275 0 0.798 0.249 0.701 0
Calabria 0.275 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0.073 0 0 0 0.159 0.056
Campania 0.109 0 0.949 0 1 0 0.535 0.383 0 0 0 0 0.165 0.701 0 0.25 0 0.62 0.224 0.749 0.056
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0.125 0 0.37 0 0.535 0 1 0.71 0.209 0 0 0 0.318 0.25 0 0.073 0 1 0.073 0.306 0.056
Lazio 0.063 0 0.37 0 0.383 0 0.71 1 0.383 0 0 0 0.456 0.318 0 0.165 0.179 0.805 0.165 0.141 0.056
Liguria 0 0 0 0 0 0 0.209 0.383 1 0 0 0 0.805 0 0 0 0.482 0.128 0 0 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.222
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.406 0 0 0 0.224 0 0 0 0
Molise 0 0.164 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0.073 0 0.159 0 0.165 0 0.318 0.456 0.805 0 0.406 0 1 0.128 0 0.097 0.949 0.318 0.055 0.084 0.056
Puglia 0.201 0 0.482 0 0.701 0 0.25 0.318 0 0 0 0 0.128 1 0 0.535 0 0.306 0.522 0.848 0.056
Sardegna 0.337 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0.14 0 0 0 0.224 0
Sicilia 0.535 0 0.275 0.073 0.25 0 0.073 0.165 0 0 0 0 0.097 0.535 0.14 1 0 0.159 1 0.565 0.056
Toscana 0 0 0 0 0 0 0 0.179 0.482 0 0.224 0 0.949 0 0 0 1 0.141 0 0 0
Trento 0.053 0 0.798 0 0.62 0 1 0.805 0.128 0 0 0 0.318 0.306 0 0.159 0.141 1 0.165 0.249 0.056
Umbria 0.609 0 0.249 0 0.224 0 0.073 0.165 0 0 0 0 0.055 0.522 0 1 0 0.165 1 0.749 0.056
ValleAosta 0.608 0 0.701 0.159 0.749 0 0.306 0.141 0 0 0 0 0.084 0.848 0.224 0.565 0 0.249 0.749 1 0
Veneto 0.056 0 0 0.056 0.056 0.056 0.056 0.056 0.056 0.222 0 0 0.056 0.056 0 0.056 0 0.056 0.056 0 1

Table A35.

Similarity values of New Currently Positive network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.71 0 0.209 0 0.848 0 0 0 0.209 0 0 0.383 0.109 1 0 0.62 0.7 0.371 0.371
Basilicata 0 1 0 0 0 0 0 0 0 0 0.159 0.14 0 0 0.055 0 0 0.159 0 0 0
Bolzano 0.71 0 1 0 0.383 0 0.805 0 0 0 0.209 0 0 0.456 0.073 0.62 0 0.654 0.949 0.159 0.159
Calabria 0 0 0 1 0 0 0.165 0 0 0 0.209 0 0 0 0.902 0.055 0 0.209 0 0.125 0.125
Campania 0.209 0 0.383 0 1 0 0.71 0.096 0.128 0 0.306 0 0 0.654 0.128 0.259 0 0.898 0.084 0.128 0.128
Emilia 0 0 0 0 0 1 0 0 0 0.097 0 0 0.383 0 0 0 0 0 0 0 0
Friuli 0.848 0 0.805 0.165 0.71 0 1 0 0 0 0.159 0 0 0.522 0.305 0.902 0 0.798 0.798 0.609 0.609
Lazio 0 0 0 0 0.096 0 0 1 1 0 0.798 0 0 0.306 0 0 0.055 0.128 0 0 0
Liguria 0 0 0 0 0.128 0 0 1 1 0 1 0 0 0.259 0 0 0.096 0.165 0 0 0
Lombardi 0 0 0 0 0 0.097 0 0 0 1 0 0 0.053 0 0 0 0 0 0 0 0
Marche 0.209 0.159 0.209 0.209 0.306 0 0.159 0.798 1 0 1 0.096 0 0.125 0.209 0.318 0.055 0.276 0.179 0.209 0.209
Molise 0 0.14 0 0 0 0 0 0 0 0 0.096 1 0 0 0 0 0 0.096 0 0 0
Piemonte 0 0 0 0 0 0.383 0 0 0 0.053 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.383 0 0.456 0 0.654 0 0.522 0.306 0.259 0 0.125 0 0 1 0.053 0.318 0 0.798 0.159 0.073 0.073
Sardegna 0.109 0.055 0.073 0.902 0.128 0 0.305 0 0 0 0.209 0 0 0.053 1 0.259 0 0.456 0.124 0.405 0.405
Sicilia 1 0 0.62 0.055 0.259 0 0.902 0 0 0 0.318 0 0 0.318 0.259 1 0 0.71 0.749 0.535 0.535
Toscana 0 0 0 0 0 0 0 0.055 0.096 0 0.055 0 0 0 0 0 1 0 0 0 0
Trento 0.62 0.159 0.654 0.209 0.898 0 0.798 0.128 0.165 0 0.276 0.096 0 0.798 0.456 0.71 0 1 0.482 0.456 0.456
Umbria 0.7 0 0.949 0 0.084 0 0.798 0 0 0 0.179 0 0 0.159 0.124 0.749 0 0.482 1 0.224 0.224
ValleAosta 0.371 0 0.159 0.125 0.128 0 0.609 0 0 0 0.209 0 0 0.073 0.405 0.535 0 0.456 0.224 1 1
Veneto 0.371 0 0.159 0.125 0.128 0 0.609 0 0 0 0.209 0 0 0.073 0.405 0.535 0 0.456 0.224 1 1

Table A36.

Similarity values of New Currently Positive network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.097 0 0.949 0 0.165 0 0.209 0 0 0 0 0.701 0 0.71 0 0.141 0.128 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0.072 0 0 0.141 0 0 0 0 0.654 0
Bolzano 0.097 0 1 0.565 0 0 0.898 0 0.128 0 0 0 0 0 0.535 0 0 0.749 0.535 0.128 0
Calabria 0 0 0.565 1 0 0 0.337 0 0 0 0 0 0 0 0.337 0 0 0.158 0.178 0.337 0
Campania 0.949 0 0 0 1 0 0 0 0.277 0 0.073 0 0 0.949 0 0.653 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.165 0 0.898 0.337 0 0 1 0 0.096 0 0 0 0 0 0.125 0 0 0.848 1 0.073 0
Lazio 0 0 0 0 0 0 0 1 1 0 0.201 0 0 0 0 0 0 0 0 0 0
Liguria 0.209 0 0.128 0 0.277 0 0.096 1 1 0 0.898 0 0 0.318 0 0.383 0 0.141 0.128 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0.073 0 0 0.201 0.898 0 1 0 0 0.053 0 0.165 0 0 0 0 0
Molise 0 0.072 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.337 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.701 0 0 0 0.949 0 0 0 0.318 0 0.053 0 0 1 0 0.535 0 0 0 0 0
Sardegna 0 0.141 0.535 0.337 0 0 0.125 0 0 0 0 0 0 0 1 0 0 0.084 0.097 0.535 0
Sicilia 0.71 0 0 0 0.653 0 0 0 0.383 0 0.165 0 0 0.535 0 1 0 0 0 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0.141 0 0.749 0.158 0 0 0.848 0 0.141 0 0 0 0 0 0.084 0 0 1 0.949 0 0
Umbria 0.128 0 0.535 0.178 0 0 1 0 0.128 0 0 0 0 0 0.097 0 0 0.949 1 0.097 0
ValleAosta 0 0.654 0.128 0.337 0 0 0.073 0 0 0 0 0.337 0 0 0.535 0 0 0 0.097 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A37.

Similarity values of Discharged/Healed network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.13 0.361 0.085 0 0.05 0 0 0 0.109 0.21 0.116 0.895 0 0 0 0.545 0.337 0.459 0
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.13 0.001 1 0.087 0 0 0 0 0 0 0.896 0.676 0.799 0 0.468 0 0 0 0.112 0.635 0
Calabria 0.361 0 0.087 1 0.078 0 0 0 0 0 0.253 0.67 0.155 0.261 0 0 0 0.218 0.642 0.489 0
Campania 0.085 0 0 0.078 1 0 0.553 0 0 0 0 0 0 0.265 0 0.687 0.391 0.592 0.079 0 0
Emilia 0 0 0 0 0 1 0 0.147 0.268 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.05 0 0 0 0.553 0 1 0.131 0.094 0 0 0 0 0.051 0 0.505 0.844 0.205 0 0 0
Lazio 0 0 0 0 0 0.147 0.131 1 0.286 0 0 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0.268 0.094 0.286 1 0 0 0 0 0 0 0 0.055 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.506
Marche 0.109 0.002 0.896 0.253 0 0 0 0 0 0 1 0.571 0.891 0 0.673 0 0 0 0.271 0.435 0
Molise 0.21 0 0.676 0.67 0 0 0 0 0 0 0.571 1 0.666 0.116 0.229 0 0 0.125 0.855 0.769 0
Piemonte 0.116 0.003 0.799 0.155 0 0 0 0 0 0 0.891 0.666 1 0 0.606 0 0 0 0.191 0.425 0
Puglia 0.895 0 0 0.261 0.265 0 0.051 0 0 0 0 0.116 0 1 0 0 0 0.675 0.686 0.093 0
Sardegna 0 0.006 0.468 0 0 0 0 0 0 0 0.673 0.229 0.606 0 1 0 0 0 0.065 0.201 0
Sicilia 0 0 0 0 0.687 0 0.505 0 0 0 0 0 0 0 0 1 0.719 0.263 0 0 0
Toscana 0 0 0 0 0.391 0 0.844 0 0.055 0 0 0 0 0 0 0.719 1 0.121 0 0 0
Trento 0.545 0 0 0.218 0.592 0 0.205 0 0 0 0 0.125 0 0.675 0 0.263 0.121 1 0.253 0.125 0
Umbria 0.337 0 0.112 0.642 0.079 0 0 0 0 0 0.271 0.855 0.191 0.686 0.065 0 0 0.253 1 0.497 0
ValleAosta 0.459 0 0.635 0.489 0 0 0 0 0 0 0.435 0.769 0.425 0.093 0.201 0 0 0.125 0.497 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.506 0 0 0 0 0 0 0 0 0 0 1

Table A38.

Similarity values of Discharged/Healed network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Basilicata 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Bolzano 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Calabria 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Campania 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Emilia 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Friuli 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.16 0.64 0.14 0 0 0 0 0 0 0 0 0 0
Liguria 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.16 1 0.12 0.14 0.14 0.14 0.14 0.14 0.67 0.94 0.14 0.14 0.14 0
Lombardi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.64 0.12 1 0.63 0.02 0.02 0.02 0.02 0.28 0.19 0.02 0.02 0.02 0
Marche 0 0 0 0 0 0 0 0.14 0.14 0.63 0 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Puglia 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Sardegna 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Sicilia 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0 0.67 0.28 0 0.02 0.02 0.02 0.02 1 0.19 0.02 0.02 0.02 0
Toscana 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0 0.94 0.19 0 0.06 0.06 0.06 0.06 0.19 1 0.06 0.06 0.06 0
Trento 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Umbria 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
ValleAosta 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.06 0 0 0 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A39.

Similarity values of Discharged/Healed network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Basilicata 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Bolzano 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Calabria 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Campania 0.32 0.32 0.32 0.32 1 0 0.17 0 0 0 0 0.32 0.32 0 0.32 0 0 0.32 0.32 1 0
Emilia 0 0 0 0 0 1 0 0 0.1 0 0.85 0 0 0 0 0 0 0 0 0 0
Friuli 0.06 0.06 0.06 0.06 0.17 0 1 0 0 0 0 0.06 0.06 0.95 0.06 0.63 0.63 0.06 0.06 0.17 0
Lazio 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0.1 0 0 1 0 0.17 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.48
Marche 0 0 0 0 0 0.85 0 0.01 0.17 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Piemonte 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Puglia 0.01 0.01 0.01 0.01 0 0 0.95 0 0 0 0 0.01 0.01 1 0.01 0 0.14 0.01 0.01 0 0
Sardegna 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Sicilia 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toscana 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0
Trento 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
Umbria 0 0 0 0 0.32 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0
ValleAosta 0.32 0.32 0.32 0.32 1 0 0.17 0 0 0 0 0.32 0.32 0 0.32 0 0 0.32 0.32 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.48 0 0 0 0 0 0 0 0 0 0 1

Table A40.

Similarity values of Discharged/Healed network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0.647 0.168 0 0 0 0 0 0 0 0 0.648 0 0.79 0 0.596 0.645 0.117 0
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.141 0
Bolzano 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.141 0
Calabria 0.647 0.001 0.001 1 0.052 0 0 0 0 0 0 0.001 0.001 0.827 0.001 0 0 0 0.08 0.067 0
Campania 0.168 0.001 0.001 0.052 1 0 0.563 0.176 0.07 0 0 0.001 0.001 0.053 0.001 0.393 0.698 0.475 0.137 0 0
Emilia 0 0.001 0.001 0 0 1 0 0 0 0 0.701 0.001 0.001 0 0.001 0 0 0 0 0 0.056
Friuli 0 0.001 0.001 0 0.563 0 1 0 0.221 0 0 0.001 0.001 0 0.001 0 0.119 0 0 0 0
Lazio 0 0.001 0.001 0 0.176 0 0 1 0.795 0 0 0.001 0.001 0 0.001 0 0 0 0 0 0
Liguria 0 0.001 0.001 0 0.07 0 0.221 0.795 1 0 0 0.001 0.001 0 0.001 0 0.153 0 0 0 0
Lombardi 0 0.001 0.001 0 0 0 0 0 0 1 0 0.001 0.001 0 0.001 0 0 0 0 0 0.056
Marche 0 0.001 0.001 0 0 0.701 0 0 0 0 1 0.001 0.001 0 0.001 0 0 0 0 0 0.056
Molise 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.141 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.141 0
Puglia 0.648 0.001 0.001 0.827 0.053 0 0 0 0 0 0 0.001 0.001 1 0.001 0 0 0.051 0.163 0.052 0
Sardegna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.141 0
Sicilia 0.79 0.001 0.001 0 0.393 0 0 0 0 0 0 0.001 0.001 0 0.001 1 0.066 0.422 0.831 0 0
Toscana 0 0.001 0.001 0 0.698 0 0.119 0 0.153 0 0 0.001 0.001 0 0.001 0.066 1 0.093 0 0 0
Trento 0.596 0.003 0.003 0 0.475 0 0 0 0 0 0 0.003 0.003 0.051 0.003 0.422 0.093 1 0.17 0 0
Umbria 0.645 0.003 0.003 0.08 0.137 0 0 0 0 0 0 0.003 0.003 0.163 0.003 0.831 0 0.17 1 0 0
ValleAosta 0.117 0.141 0.141 0.067 0 0 0 0 0 0 0 0.141 0.141 0.052 0.141 0 0 0 0 1 0
Veneto 0 0.005 0.005 0 0 0.056 0 0 0 0.056 0.056 0.005 0.005 0 0.005 0 0 0 0 0 1

Table A41.

Similarity values of Discharged/Healed network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0.177 0 0.092 0 0 0.053 0 0.094 0 0.516 0.516
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.061 0 0 0 0 0 0
Bolzano 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.061 0 0 0 0 0 0
Calabria 0 0.001 0.001 1 0 0 0 0 0 0 0.176 0 0.846 0.284 0.324 0 0 0 0.073 0.651 0.651
Campania 0 0.001 0.001 0 1 0 0.7 0 0 0 0.177 0 0 0 0 0 0.48 0.246 0 0 0
Emilia 0 0.001 0.001 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0.001 0.001 0 0.7 0 1 0.902 0.053 0 0.522 0 0 0 0 0.054 0.201 0.11 0 0 0
Lazio 0 0.001 0.001 0 0 0 0.902 1 0 0 0.2 0 0 0 0 0 0 0 0 0 0
Liguria 0 0.001 0.001 0 0 0 0.053 0 1 0 0.749 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0.001 0.001 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.177 0.009 0.009 0.176 0.177 0 0.522 0.2 0.749 0 1 0.176 0.077 0.175 0.054 0.178 0.179 0.179 0.172 0.078 0.078
Molise 0 0.001 0.001 0 0 0 0 0 0 0 0.176 1 0.651 0 0 0 0 0 0 0.746 0.746
Piemonte 0.092 0.025 0.025 0.846 0 0 0 0 0 0 0.077 0.651 1 0.948 0.338 0 0 0 0.648 0.594 0.594
Puglia 0 0.001 0.001 0.284 0 0 0 0 0 0 0.175 0 0.948 1 0.215 0 0 0 0.113 0.697 0.697
Sardegna 0 0.061 0.061 0.324 0 0 0 0 0 0 0.054 0 0.338 0.215 1 0 0 0 0.071 0.194 0.194
Sicilia 0.053 0.001 0.001 0 0 0 0.054 0 0 0 0.178 0 0 0 0 1 0.249 0.521 0 0.062 0.062
Toscana 0 0.001 0.001 0 0.48 0 0.201 0 0 0 0.179 0 0 0 0 0.249 1 0.442 0 0 0
Trento 0.094 0.001 0.001 0 0.246 0 0.11 0 0 0 0.179 0 0 0 0 0.521 0.442 1 0 0 0
Umbria 0 0.001 0.001 0.073 0 0 0 0 0 0 0.172 0 0.648 0.113 0.071 0 0 0 1 0.648 0.648
ValleAosta 0.516 0.025 0.025 0.651 0 0 0 0 0 0 0.078 0.746 0.594 0.697 0.194 0.062 0 0 0.648 1 1
Veneto 0.516 0 0 0.651 0 0 0 0 0 0 0.078 0.746 0.594 0.697 0.194 0.062 0 0 0.648 1 1

Table A42.

Similarity values of Discharged/Healed network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0 0.654 0.7 0.063 0 0 0 0.653 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0.405 0 0 0 0 0 0 0 0.405 0 0 0.063 0.949 0 0 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0.121 0 0 0 0 0 0 0 0.43 0 0
Campania 0 0 0.405 0 1 0 0 0 0 0 0 0 0.654 0 0 0.083 0.276 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0 0 1 0.318 0.073 0 0 0 0.277 0 0 0 0 0.073 0 0 0
Lazio 0 0 0 0 0 0 0.318 1 0 0 0 0 0.654 0 0 0 0 0.259 0 0 0
Liguria 0 0 0 0 0 0 0.073 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0.121 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.698 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0.898 0 0
Piemonte 0.654 0 0.405 0 0.654 0 0.277 0.654 0 0 0 0 1 0.405 0 0.654 0.654 0.848 0 0 0
Puglia 0.7 0 0 0 0 0 0 0 0 0 0 0 0.405 1 0.174 0 0 0 0.748 0 0
Sardegna 0.063 0 0 0 0 0 0 0 0 0 0 1 0 0.174 1 0 0 0 0.948 0 0
Sicilia 0 0 0.063 0 0.083 0 0 0 0 0 0 0 0.654 0 0 1 0 0 0.222 0 0
Toscana 0 0 0.949 0 0.276 0 0 0 0 0 0 0 0.654 0 0 0 1 0.141 0 0 0
Trento 0 0 0 0 0 0 0.073 0.259 0 0 0 0 0.848 0 0 0 0.141 1 0 0 0
Umbria 0.653 0 0 0.43 0 0 0 0 0 0 0.698 0.898 0 0.748 0.948 0.222 0 0 1 0 0
ValleAosta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.001 1

Table A43.

Similarity values of Deceased network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.785 0.097 0.926 0 0.253 0.111 0 0 0 0.067 0 0.157 0.124 0.421 0.405 0.789 0.262 0.42 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.785 0 1 0.155 0.691 0 0.148 0.067 0 0 0 0.101 0 0.104 0.188 0.517 0.291 0.972 0.431 0.346 0
Calabria 0.097 0 0.155 1 0.088 0 0 0 0 0 0 0.784 0 0 0.859 0.366 0 0.212 0.45 0 0
Campania 0.926 0 0.691 0.088 1 0 0.324 0.158 0 0 0 0 0 0.228 0.131 0.362 0.478 0.691 0.312 0.464 0
Emilia 0 0 0 0 0 1 0 0 0 0.563 0.224 0 0 0 0 0 0 0 0 0 0.939
Friuli 0.253 0 0.148 0 0.324 0 1 0.679 0.117 0 0 0 0.055 0.989 0 0 0.939 0.18 0 0.472 0
Lazio 0.111 0 0.067 0 0.158 0 0.679 1 0.231 0 0 0 0.099 0.662 0 0 0.613 0.08 0 0.25 0
Liguria 0 0 0 0 0 0 0.117 0.231 1 0 0 0 0.568 0.125 0 0 0.088 0 0 0 0
Lombardi 0 0 0 0 0 0.563 0 0 0 1 0.302 0 0 0 0 0 0 0 0 0 0.896
Marche 0 0 0 0 0 0.224 0 0 0 0.302 1 0 0.182 0 0 0 0 0 0 0 0.107
Molise 0.067 0 0.101 0.784 0 0 0 0 0 0 0 1 0 0 0.69 0.267 0 0.157 0.322 0 0
Piemonte 0 0 0 0 0 0 0.055 0.099 0.568 0 0.182 0 1 0.07 0 0 0 0 0 0 0
Puglia 0.157 0 0.104 0 0.228 0 0.989 0.662 0.125 0 0 0 0.07 1 0 0 0.71 0.109 0 0.289 0
Sardegna 0.124 0 0.188 0.859 0.131 0 0 0 0 0 0 0.69 0 0 1 0.384 0 0.258 0.638 0 0
Sicilia 0.421 0 0.517 0.366 0.362 0 0 0 0 0 0 0.267 0 0 0.384 1 0.123 0.612 0.686 0.09 0
Toscana 0.405 0 0.291 0 0.478 0 0.939 0.613 0.088 0 0 0 0 0.71 0 0.123 1 0.272 0.102 0.995 0
Trento 0.789 0 0.972 0.212 0.691 0 0.18 0.08 0 0 0 0.157 0 0.109 0.258 0.612 0.272 1 0.537 0.257 0
Umbria 0.262 0 0.431 0.45 0.312 0 0 0 0 0 0 0.322 0 0 0.638 0.686 0.102 0.537 1 0 0
ValleAosta 0.42 0 0.346 0 0.464 0 0.472 0.25 0 0 0 0 0 0.289 0 0.09 0.995 0.257 0 1 0
Veneto 0 0 0 0 0 0.939 0 0 0 0.896 0.107 0 0 0 0 0 0 0 0 0 1

Table A44.

Similarity values of Deceased network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Calabria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Campania 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Emilia 0.01 0.01 0.01 0.01 0.01 1 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
Friuli 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lazio 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.01 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Puglia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sardegna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sicilia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0
Trento 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Umbria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ValleAosta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A45.

Similarity values of Deceased network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Basilicata 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Calabria 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Campania 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.32 0.32 0.32 0.32 0.32 0 1 0.23 0 0 0 0.32 0.06 0 0.32 0.32 0.32 0.32 0.32 0 0
Lazio 0.06 0.06 0.06 0.06 0.06 0 0.23 1 0.05 0 0 0.06 0.24 0.34 0.06 0.06 0.06 0.06 0.06 0.06 0
Liguria 0 0 0 0 0 0 0 0.05 1 0 0 0 0.75 0.17 0 0 0 0 0 0.9 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.26
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Piemonte 0.02 0.02 0.02 0.02 0.02 0 0.06 0.24 0.75 0 0 0.02 1 0.51 0.02 0.02 0.02 0.02 0.02 0.56 0
Puglia 0.01 0.01 0.01 0.01 0.01 0 0 0.34 0.17 0 0 0.01 0.51 1 0.01 0.01 0.01 0.01 0.01 0.21 0
Sardegna 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Sicilia 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Toscana 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Trento 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Umbria 0 0 0 0 0 0 0.32 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
ValleAosta 0 0 0 0 0 0 0 0.06 0.9 0 0 0 0.56 0.21 0 0 0 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.26 0 0 0 0 0 0 0 0 0 0 1

Table A46.

Similarity values of Deceased network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.693 0 0.896 0 0 0 0 0 0 0 0 0 0 0.489 0.212 0.507 0 0.346 0
Basilicata 0 0 0 0.317 0 0 0 0 0 0 0 0 0 0 0.317 0 0 0 0 0 0
Bolzano 0.693 0.025 1 0.074 0.599 0 0 0 0 0 0 0.025 0 0 0.101 0.785 0.09 0.947 0.414 0.192 0
Calabria 0 0.317 0.074 1 0 0 0 0 0 0 0 0.317 0 0 0.917 0.059 0 0.073 0.107 0 0
Campania 0.896 0.009 0.599 0 1 0 0 0 0 0 0 0.009 0 0.082 0 0.639 0.431 0.597 0.195 0.239 0
Emilia 0 0.001 0 0 0 1 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0.111
Friuli 0 0.001 0 0 0 0 1 0.607 0.14 0 0 0.001 0 0.519 0 0 0.092 0 0 0.402 0.056
Lazio 0 0.001 0 0 0 0 0.607 1 0.2 0 0 0.001 0 0.08 0 0 0 0 0 0.177 0
Liguria 0 0.001 0 0 0 0 0.14 0.2 1 0 0 0.001 0.055 0 0 0 0 0 0 0.082 0
Lombardi 0 0.001 0 0 0 0 0 0 0 1 0 0.001 0 0 0 0 0 0 0 0 0.056
Marche 0 0.001 0 0 0 0 0 0 0 0 1 0.001 0.902 0 0 0 0 0 0 0 0.056
Molise 0 0 0 0.317 0 0 0 0 0 0 0 0 0 0 0.317 0 0 0 0 0 0
Piemonte 0 0.001 0 0 0 0 0 0 0.055 0 0.902 0.001 1 0 0 0 0 0 0 0 0.056
Puglia 0 0.001 0 0 0.082 0 0.519 0.08 0 0 0 0.001 0 1 0 0 0.357 0 0 0.175 0
Sardegna 0 0.317 0.101 0.917 0 0 0 0 0 0 0 0.317 0 0 1 0.107 0 0.116 0.199 0 0
Sicilia 0.489 0.023 0.785 0.059 0.639 0 0 0 0 0 0 0.023 0 0 0.107 1 0.103 1 0.276 0.149 0
Toscana 0.212 0.001 0.09 0 0.431 0 0.092 0 0 0 0 0.001 0 0.357 0 0.103 1 0.134 0 0.844 0
Trento 0.507 0.025 0.947 0.073 0.597 0 0 0 0 0 0 0.025 0 0 0.116 1 0.134 1 0.413 0.129 0
Umbria 0 0.023 0.414 0.107 0.195 0 0 0 0 0 0 0.023 0 0 0.199 0.276 0 0.413 1 0 0
ValleAosta 0.346 0.001 0.192 0 0.239 0 0.402 0.177 0.082 0 0 0.001 0 0.175 0 0.149 0.844 0.129 0 1 0
Veneto 0 0.005 0 0 0 0.111 0.056 0 0 0.056 0.056 0.005 0.056 0 0 0 0 0 0 0 1

Table A47.

Similarity values of Deceased network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.749 0 0.519 0 0 0 0 0 0.179 0 0 0.097 0 0 0 0.7 0.158 0 0
Basilicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.749 0 1 0 0.516 0 0 0 0 0 0.179 0 0 0 0 0 0 0.798 0.109 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0.177 0.947 0 0 0.895 0.364 0 0 0.195 0.302 0.302
Campania 0.519 0 0.516 0 1 0 0 0 0 0 0.177 0 0 0.072 0 0 0 0.479 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0 0 1 0.609 0 0 0.179 0 0 0 0 0 0.898 0 0 0 0
Lazio 0 0 0 0 0 0 0.609 1 0 0 0.2 0 0 0 0 0 0.898 0 0 0 0
Liguria 0 0 0 0 0 0 0 0 1 0 0.179 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.179 0 0.179 0.177 0.177 0 0.179 0.2 0.179 0 1 0.177 0 0.179 0.17 0.178 0.482 0.179 0.178 0.177 0.177
Molise 0 0 0 0.947 0 0 0 0 0 0 0.177 1 0 0 0.687 0.367 0 0 0.151 0.242 0.242
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.097 0 0 0 0.072 0 0 0 0 0 0.179 0 0 1 0 0 0.383 0.11 0 0 0
Sardegna 0 0 0 0.895 0 0 0 0 0 0 0.17 0.687 0 0 1 0.108 0 0 0.274 0.258 0.258
Sicilia 0 0 0 0.364 0 0 0 0 0 0 0.178 0.367 0 0 0.108 1 0 0 0.652 0.845 0.845
Toscana 0 0 0 0 0 0 0.898 0.898 0 0 0.482 0 0 0.383 0 0 1 0 0 0 0
Trento 0.7 0 0.798 0 0.479 0 0 0 0 0 0.179 0 0 0.11 0 0 0 1 0.222 0 0
Umbria 0.158 0 0.109 0.195 0 0 0 0 0 0 0.178 0.151 0 0 0.274 0.652 0 0.222 1 0.694 0.694
ValleAosta 0 0 0 0.302 0 0 0 0 0 0 0.177 0.242 0 0 0.258 0.845 0 0 0.694 1 1
Veneto 0 0 0 0 0 0 0 0 0 0 0.177 0.242 0 0 0.258 0.845 0 0 0.694 1 1

Table A48.

Similarity values of Deceased network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.2 0 0.128 0 0.159 0 0 0 0 0 0 0.902 0 0 0 0.165 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.2 0 1 0 0 0 0 0 0 0 0 0 0 0.159 0 0.179 0 0 0 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.158 0 0 0 0.073 0 0
Campania 0.128 0 0 0 1 0 0.443 0.209 0 0 0 0 0 0.073 0 0 0 0.749 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.159 0 0 0 0.443 0 1 0.053 0 0 0 0 0 0.128 0 0 0 0.456 0 0 0
Lazio 0 0 0 0 0.209 0 0.053 1 0 0 0 0 0 0 0 0 0 0.383 0 0 0
Liguria 0 0 0 0 0 0 0 0 1 0 0.701 0 0 0 0 0 0 0 0 0 1
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0.701 0 1 0 0 0 0 0 0 0 0 0 0.701
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.902 0 0.159 0 0.073 0 0.128 0 0 0 0 0 0 1 0 0 0 0.096 0 0 0
Sardegna 0 0 0 0.158 0 0 0 0 0 0 0 0 0 0 1 0.097 0 0 0.368 0.096 0
Sicilia 0 0 0.179 0 0 0 0 0 0 0 0 0 0 0 0.097 1 0 0 0.124 0.62 0
Toscana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0.165 0 0 0 0.749 0 0.456 0.383 0 0 0 0 0 0.096 0 0 0 1 0 0 0
Umbria 0 0 0 0.073 0 0 0 0 0 0 0 0 0 0 0.368 0.124 0 0 1 0.248 0
ValleAosta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.096 0.62 0 0 0.248 1 0
Veneto 0 0 0 0 0 0 0 0 1 0 0.701 0 0 0 0 0 0 0 0 0 1

Table A49.

Similarity values of Total Cases network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.861 0.166 0.101 0 0.294 0.07 0 0 0 0 0 0.573 0.203 0.46 0 0.995 0.989 0.323 0
Basilicata 0 1 0 0.081 0 0 0 0 0 0 0 0.398 0 0 0.103 0 0 0 0 0 0
Bolzano 0.861 0 1 0.228 0.125 0 0.385 0 0 0 0 0 0 0.455 0.23 0.357 0 0.979 0.973 0.536 0
Calabria 0.166 0.081 0.228 1 0 0 0 0 0 0 0 0.23 0 0.064 0.871 0 0 0.265 0.186 0 0
Campania 0.101 0 0.125 0 1 0 0.614 0.747 0.386 0 0 0 0 0.33 0 0.347 0.227 0.231 0.106 0.528 0
Emilia 0 0 0 0 0 1 0 0 0 0.432 0.244 0 0 0 0 0 0 0 0 0 0.095
Friuli 0.294 0 0.385 0 0.614 0 1 0.394 0.173 0 0 0 0 0.667 0 0.653 0.104 0.492 0.304 0.851 0
Lazio 0.07 0 0 0 0.747 0 0.394 1 0.591 0 0 0 0.075 0.188 0 0.268 0.375 0.113 0.064 0.365 0
Liguria 0 0 0 0 0.386 0 0.173 0.591 1 0 0 0 0.138 0.073 0 0.074 0.717 0 0 0.188 0
Lombardi 0 0 0 0 0 0.432 0 0 0 1 0.189 0 0 0 0 0 0 0 0 0 0.728
Marche 0 0 0 0 0 0.244 0 0 0 0.189 1 0 0.208 0 0 0 0 0 0 0 0
Molise 0 0.398 0 0.23 0 0 0 0 0 0 0 1 0 0 0.189 0 0 0.053 0 0 0
Piemonte 0 0 0 0 0 0 0 0.075 0.138 0 0.208 0 1 0 0 0 0.262 0 0 0 0
Puglia 0.573 0 0.455 0.064 0.33 0 0.667 0.188 0.073 0 0 0 0 1 0.078 0.84 0 0.693 0.527 0.722 0
Sardegna 0.203 0.103 0.23 0.871 0 0 0 0 0 0 0 0.189 0 0.078 1 0.054 0 0.247 0.235 0 0
Sicilia 0.46 0 0.357 0 0.347 0 0.653 0.268 0.074 0 0 0 0 0.84 0.054 1 0.055 0.627 0.492 0.653 0
Toscana 0 0 0 0 0.227 0 0.104 0.375 0.717 0 0 0 0.262 0 0 0.055 1 0 0 0.082 0
Trento 0.995 0 0.979 0.265 0.231 0 0.492 0.113 0 0 0 0.053 0 0.693 0.247 0.627 0 1 0.909 0.612 0
Umbria 0.989 0 0.973 0.186 0.106 0 0.304 0.064 0 0 0 0 0 0.527 0.235 0.492 0 0.909 1 0.305 0
ValleAosta 0.323 0 0.536 0 0.528 0 0.851 0.365 0.188 0 0 0 0 0.722 0 0.653 0.082 0.612 0.305 1 0
Veneto 0 0 0 0 0 0.095 0 0 0 0.728 0 0 0 0 0 0 0 0 0 0 1

Table A50.

Similarity values of Total Cases network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.89 0.36 0.42 0 0.2 0 0 0 0 0 0 0.79 0 0.07 0.06 0 0.39 0.67 0
Basilicata 0 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0.14 0.14 0
Bolzano 0.89 0 1 0.11 0.5 0 0 0 0 0 0 0 0 0.78 0 0 0 0 0.27 0.27 0
Calabria 0.36 0.06 0.11 1 0.19 0 0.38 0 0 0 0 0.06 0 0.27 0.06 0 0 0.06 0.94 0.94 0
Campania 0.42 0.03 0.5 0.19 1 0 0.12 0.69 0.09 0 0 0.03 0.44 0.38 0.03 0.74 0.85 0.03 0.12 0.32 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0
Friuli 0.2 0.32 0 0.38 0.12 0 1 0 0 0 0 0.32 0 0.2 0.32 0 0 0.32 0.66 0.42 0
Lazio 0 0 0 0 0.69 0 0 1 0.17 0 0 0 0.57 0 0 0.73 0.65 0 0 0.16 0
Liguria 0 0 0 0 0.09 0 0 0.17 1 0 0.22 0 0.56 0 0 0.12 0.18 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0.07 0 0 0.22 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0.14 0.14 0
Piemonte 0 0 0 0 0.44 0 0 0.57 0.56 0 0 0 1 0 0 0.65 0.3 0 0 0 0
Puglia 0.79 0.02 0.78 0.27 0.38 0 0.2 0 0 0 0 0.02 0 1 0.02 0 0.19 0.02 0.2 0.67 0
Sardegna 0 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0.14 0.14 0
Sicilia 0.07 0 0 0 0.74 0 0 0.73 0.12 0 0 0 0.65 0 0 1 0.9 0 0 0.2 0
Toscana 0.06 0 0 0 0.85 0 0 0.65 0.18 0 0 0 0.3 0.19 0 0.9 1 0 0 0.08 0
Trento 0 0 0 0.06 0 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0.14 0.14 0
Umbria 0.39 0.14 0.27 0.94 0.12 0 0.66 0 0 0 0 0.14 0 0.2 0.14 0 0 0.14 1 0.75 0
ValleAosta 0.67 0.14 0.27 0.94 0.32 0 0.42 0.16 0 0 0 0.14 0 0.67 0.14 0.2 0.08 0.14 0.75 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A51.

Similarity values of Total Cases network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0.61 0 0.31 0 0 0 0.65 0.05 0 0
Basilicata 0 1 0.41 0.35 0 0 0 0 0 0 0 0.07 0 0 0.33 0 0 0 0 0 0
Bolzano 0 0.41 1 0.95 0 0 0 0 0 0 0 0.22 0 0 0.74 0 0 0.15 0 0 0
Calabria 0 0.35 0.95 1 0 0 0 0 0 0 0 0.18 0 0 0.7 0 0 0.08 0 0 0
Campania 0 0 0 0 1 0 0.11 0.61 0.38 0 0 0 0 0 0 0.06 0.52 0 0 0.31 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0.11 0 1 0.38 0.26 0 0 0 0 0.16 0 0.56 0.1 0 0.22 0.06 0
Lazio 0 0 0 0 0.61 0 0.38 1 0.71 0 0 0 0 0.06 0 0.18 0.46 0 0.08 0.21 0
Liguria 0 0 0 0 0.38 0 0.26 0.71 1 0 0 0 0 0 0 0.12 0.38 0 0 0.16 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.38 0 0 0 0 0 0 0.46 0
Molise 0.61 0.07 0.22 0.18 0 0 0 0 0 0 0 1 0 0.11 0.16 0 0 0.75 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0.38 0 1 0 0 0 0.16 0 0 0.71 0
Puglia 0.31 0 0 0 0 0 0.16 0.06 0 0 0 0.11 0 1 0 0.34 0 0.22 0.7 0 0
Sardegna 0 0.33 0.74 0.7 0 0 0 0 0 0 0 0.16 0 0 1 0 0 0.16 0 0 0
Sicilia 0 0 0 0 0.06 0 0.56 0.18 0.12 0 0 0 0 0.34 0 1 0 0 0.8 0 0
Toscana 0 0 0 0 0.52 0 0.1 0.46 0.38 0 0 0 0.16 0 0 0 1 0 0 0.46 0
Trento 0.65 0 0.15 0.08 0 0 0 0 0 0 0 0.75 0 0.22 0.16 0 0 1 0.06 0 0
Umbria 0.05 0 0 0 0 0 0.22 0.08 0 0 0 0 0 0.7 0 0.8 0 0.06 1 0 0
ValleAosta 0 0 0 0 0.31 0 0.06 0.21 0.16 0 0.46 0 0.71 0 0 0 0.46 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A52.

Similarity values of Total Cases network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.48 0 0 0 0 0 0 0 0 0 0 0.224 0.141 0.179 0 0.277 0.565 0.277 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.48 0 1 0.055 0 0 0.097 0.073 0 0 0 0 0 0.701 0.128 0.805 0 0.62 0.805 0.71 0.056
Calabria 0 0 0.055 1 0 0 0 0 0 0 0 0.177 0 0 0.371 0 0 0 0 0 0.056
Campania 0 0 0 0 1 0 0.805 0.902 0.318 0 0 0 0 0.073 0 0.053 0 0.209 0 0.318 0.056
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0 0 0.097 0 0.805 0 1 0.609 0.318 0 0 0 0 0.097 0 0.097 0 0.259 0 0.456 0.056
Lazio 0 0 0.073 0 0.902 0 0.609 1 0.62 0 0 0 0 0.073 0 0.053 0.053 0.209 0 0.318 0.056
Liguria 0 0 0 0 0.318 0 0.318 0.62 1 0 0 0 0 0 0 0 0.209 0.073 0 0.165 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.5
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0.62 0 0 0 0 0 0 0 0.056
Molise 0 0 0 0.177 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0.62 0 1 0 0 0 0.097 0 0 0 0.056
Puglia 0.224 0 0.701 0 0.073 0 0.097 0.073 0 0 0 0 0 1 0 0.902 0 0.898 0.456 1 0.056
Sardegna 0.141 0 0.128 0.371 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.056
Sicilia 0.179 0 0.805 0 0.053 0 0.097 0.053 0 0 0 0 0 0.902 0 1 0 1 0.456 1 0.056
Toscana 0 0 0 0 0 0 0 0.053 0.209 0 0 0 0.097 0 0 0 1 0 0 0 0.056
Trento 0.277 0 0.62 0 0.209 0 0.259 0.209 0.073 0 0 0 0 0.898 0 1 0 1 0.443 0.898 0.056
Umbria 0.565 0 0.805 0 0 0 0 0 0 0 0 0 0 0.456 0 0.456 0 0.443 1 0.62 0.056
ValleAosta 0.277 0 0.71 0 0.318 0 0.456 0.318 0.165 0 0 0 0 1 0 1 0 0.898 0.62 1 0.056
Veneto 0 0 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.5 0.056 0 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 1

Table A53.

Similarity values of Total Cases network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.383 0 0 0 0 0 0 0 0.209 0 0 0.318 0.073 1 0 0.096 0.902 0.701 0.701
Basilicata 0 1 0 0 0 0 0 0 0 0 0.209 0.898 0 0 0 0 0 0 0 0 0
Bolzano 0.383 0 1 0 0.084 0 0.209 0 0 0 0.209 0 0 0.805 0 0.318 0 0.259 0.535 0.165 0.165
Calabria 0 0 0 1 0 0 0 0 0 0 0.209 0 0 0 0.456 0 0 0 0 0 0
Campania 0 0 0.084 0 1 0 0.654 0.141 0 0 0.179 0 0 0.224 0 0 0 0.482 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.209 0 0.654 0 1 0.073 0 0 0.209 0 0 0.318 0 0.053 0 0.71 0.073 0 0
Lazio 0 0 0 0 0.141 0 0.073 1 0.259 0 0.201 0 0 0 0 0 0 0.055 0 0 0
Liguria 0 0 0 0 0 0 0 0.259 1 0 0.383 0 0 0 0 0 0.128 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.209 0.209 0.209 0.209 0.179 0 0.209 0.201 0.383 0 1 0.209 0 0.209 0.209 0.209 0.805 0.209 0.209 0.209 0.209
Molise 0 0.898 0 0 0 0 0 0 0 0 0.209 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0.318 0 0.805 0 0.224 0 0.318 0 0 0 0.209 0 0 1 0 0.25 0 0.535 0.318 0.128 0.128
Sardegna 0.073 0 0 0.456 0 0 0 0 0 0 0.209 0 0 0 1 0.053 0 0 0 0.128 0.128
Sicilia 1 0 0.318 0 0 0 0.053 0 0 0 0.209 0 0 0.25 0.053 1 0 0.053 0.902 0.62 0.62
Toscana 0 0 0 0 0 0 0 0 0.128 0 0.805 0 0 0 0 0 1 0 0 0 0
Trento 0.096 0 0.259 0 0.482 0 0.71 0.055 0 0 0.209 0 0 0.535 0 0.053 0 1 0.128 0 0
Umbria 0.902 0 0.535 0 0 0 0.073 0 0 0 0.209 0 0 0.318 0 0.902 0 0.128 1 0.456 0.456
ValleAosta 0.701 0 0.165 0 0 0 0 0 0 0 0.209 0 0 0.128 0.128 0.62 0 0 0.456 1 1
Veneto 0.701 0 0.165 0 0 0 0 0 0 0 0.209 0 0 0.128 0.128 0.62 0 0 0.456 1 1

Table A54.

Similarity values of Total Cases network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 1 0 0 0 0.053 0 0 0 0 0 0 0.073 0 0.209 0 0 0.318 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0.064 0 0 0 0 0 0 0 0 0
Bolzano 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.318 0 0 0.209 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.201 0 0 0 0 0.443 0
Campania 0 0 0 0 1 0 0.456 0 0 0 0 0 0 0.383 0 0.209 0 0.902 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0.053 0 0 0 0.456 0 1 0 0 0 0 0 0 1 0 0.62 0 0.535 0 0 0
Lazio 0 0 0 0 0 0 0 1 0.097 0 0 0 0 0 0 0 0 0 0 0 0
Liguria 0 0 0 0 0 0 0 0.097 1 0 0 0 0 0 0 0 0 0 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.62 0 0 0 0
Molise 0 0.064 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.71
Puglia 0.073 0 0 0 0.383 0 1 0 0 0 0 0 0 1 0 0.535 0 0.456 0 0 0
Sardegna 0 0 0 0.201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.318 0
Sicilia 0.209 0 0.318 0 0.209 0 0.62 0 0 0 0 0 0 0.535 0 1 0 0.209 0 0 0
Toscana 0 0 0 0 0 0 0 0 0 0 0.62 0 0 0 0 0 1 0 0 0 0
Trento 0 0 0 0 0.902 0 0.535 0 0 0 0 0 0 0.456 0 0.209 0 1 0 0 0
Umbria 0.318 0 0.209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ValleAosta 0 0 0 0.443 0 0 0 0 0 0 0 0 0 0 0.318 0 0 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0.71 0 0 0 0 0 0 0 1

Table A55.

Similarity values of Swabs network in the study period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0.18 0.56 0 0 0 0 0 0 0 0.65 0 0.15 0 0.44 0.65 0.48 0 0
Basilicata 0 1 0.17 0.13 0 0 0 0 0 0 0 0.42 0.33 0.15 0.09 0 0 0.1 0.1 0 0
Bolzano 0 0.17 1 0.12 0 0 0 0 0 0 0 0 0.65 0.2 0.1 0 0 0 0.06 0 0
Calabria 0.18 0.13 0.12 1 0.27 0 0 0 0 0 0 0 0.65 0 0.95 0 0.24 0.4 0.56 0 0
Campania 0.56 0 0 0.27 1 0 0.56 0 0.95 0 0 0 0.21 0 0 0 0.27 0.1 0.27 0.307 0
Emilia 0 0 0 0 0 1 0 0.08 0 0 0.8 0 0 0 0 0.07 0 0 0 0 0
Friuli 0 0 0 0 0.56 0 1 0.11 0.06 0 0 0 0.56 0 0 0 0 0 0 0.663 0
Lazio 0 0 0 0 0 0.08 0.11 1 0 0 0 0 0 0 0 0.75 0 0 0 0.147 0
Liguria 0 0 0 0 0.95 0 0.06 0 1 0 0 0 0.65 0 0.13 0 0.18 0 0 0.184 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0.8 0 0 0 0 1 0 0 0 0 0 0 0 0 0.686 0
Molise 0 0.42 0 0 0 0 0 0 0 0 0 1 0.17 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0.4 0 0.18 0.65 0 0 0 0 0.22 0 0 0 0 0 0 0.573 0
Puglia 0.65 0.33 0.65 0.65 0.21 0 0.56 0 0.65 0 0 0.17 1 0.64 0.39 0 0.65 0.65 0.65 0.197 0
Sardegna 0 0.15 0.2 0 0 0 0 0 0 0 0 0 0.64 1 0 0 0 0 0 0 0
Sicilia 0.15 0.09 0.1 0.95 0 0 0 0 0.13 0 0 0 0.39 0 1 0 0.95 0 0 0.151 0
Toscana 0 0 0 0 0 0.07 0 0.75 0 0 0 0 0 0 0 1 0 0 0 0.398 0
Trento 0.44 0 0 0.24 0.27 0 0 0 0.18 0 0 0 0.65 0 0.95 0 1 0.95 0.85 0 0
Umbria 0.65 0.1 0 0.4 0.1 0 0 0 0 0 0 0 0.65 0 0 0 0.95 1 0.75 0 0
ValleAosta 0.48 0.1 0.06 0.56 0.27 0 0 0 0 0 0 0 0.65 0 0 0 0.85 0.75 1 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A56.

Similarity values of Swabs network in the first week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0.18 0.56 0 0 0 0 0 0 0 0 0.65 0 0.15 0 0.44 0.65 0.48 0
Basilicata 0 1 0.17 0.13 0 0 0 0 0 0 0 0.42 0 0.33 0.15 0.09 0 0 0.1 0.1 0
Bolzano 0 0.17 1 0.12 0 0 0 0 0 0 0 0 0 0.65 0.2 0.1 0 0 0 0.06 0
Calabria 0.18 0.13 0.12 1 0.27 0 0 0 0 0 0 0 0 0.65 0 0.95 0 0.24 0.4 0.56 0
Campania 0.56 0 0 0.27 1 0 0.56 0 0.95 0 0 0 0.4 0.21 0 0 0 0.27 0.1 0.27 0
Emilia 0 0 0 0 0 1 0 0.08 0 0 0.8 0 0 0 0 0 0.07 0 0 0 0
Friuli 0 0 0 0 0.56 0 1 0.11 0.06 0 0 0 0.18 0.56 0 0 0 0 0 0 0
Lazio 0 0 0 0 0 0.08 0.11 1 0 0 0 0 0.65 0 0 0 0.75 0 0 0 0
Liguria 0 0 0 0 0.95 0 0.06 0 1 0 0 0 0 0.65 0 0.13 0 0.18 0 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0.8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0.42 0 0 0 0 0 0 0 0 0 1 0 0.17 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0.4 0 0.18 0.65 0 0 0 0 1 0.22 0 0 0 0 0 0 0
Puglia 0.65 0.33 0.65 0.65 0.21 0 0.56 0 0.65 0 0 0.17 0.22 1 0.64 0.39 0 0.65 0.65 0.65 0
Sardegna 0 0.15 0.2 0 0 0 0 0 0 0 0 0 0 0.64 1 0 0 0 0 0 0
Sicilia 0.15 0.09 0.1 0.95 0 0 0 0 0.13 0 0 0 0 0.39 0 1 0 0.95 0 0 0
Toscana 0 0 0 0 0 0.07 0 0.75 0 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0.44 0 0 0.24 0.27 0 0 0 0.18 0 0 0 0 0.65 0 0.95 0 1 0.95 0.85 0
Umbria 0.65 0.1 0 0.4 0.1 0 0 0 0 0 0 0 0 0.65 0 0 0 0.95 1 0.75 0
ValleAosta 0.48 0.1 0.06 0.56 0.27 0 0 0 0 0 0 0 0 0.65 0 0 0 0.85 0.75 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A57.

Similarity values of Swabs network in the second week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0.1 0 0.34 0 0 0 0 0 0 0 0.22 0 0 0.28 0 0 0.06 0.48 0 0
Basilicata 0.1 1 0 0.95 0 0 0 0 0 0 0 0.41 0 0 0.9 0 0 0 0.07 0 0
Bolzano 0 0 1 0 0 0 0 0 0 0 0 0.95 0 0 0 0 0 0 0 0 0
Calabria 0.34 0.95 0 1 0 0 0 0 0 0 0 0.34 0 0 0.65 0 0 0 0.14 0 0
Campania 0 0 0 0 1 0 0.48 0 0 0 0 0 0.14 0 0 0.11 0 0 0 0.34 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.41 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0.48 0 1 0 0 0 0 0 0.14 0.34 0 0.56 0 0 0 0.34 0
Lazio 0 0 0 0 0 0 0 1 0 0 0 0 0.06 0 0 0 0.22 0 0 0 0
Liguria 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.4 0.08 0.41 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0 0.41 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0.22 0.41 0.95 0.34 0 0 0 0 0 0 0 1 0 0 0.4 0 0 0 0.08 0 0
Piemonte 0 0 0 0 0.14 0 0.14 0.06 0 0 0 0 1 0 0 0 0.22 0 0 0.11 0
Puglia 0 0 0 0 0 0 0.34 0 0 0 0 0 0 1 0 0.48 0 0 0 0.65 0
Sardegna 0.28 0.9 0 0.65 0 0 0 0 0 0 0 0.4 0 0 1 0 0 0 0.11 0 0
Sicilia 0 0 0 0 0.11 0 0.56 0 0 0 0 0 0 0.48 0 1 0 0 0 0.48 0
Toscana 0 0 0 0 0 0 0 0.22 0 0 0 0 0.22 0 0 0 1 0 0 0 0
Trento 0.06 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 1 0.21 0.17 0
Umbria 0.48 0.07 0 0.14 0 0 0 0 0.08 0 0 0.08 0 0 0.11 0 0 0.21 1 0 0
ValleAosta 0 0 0 0 0.34 0 0.34 0 0.41 0 0 0 0.11 0.65 0 0.48 0 0.17 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A58.

Similarity values of Swabs network in the third week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.405 0.482 0 0 0 0 0.11 0 0 0 0 0.11 0.084 0 0 0.848 0.848 0 0
Basilicata 0 1 0.651 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0.405 0.651 1 0.949 0 0 0 0 0.064 0 0 0.654 0 0.064 0.749 0 0 0.749 0.848 0 0
Calabria 0.482 0 0.949 1 0 0 0 0 0 0 0 0 0 0 0.443 0 0 0.277 0.535 0 0.056
Campania 0 0 0 0 1 0 0.053 0 0.383 0 0 0 0 0.318 0 1 0 0 0 0.097 0.056
Emilia 0 0 0 0 0 1 0 0.084 0 0 0 0 0 0 0 0 0 0 0 0 0.056
Friuli 0 0 0 0 0.053 0 1 0 0 0 0 0 0.535 0 0 0.053 0.209 0 0 0.456 0.056
Lazio 0 0 0 0 0 0.084 0 1 0 0 0 0 0.064 0 0 0 0.141 0 0 0.337 0
Liguria 0.11 0 0.064 0 0.383 0 0 0 1 0 0 0 0 0.902 0 0.318 0 0 0 0 0.056
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.056
Marche 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Molise 0 0 0.654 0 0 0 0 0 0 0 0 1 0 0 0.209 0 0 0 0 0 0.056
Piemonte 0 0 0 0 0 0 0.535 0.064 0 0 0 0 1 0 0 0 0.383 0 0 0.71 0.056
Puglia 0.11 0 0.064 0 0.318 0 0 0 0.902 0 0 0 0 1 0 0.318 0 0 0 0 0.056
Sardegna 0.084 0 0.749 0.443 0 0 0 0 0 0 0 0.209 0 0 1 0 0 0.084 0.128 0 0.056
Sicilia 0 0 0 0 1 0 0.053 0 0.318 0 0 0 0 0.318 0 1 0 0 0 0.073 0.056
Toscana 0 0 0 0 0 0 0.209 0.141 0 0 0 0 0.383 0 0 0 1 0 0 1 0.056
Trento 0.848 0 0.749 0.277 0 0 0 0 0 0 0 0 0 0 0.084 0 0 1 0.749 0 0
Umbria 0.848 0 0.848 0.535 0 0 0 0 0 0 0 0 0 0 0.128 0 0 0.749 1 0 0.056
ValleAosta 0 0 0 0 0.097 0 0.456 0.337 0 0 0 0 0.71 0 0 0.073 1 0 0 1 0.056
Veneto 0 0 0 0.056 0.056 0.056 0.056 0 0.056 0.056 0 0.056 0.056 0.056 0.056 0.056 0.056 0 0.056 0.056 1

Table A59.

Similarity values of Swabs network in the fourth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0.097 0.71 0 0 0 0 0.073 0 0.179 0 0 0 0 0 0 0.749 1 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0.179 0.749 0 0 0 0 0 0 0 0 0
Bolzano 0.097 0 1 0.097 0.848 0 0.084 0 0.902 0 0.179 0 0 0.62 0 0.71 0 0.084 0.097 0 0
Calabria 0.71 0 0.097 1 0.064 0 0 0 0.073 0 0.179 0 0 0 0.165 0 0 0.798 0.805 0 0
Campania 0 0 0.848 0.064 1 0 0 0 0.749 0 0.179 0 0 0.406 0 0.406 0 0 0.064 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0.565 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0.084 0 0 0 1 0 0 0 0.179 0 0 0.11 0 0 0 0 0 0 0
Lazio 0 0 0 0 0 0 0 1 0 0 0.199 0 0 0 0 0 0.063 0 0 0.179 0
Liguria 0.073 0 0.902 0.073 0.749 0 0 0 1 0 0.179 0 0 0.383 0 0.383 0 0 0.073 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0.179 0.179 0.179 0.179 0.179 0.565 0.179 0.199 0.179 0 1 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0
Molise 0 0.749 0 0 0 0 0 0 0 0 0.179 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0.179 0 1 0 0 0 0.71 0 0 0.259 0
Puglia 0 0 0.62 0 0.406 0 0.11 0 0.383 0 0.179 0 0 1 0 0.71 0 0 0 0 0
Sardegna 0 0 0 0.165 0 0 0 0 0 0 0.179 0 0 0 1 0 0 0.11 0.073 0 0
Sicilia 0 0 0.71 0 0.406 0 0 0 0.383 0 0.179 0 0 0.71 0 1 0 0 0 0 0
Toscana 0 0 0 0 0 0 0 0.063 0 0 0.179 0 0.71 0 0 0 1 0 0 0.383 0
Trento 0.749 0 0.084 0.798 0 0 0 0 0 0 0.179 0 0 0 0.11 0 0 1 0.654 0 0
Umbria 1 0 0.097 0.805 0.064 0 0 0 0.073 0 0.179 0 0 0 0.073 0 0 0.654 1 0 0
ValleAosta 0 0 0 0 0 0 0 0.179 0 0 0.179 0 0.259 0 0 0 0.383 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table A60.

Similarity values of Swabs network in the fifth week.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardi Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto
Abruzzo 1 0 0 0.62 0 0 0 0 0.053 0 0 0 0 0 0 0 0 0.209 0.902 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.456 0
Bolzano 0 0 1 0.097 0.71 0 0 0 0.456 0 0.318 0 0 0.128 0 0.209 0 0 0 0 0
Calabria 0.62 0 0.097 1 0.073 0 0 0 0.209 0 0 0 0 0 0 0 0 0.128 0.62 0 0
Campania 0 0 0.71 0.073 1 0 0.097 0 0.318 0 0.902 0 0 0.535 0 0.318 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0.097 0 1 0 0 0 0.097 0 0 0.259 0 0.71 0 0 0 0 0
Lazio 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.406 0 0 0 0
Liguria 0.053 0 0.456 0.209 0.318 0 0 0 1 0 0.128 0 0 0 0 0.073 0 0 0.053 0 0
Lombardi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.165
Marche 0 0 0.318 0 0.902 0 0.097 0 0.128 0 1 0 0 0.535 0 0.535 0 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Piemonte 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.456 0 0 0 0
Puglia 0 0 0.128 0 0.535 0 0.259 0 0 0 0.535 0 0 1 0 0.805 0 0 0 0 0
Sardegna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.053 0 0 0
Sicilia 0 0 0.209 0 0.318 0 0.71 0 0.073 0 0.535 0 0 0.805 0 1 0 0 0 0 0
Toscana 0 0 0 0 0 0 0 0.406 0 0 0 0 0.456 0 0 0 1 0 0 0 0
Trento 0.209 0 0 0.128 0 0 0 0 0 0 0 0 0 0 0.053 0 0 1 0.318 0 0
Umbria 0.902 0 0 0.62 0 0 0 0 0.053 0 0 0 0 0 0 0 0 0.318 1 0 0
ValleAosta 0 0.456 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Veneto 0 0 0 0 0 0 0 0 0 0.165 0 0 0 0 0 0 0 0 0 0 1

Author Contributions

M.M. and M.C. conceived the main idea of the algorithm and designed the tests. M.C. supervised the design of the algorithm. M.M. designed the functional requirements of the software pipeline and run the experiments. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020 doi: 10.1001/jama.2020.2648. [DOI] [PubMed] [Google Scholar]
  • 2.Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lai A., Bergna A., Acciarri C., Galli M., Zehender G. Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2. J. Med. Virol. 2020 doi: 10.1002/jmv.25723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Milano M. Computing Languages for Bioinformatics: R. In: Gribskov M., Nakai K., Schonbach C., editors. Encyclopedia of Bioinformatics and Computational Biology. Volume 1. Elsevier; Oxford, UK: 2019. pp. 889–895. [Google Scholar]
  • 8.Manojlovic N., Seemayer N., de Ruiter N., Weisz H., Bauer S. Analysis of the biological effect of city smog extract. III. Comparative investigations on the effect of city smog extracts on cell replication and DNA-synthesis of kidney cells in vitro from the primate Cercopithecus aethiops (author’s transl) Zentralbl Bakteriol B. 1978;167:90–97. [PubMed] [Google Scholar]
  • 9.Araujo M.B., Naimi B. Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. medRxiv. 2020 doi: 10.1101/2020.03.12.20034728. [DOI] [Google Scholar]
  • 10.Agapito G., Guzzi P.H., Cannataro M. Challenges and Opportunities for Visualization and Analysis of Graph-Modeled Medical Data. Preprints. 2017 doi: 10.20944/preprints201710.0018.v1. [DOI] [Google Scholar]
  • 11.Csardi G., Nepusz T. The igraph software package for complex network research. InterJ. Complex Syst. 2006;1695:1–9. [Google Scholar]
  • 12.Pons P., Latapy M. International Symposium on Computer and Information Sciences. Springer; Berlin/Heidelberg, Germany: 2005. Computing communities in large networks using random walks; pp. 284–293. [Google Scholar]
  • 13.Reich O., Shalev G., Kalvari T. Modeling COVID-19 on a network: Super-spreaders, testing and containment. medRxiv. 2020 doi: 10.1101/2020.04.30.20081828. [DOI] [Google Scholar]
  • 14.Herrmann H.A., Schwartz J.M. Using network science to propose strategies for effectively dealing with pandemics: The COVID-19 example. medRxiv. 2020 doi: 10.1101/2020.04.02.20050468. [DOI] [Google Scholar]
  • 15.Kuzdeuov A., Baimukashev D., Karabay A., Ibragimov B., Mirzakhmetov A., Nurpeiissov M., Lewis M., Varol H.A. A Network-Based Stochastic Epidemic Simulator: Controlling COVID-19 with Region-Specific Policies. medRxiv. 2020 doi: 10.1101/2020.05.02.20089136. [DOI] [PubMed] [Google Scholar]
  • 16.Kumar A. Modeling geographical spread of COVID-19 in India using network-based approach. medRxiv. 2020 doi: 10.1101/2020.04.23.20076489. [DOI] [Google Scholar]
  • 17.Wang P., Lu J.A., Jin Y., Zhu M., Wang L., Chen S. Statistical and network analysis of 1212 COVID-19 patients in Henan, China. Int. J. Infect. Dis. 2020 doi: 10.1016/j.ijid.2020.04.051. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from International Journal of Environmental Research and Public Health are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES