Skip to main content
Chinese Medicine logoLink to Chinese Medicine
. 2020 Jul 9;15:71. doi: 10.1186/s13020-020-00351-9

The involvement of human organic anion transporting polypeptides (OATPs) in drug-herb/food interactions

Youmna Ali 1, Tahiatul Shams 1, Ke Wang 2, Zhengqi Cheng 1, Yue Li 1, Wenying Shu 1,3, Xiaofeng Bao 4, Ling Zhu 5, Michael Murray 6, Fanfan Zhou 1,
PMCID: PMC7346646  PMID: 32670395

Abstract

Organic anion transporting polypeptides (OATPs) are important transporter proteins that are expressed at the plasma membrane of cells, where they mediate the influx of endogenous and exogenous substances including hormones, natural compounds and many clinically important drugs. OATP1A2, OATP2B1, OATP1B1 and OATP1B3 are the most important OATP isoforms and influence the pharmacokinetic performance of drugs. These OATPs are highly expressed in the kidney, intestine and liver, where they determine the distribution of drugs to these tissues. Herbal medicines are increasingly popular for their potential health benefits. Humans are also exposed to many natural compounds in fruits, vegetables and other food sources. In consequence, the consumption of herbal medicines or food sources together with a range of important drugs can result in drug-herb/food interactions via competing specific OATPs. Such interactions may lead to adverse clinical outcomes and unexpected toxicities of drug therapies. This review summarises the drug-herb/food interactions of drugs and chemicals that are present in herbal medicines and/or food in relation to human OATPs. This information can contribute to improving clinical outcomes and avoiding unexpected toxicities of drug therapies in patients.

Keywords: Organic anion transporters, Drug-herb interaction, Drug-food interaction, Therapeutic toxicity

Background

Solute carrier transporters (SLCs) are transmembrane proteins that mediate the cellular uptake of endogenous and exogenous substances. The SLC superfamily consists of over 300 isoforms, many of which are localised at the plasma membrane of cells [1]. Organic anion transporter polypeptides (OATPs), encoded by the SLCO genes, are one of the most important SLC subfamilies that contribute to drug and endobiotic uptake into cells [2]. There are 11 known OATP isoforms, which are widely distributed across tissues such as the kidney, liver, intestine and brain [3].

Most OATP substrates are large hydrophobic anions with molecular weight > 350 Da. Some endogenous chemicals of physiological importance are substrates including steroids, bile acids, prostaglandins and thyroid hormones. OATPs also have important roles in the absorption, distribution and elimination of drugs such as anti-cancer agents, antibiotics, antivirals and statins [4]. Therefore, OATP function strongly influences the pharmacokinetics and pharmacodynamics of drugs and, in turn, their therapeutic outcomes. The dysfunction of OATPs may lead to suboptimal drug treatment and/or unexpected toxicities.

The transport mechanism of OATPs remains largely unclear. However, studies to date have suggested that substrate transport by OATPs is ATP and sodium independent. OATPs appear to act as electroneutral exchangers that couple substrate uptake to the cellular efflux of a counterion, such as bicarbonate, glutathione, conjugated glutathione or glutamate [4, 5].

General information about the major OATP isoforms

OATP1A2, OATP1B1, OATP1B3 and OATP2B1 have been well studied for their important roles in the kidney and liver. These isoforms have been extensively investigated in relation to a wide range of drugs.

OATP1A2 is the first identified and best characterized human OATP isoform. This transporter is located at the apical membrane of the distal nephron, where it mediates urinary drug secretion and reabsorption. It is also expressed in hepatic cholangiocytes, where it modulates the secretion of molecules into the bile duct. It has also been discovered in the brain endothelial cells that comprise the blood–brain barrier, at the apical membrane of intestinal enterocytes and at the apical membrane of retinal epithelial cells [68]. OATP1A2 is known to transport a broad range of clinically important drugs like methotrexate, imatinib and fexofenadine. Overall, it plays an important role in the absorption, distribution and elimination of various drugs and substances [3, 5].

OATP1B1 is selectively expressed at the basolateral membrane of hepatocytes [5]. It can transport many widely used drugs such as statins and anti-viral agents, as well as endogenous substances like estrone-3-sulfate (ES) and bilirubin.

Like OATP1B1, OATP1B3 is also specifically located at the basolateral membrane of hepatocytes, but it is primarily expressed around the central vein [3]. The substrate specificities of OATP1B1 and OATP1B3 somewhat overlap [4]. However, OATP1B3 has relatively less impact on drug pharmacokinetics than OATP1B1 considering there are relatively less reports on the influence of OATP1B3 on drug performance [3].

OATP2B1 is highly expressed at the basolateral membrane of hepatocytes where it modulates drug influx into the liver. It is also located at the apical membrane of the enterocytes, where it influences drug absorption. In the kidney, it mediates the secretion of molecules into and/or reabsorption from urine. It has also been identified in the placental syncytiotrophoblasts, skeletal muscle and endothelial cells of the blood–brain barrier [6, 912]. Many clinically important drugs such as atorvastatin, pravastatin and glibenclamide, as well as the endogenous compounds like ES, bile acids, pregnenolone sulphate and prostaglandins, have been found to be OATP2B1 substrates [5, 13].

OATP regulations in health and disease

OATP transporters can be regulated at the transcriptional and post- translational levels by a number of signalling pathways and kinases [1, 2]. For instance, kinases like protein kinase C (PKC) modulate the trafficking of OATP1A2, OATP1B1, OATP1B3 and OATP2B1 between the plasma membrane and intracellular compartments [1315]. Similarly, casein kinase-2 also influences the expression and function of OATP1A2 by altering its subcellular trafficking to the plasma membrane [1].

Literature reports have shown that the expression and/or function of OATPs is altered in cancer and other disease states. OATPs may be novel tumour biomarkers and may influence the progression of hormone-dependent cancers [16]. For example, OATP1A2 protein expression is almost tenfold higher in breast cancer patients than that in normal subjects [17, 18]. This could be clinically significant, because OATP1A2 increases the uptake of ES, the major precursor of biologically active estrogen, which may enhance tumour cell proliferation and survival. OATP1B1 is normally liver specific but is over-expressed in tumours of the colon, lung, breast, prostate, ovary and pancreas [1922]. Similarly, OATP1B3 is found to be overexpressed in breast, prostate and colorectal cancers [21, 23]. An important OATP1B3 substrate is testosterone, which has been shown to decrease the survival of patients with androgen dependent prostate cancer [24]. OATP2B1 expression is increased in breast, thyroid, glioma, prostate and testicular cancers [6, 24, 25]. This may enhance the uptake of ES into estrogen receptor (ER)-positive breast tumour cells and that of dehydroepiandrosterone into prostate cancer cells [23]. Again, OATP2B1 could promote tumorigenesis by enhancing cancer cell proliferation due to these effects [26]. Additionally, the expression of the orphan OATP transporter OATP5A1 is shown to be elevated in metastatic cancers [16]. Therefore, the altered expression of OATPs in the cancers mentioned above is closely related to cancer progression.

Abnormal OATP expression and function has also been reported in inflammatory conditions such as fibrosis, inflammatory bowel disease, cholestasis and advanced liver diseases, greatly contributing to disease progression [27]. For instance, OATP1A2 mRNA was increased in the placentas of pregnant patients with intrahepatic cholestasis [28]. OATP2B1 expression was upregulated in the patients with Crohn’s disease and ulcerative colitis [29]. Inflammatory bowel disease has been found to be associated with the increased level of OATP2B1 and OATP4A1 in the ileum and colon [29]; OATP4A1 is also reported to be upregulated in polycystic ovarian syndrome [30]. In contrast, the expression of OATP2B1 was decreased in the placentas of patients with bacterial chorioamnionitis to ~ 50% of the age-matched controls [31]. And OATP1B1 was also shown to be decreased in the livers of patients with primary sclerosing cholangitis [32] or severe viral hepatitis [27, 33]. Previous findings also suggested that cytokines such as TNF-α, IL-6, IL-1β, IFN-γ and oncostatin M, may regulate the expression of OATPs in cells [3436].

Post-translational glycosylation of OATP1B1, 1B3 and 2B1 was decreased in the livers of patients with severe non-alcoholic fatty liver disease [37]. This might impair the subcellular trafficking of OATPs. Proteomics analysis showed that OATP2B1 was found to be increased in hepatic cirrhosis induced by hepatitis C infection, although the expression of OATP1B1 and OATP1B3 was unchanged [38]. Cholestasis also decreased the hepatic expression of OATP1A2, OATP1B1 and OATP1B3 at mRNA level [3941]. Together, these findings provide insights into how severe liver diseases complicate the effectiveness of drug therapies by modulating OATP function and expression and thus, cellular influx of their drug substrates.

The influence of OATP genetic polymorphisms on drug performance

Studies have shown that several OATP genetic variants are possibly associated with the pathogenesis of human diseases. For example, mutations in the SLCO1B1 and SLCO1B3 genes have been implicated in Rotor syndrome [42]. When both transporters are defective, bilirubin is taken up by the liver inefficiently leading to serum accumulation and jaundice [43]. There have also been reports that patients carrying specific OATP1B1 polymorphisms are at an increased risk of severe hyperbilirubinaemia [4446]. And OATP1A2 genotypes were also found to be involved in the neurodegenerative disease progressive supranuclear palsy; while OATP2A1 polymorphisms are indicated to be associated with primary hypertrophic osteoarthropathy [4, 47].

Genetic polymorphisms of OATPs may have great impact on pharmacokinetic performance of drugs. It has been shown that the single nucleotide polymorphisms of OATP1B1 result in the altered disposition of statins [48, 49]. Systemic exposure to the anti-diabetic drug nateglinide [46] and to the HIV protease inhibitor lopinavir is also increased in these individuals [50]. OATP1A2 polymorphisms have also been found to be associated with impaired imatinib clearance [51] and OATP2B1 polymorphisms could impact on fexofenadine pharmacokinetics [52].

Sebastian et al. found that OATP5A1 is atypical as it does not transport classic OATP substrates [53]. Instead, it appears to be a determinant of cell shape, differentiation and motility. Microarray studies have shown that OATP5A1 is widely expressed in the fetal brain, prostate, skeletal muscle and thymus. Like other OATPs, defective OATP5A1 has been associated with human pathologies. Its genetic deletion appears to be related to Mesomelia synostoses syndrome, which is a congenital disease characterised by short limb and malformation [54].

The interactions of herb/diet-derived chemicals with OATPs

Herbal and dietary supplements are currently popular in treating a wide range of health conditions. For example, silymarin, an active ingredient of milk thistle, can be used to treat intoxication caused by ingestion of death cap mushrooms [55]. St.John’s Wort is a herbal supplement that has been applied to treat depression [56]. One of the most common dietary products—green tea—is commonly adopted in weight loss programs; and despite definitive supporting evidence of efficacy, to prevent cancer and cardiovascular diseases [57]. Although complementary therapies and food are relatively safe, evidence to the contrary is increasing. In particular, some herbal preparations or food consumption may elicit clinically significant adverse reactions when co-administered with conventional medicines [58]. This problem is exacerbated by the ready availability of herbal and dietary supplements as well as the fact that people may self-medicate.

OATP1A2, 1B1, 1B3 and 2B1 contribute extensively to the disposition of drugs in humans [4]. The co-administration of drugs or other molecules that compete with specific OATP isoforms has the potential to elicit pharmacokinetic interactions [59]. During the pre-clinical phase of drug development, regulatory authorities require the evaluation of potential interactions involving major OATPs. However, herbal medicines derived from plants, fruits and vegetables widely used in many countries, are not subject to regulatory approval. Precautions are essential when herbal medicines and conventional drugs are co-administered and elicit interactions. Drug-drug interactions involving OATPs have been widely described in literature [6062]; however, drug-herb/food interactions associated with these transporters have not been extensively reviewed so far.

As mentioned, a wide range of herbal and dietary compounds are substrates and inhibitors of OATPs [27, 6367]. Unexpected adverse effects may occur if a conventional drug with a narrow therapeutic index competes for specific OATPs with herb/food chemicals [27]. Accordingly, a greater appreciation of potential drug-herb/food interactions involving OATPs could contribute to improved efficacy and safety of drug therapies when co-administered with herbal or food supplements. Table 1 summarises the documented interactions of commonly used herbal medicines or food-derived chemicals with human OATP transporters.

Table 1.

Potential drug-herb/food interactions involving OATPs

Herbal or dietary product Chemicals identified in extracts OATP Substrate Effect on transporter apparent IC50 Ki Cell model Refs.
Bofutsushosan extract 2B1 ES Inhibition 14 μg/ml HEK 293 [71]
Rhei Rhizoma

EGCG

ECG

(+)-catechin

EC

EGC

anthraquinones

emodin

2B1 ES Inhibition 3.7 μg/ml HEK 293 [71]
Perillae herba extract Scutellarin 2B1 ES Inhibition 8.2 μg/ml HEK 293 [71]
Scuterallia Radix Baicalin 2B1 ES Inhibition 11 μg/ml HEK 293 [67]

Glyryrrhizae Radix

Licorice

Glycyrrhizic acid

2B1

1B1

ES

ES

Inhibition

Inhibition

18 μg/ml

14.6 μM

HEK 293

HEK 293

[71]

[72]

Moutan cortex β-PGG 2B1 ES Inhibition 31 μg/ml HEK 293 [73]
Paeoniae Radix β-PGG 2B1 ES Inhibition 0.15 mg/ml HEK 293 [71]

Tribuli Fructus

Saussurea Radix

Curcumae Rhizoma

Tomato

Buckwheat

Rutin 2B1 ES Activation HEK 293 [71]
1B1 DHEAS Activation HeLa [74]
Chinese skullcap

Baicalin

Baicalin

Baicalein

2B1 ES Inhibition 5.6 ± 3.2 μM HEK 293 [67]
1B3 CCK-8

13.7 ± 3.6 μM

7.7 ± 2.4 μM

HEK 293 [67]
Horny goat weed Icariin

2B1

1B1

ES Inhibition

6.4 ± 1.9 μM

21.9 ± 2.0 μM

HEK 293

[27]

[63]

1B3 CCK-8 3.0 ± 1.3 μM
Radix Astragali Astragaloside 1B1 ES Inhibition 25.5 μM HEK 293 [72]
Panax ginseng Ginsenoside Rc 1B1 ES Inhibition 18.5 μM HEK 293 [72]
Pyrola incarnate Fisch 2-O-galloyl hyperin 1B1 ES Inhibition 19 μM HEK 293 [72]
Herba Epimedii Epimedin C 1B1 ES Inhibition 23.5 μM HEK 293 [72]
Milk thistle Silymarin 1B1 Estradiol-17β-glucuronide Inhibition 1.3 μM HEK 293 [75]
1B3 Estradiol-17β-glucuronide Inhibition 2.2 μM HEK 293 [75]
2B1 ES Inhibition 0.3 μM MDCKII [75]
Breviscapine Scutellarin 1B1 ES Inhibition 28.4 μM HEK 293 [72]
2B1 ES Inhibition 2 μM HEK 293 [76]
Grapefruit juice Naringenin 2B1 ES Inhibitor 16 μM HEK 293 [71]
1A2 Fexofenadine Inhibitor 3.6 μM HeLa [77]
hesperidin 2B1 Inhibitor
1A2 Fexofenadine Inhibitor 2.7 μM HeLa [77]
Apple juice Phlorizin 1B1 DHEAS Inhibition HeLa [74]
Quercetin 1A2 BSP Inhibition 22 μM HEK 293 [78]
2B1 BSP Inhibition 8.7 μM HEK 293 [78]
1B1 ES Inhibition 20.4 μM HEK 293 [72]
Kaempferol 1A2 BSP Inhibition 25.5 μM HEK 293 [78]
2B1 BSP Inhibition 15.1 μM HEK 293 [78]
Black tea Theaflavin 2B1 ES Inhibition 8.2 μM HEK 293 [79]
Green tea

ECG

EGCG

ECG

EGCG

ECG

EGCG

ECG

EGCG

1B1 ES Inhibition

58.6 μM

7.8 μM

CHO [65]
2B1 ES Inhibition

35.9 μM

101 μM

CHO [65]
1A2 ES Inhibition

10.2 μM

54.8 μM

10.4 μM

18.8 μM

HEK 293 [65]
1B3 ES Activation

34.1 μM

13.2 μM

CHO [65]
Pomegranate Ursolic acid 2B1 ES Inhibition 11.0 ± 5.0  μM HEK 293 [64]
1B1 ES Inhibition 22.4 μM HEK 293 [72]
1B3 Fluorescein-methotrexate Inhibition 365.1 nM HEK 293 [68]
Gallic acid 1B3 CCK-8 Inhibition 1.60 ± 0.60  μM HEK 293 [64]
Oleanolic acid 1B1 ES Inhibition 28.5 μM HEK 293 [72]

Red clover in soy

Peanuts

Chickpea

Biochanin A 1B1 DHEAS Inhibition 11.3 ± 3.2 μM HeLa [74]
White mulberry Mulberrin 2B1 ES Inhibition 1.8 μM HEK 293 [76]

Apple peel

Olives

Betulinic acid 1B3 Fluorescein derivatives Inhibition 368.2 nM HEK 293 [68]

ECG epicatechin gallate, EGCG epigallocatechin gallate, EC epicatechin, EGC epicatechin-3-gallate, β-PGG 1,2,3,4,6-penta-O-galloyl-β-d-glucose

ES estrone sulphate, DHEAS dehydroepiandrosterone sulphate, BSP bromosulphophthalein, CCK-8 cholecystokinin

Food such as pomegranate and olives contain antioxidants and other naturally occurring chemicals [64]. Studies have implicated food-derived chemicals interacting with OATP influx transporters [63, 68]. For instance, consumption of fruit juices such as grapefruit, apple and orange juice, can significantly reduce the oral bioavailability of drugs due to the inhibition of intestinal OATPs [69].

In most cases, the interactions of herb/food-derived chemicals with OATPs involve competitive inhibition of substrate transport, or allosteric inhibition due to altered transporter conformation. Other potential mechanisms include altered transporter expression, subcellular localisation or stability, but definitive evidence for such mechanisms is sparse. In general terms, changes in protein expression and/or rates of protein degradation occur over a relatively long timeframe, while functional modulations due to altered trafficking or interference with substrate binding are more rapid [70]. In this review, we discuss the relationship of the intake of both herb- and food-derived chemicals with the impairment of OATP function. The application of such information may prevent adverse effects of conventional drug therapies and improve treatment outcomes.

Drug-herb interactions involving OATPs

A wide range of herbal compounds have been found to modulate the substrate uptake mediated by OATPs (Table 1). For example, kampo products have been used in Japan as traditional herbal medicines in treating inflammatory bowel disease, nausea, diarrhea and gastrointestinal tract disorders for over 1500 years. Kampo products consist of crude extracts from more than 98 sources, such as Bofutsushosan, Rhei Rhizoma, Perillae herba, Scuterallia Radix, Glyryrrhizae Radix, Moutan cortex, Paeoniae Radix, Tribuli Fructus, Saussurea Radix and Curcumae Rhizoma. Japanese physicians have also recommended these products to cancer patients as supplements to ongoing chemotherapy and radiotherapy [80].

Kampo extracts contain a range of bioactive chemicals that have been shown to modulate OATP transport function in cells that over-express these transporters [67, 71, 72, 81]. Thus, complex polyhydroxylated multi-ring systems like the catechins Epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), flavonoids such as scutellarin and baicalin, as well as saponins like glycyrrhizic acid, have been reported to inhibit the transport function of OATP1B1 and 2B1 (Table 1). In contrast, the glycosylated flavonoid rutin increased the substrate transport via OATP1B1 and OATP2B1 in over-expressing HEK 293 and HeLa cells [71, 74]. Because these transporters are widely implicated in the cellular influx of drugs like fexofenadine, glibenclamide, statins and β-adrenergic antagonists, there is a considerable potential for pharmacokinetic interactions with Kampo-derived chemicals.

Baicalin and its aglycone baicalein are flavonoids that are active constituents of Chinese skullcap. The flavonoid scutellarin is enriched in breviscapine. Extracts from these natural sources have been found to impair the transport function of OATPs in the over-expressing cells [67, 72, 76]. Horny Goat Weed is a widely used Chinese medicine in Asian countries. It contains the prenylated flavanol glycoside icariin, which is used to treat osteoporosis and male sexual dysfunction. However, icariin has been found to modulate the transport function of OATP2B1, OATP1B1 and OATP1B3 [27, 63]. Milk thistle contains the flavonolignan silymarin—a polyhydroxylated ring-containing molecule, which potently inhibits estradiol-17β-glucuronide uptake via OATP1B1 and 1B3, as well as ES uptake via OATP2B1 [75]. There are other herbal extracts containing chemicals that can modulate the substrate uptake mediated via OATPs. The triterpenoid saponins astragaloside and ginsenoside Rc found in Radix astragali and Panax ginseng extracts, the naphthodianthrone 2-O-galloyl-hyperin enriched in Pyrola incarnate Fisch as well as the glycosylated flavonoid epimedin C present in Herba epimedii, have all been shown to inhibitors of OATP1B1 with moderate potency [72].

The capacity of molecules to modulate the rate of transporter-mediated substrate influx into cells has been reported but is under-explored. Again, the underpinning molecular mechanisms could be either substrate-dependent or substrate-independent. Chemicals that enhance the translocation of OATPs to the plasma membrane could activate the influx of chemicals in a substrate-independent fashion. Amiodarone (a potent natural compound used in the treatment of cardiac arrhythmias) and rutin have been shown to increase OAT2B1-mediated substrate uptake via increased translocation to the plasma membrane [82, 83].

Molecules that bind directly to specific domains or regions within OATPs could elicit rapid changes in substrate uptake [83]. For example, the steroid progesterone has been shown to activate OATP2B1 function by promoting a conformational change in the substrate-binding site [70]. Similar allosteric interactions have also been indicated to activate CYP monooxygenases and increase the rate of substrate oxidation [84].

Drug-food interactions involving OATPs

Therapeutic complications due to drug-food interactions involving OATPs have also been demonstrated (Table 1). Grapefruit and apple juices contain a range of flavonoids that have been found to impair the transport function of OATP1A2, 1B1, 1B3 and 2B1, some with IC50 and Ki values in a low micromolar range [67, 72, 77, 78]. In vivo studies in patients have suggested that co-administration of grapefruit, orange or apple juices decreased the systemic availability of fexofenadine by 65–75% and celiprolol by more than 80% [85, 86]. Such inhibitory effects of fruit juices are reversible as the removal of fruit juice restores OATP function [69]. Literature also reported that ingestion of fruit juices that contain high concentrations of naringin directly inhibits enteric OATP1A2 and decreases the oral bioavailability of fexofenadine [77, 85]. Accordingly, it has been suggested that the consumption of fruit juices should be avoided within 4 h of drug administration to minimise adverse effects.

Green and black teas are popular beverages that are widely consumed with potential health benefits. Catechins and polyhydroxylated flavonoids such as theaflavin, that are present in teas can impact on OATPs and reduce the systemic exposure to OATP drug substrates like rosuvastatin [87].

Other classes of natural compounds that are potent in modulating OATP activities, are present in vegetables and fruits widely used in health treatments. For instance, licorice contains the saponin glycyrrhizic acid, which has been in managing chronic hepatitis and gastric ulcers. Glycyrrhizic acid was reported to inhibit the cellular uptake of OATP substrates atorvastatin, fluvastatin and rosuvastatin [76]. Literature also indicated that chemically similar molecules like the triterpenoid saponins ursolic acid, oleanolic acid and betulinic acid, are potent OATP inhibitors [64, 68]. Ursolic acid is present in pomegranate with anti-mutagenic and anti-viral properties. It can inhibit the OATP1B1- and OATP1B3-mediated uptake of fluorescein-conjugated methotrexate analogues [88]. Similarly, biochanin A in peanuts and mulberrin in mulberries are flavonoids that have been found to inhibit OATP1B1 and OATP2B1, respectively, in a non-competitive manner [74, 76, 89]. Thus, food-derived chemicals, if ingested in enough amounts, have the potential to influence the safety and efficacy of co-administered drugs.

Clinical significance of drug-herb/food interactions mediated through OATPs

There is limited clinical evidence available regarding drug-food/herb interactions via OATPs [70]. In healthy Chinese volunteers, the flavonoid quercetin present in apples and other fruits, significantly decreased the bioavailability of pravastatin (an OATP1B1 drug substrate), most likely by decreasing intestinal absorption [72]. Another clinical study examined the influence of fruit juices on the disposition of the antihistamine fexofenadine. The oral pharmacokinetics of fexofenadine was assessed in ten healthy individuals received grapefruit, orange or apple juice (1.2 L over 3 h) in a randomized 5-way crossover study. It was found that grapefruit, orange, and apple juices decreased the fexofenadine area under the plasma concentration–time curve (AUC), the maximal plasma drug concentration (Cmax), and the urinary excretion values to only 30–40% of control [85]. Another study found that grapefruit juice decreased the Cmax of acebutolol (an OATP1A2 substrate) by 19%, although the AUC was essentially unchanged from control [81]. Similarly, the administration of orange juice was found to decrease the Cmax and AUC of the β-adrenoceptor antagonist atenolol (a common substrate of OATP1A2 and 2B1) by 49% and 40%, respectively [73]. There are also pharmacokinetic studies reporting that green tea decreased the absorption of rosuvastatin in healthy volunteers due to the inhibition of intestinal OATP1A2- and OATP2B1-mediated drug uptake [87, 90]. Additionally, green tea has been shown to interfere with pharmacokinetics of nadolol in Japanese volunteers, possibly due to a decrease in absorption via influencing OATP1A2 and OATP2B1 [90, 91].

Conclusions

OATP transporters are widely distributed in human tissues and mediate the influx of many drugs and endogenous substances. Food and herbs are important sources of nutrients with potential health benefits. Accordingly, the potential of drug-herb/food interactions due to concurrent use of food and herbal agents alongside conventional drugs is high, which may greatly impact on therapeutic outcomes and toxicities. Increased awareness of these interactions could inform precautions to avoid co-administration of herbal medicines or food with OATP drug substrates to improve clinical outcomes.

Acknowledgements

We thanks to Wanbangde Pharmaceutical Pty Ltd for the support of USYD-WEPON post-graduate scholarship.

Abbreviations

AUC

Area under the plasma concentration–time curve

Cmax

Maximal plasma drug concentration

EC

Epicatechin

ECG

Epicatechin gallate

EGC

Epicatechin-3-gallate

EGCG

Epigallocatechin gallate

ES

Estrone-3-sulfate

OAT

Organic anion transporter

OATP

Organic anion transporting polypeptide

β-PGG

1,2,3,4,6-penta-O-galloyl-β-d-glucose

SLCs

Solute Carrier transporters

Authors’ contributions

YA, TS, ZC, YL and WS did the literature search and drafted the manuscript. KW, XB, LZ, MM and FZ critically reviewed the literature and revised the manuscript. All authors read and approved the final manuscript.

Funding

We appreciate the financial support received from the Equity fellowship of the University of Sydney (Grant No. 2019 Equity Fellowship), the Young Talent’s Subsidy Project in Science and Education of the Department of Public Health of Jiangsu Province (No. QNRC2016627), Six talent peaks project in Jiangsu Province (No. WSW-047), Six-one Scientific Research Project (No. LGY2019087).

Availability of data and materials

All the data used to support the findings of this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Chan T, Cheung FS, Zheng J, Lu X, Zhu L, Grewal T, Murray M, Zhou F. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking. Mol Pharm. 2016;13(1):144–154. doi: 10.1021/acs.molpharmaceut.5b00576. [DOI] [PubMed] [Google Scholar]
  • 2.Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol. 2017;174(13):1908–1924. doi: 10.1111/bph.13785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev. 2017;116:21–36. doi: 10.1016/j.addr.2016.06.004. [DOI] [PubMed] [Google Scholar]
  • 4.Kovacsics D, Patik I, Ozvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol. 2017;13(4):409–424. doi: 10.1080/17425255.2017.1253679. [DOI] [PubMed] [Google Scholar]
  • 5.Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–1287. doi: 10.1111/j.1476-5381.2011.01724.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, Keppler D, Nies AT. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 2005;65(24):11419–11428. doi: 10.1158/0008-5472.CAN-05-1271. [DOI] [PubMed] [Google Scholar]
  • 7.Chan T, Zheng J, Zhu L, Grewal T, Murray M, Zhou F. Putative transmembrane domain 6 of the human organic anion transporting polypeptide 1A2 (OATP1A2) influences transporter substrate binding, protein trafficking, and quality control. Mol Pharm. 2015;12(1):111–119. doi: 10.1021/mp500459b. [DOI] [PubMed] [Google Scholar]
  • 8.Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, Jolicoeur E, Lee W, Leake BF, Tirona RG, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther. 2007;81(3):362–370. doi: 10.1038/sj.clpt.6100056. [DOI] [PubMed] [Google Scholar]
  • 9.Knauer MJ, Urquhart BL. Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, Kim RB, Tirona RG: Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306. doi: 10.1161/CIRCRESAHA.109.203596. [DOI] [PubMed] [Google Scholar]
  • 10.Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther. 2003;306(2):703–708. doi: 10.1124/jpet.103.051300. [DOI] [PubMed] [Google Scholar]
  • 11.Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001;120(2):525–533. doi: 10.1053/gast.2001.21176. [DOI] [PubMed] [Google Scholar]
  • 12.St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab. 2002;87(4):1856–1863. doi: 10.1210/jcem.87.4.8431. [DOI] [PubMed] [Google Scholar]
  • 13.Kock K, Koenen A, Giese B, Fraunholz M, May K, Siegmund W, Hammer E, Volker U, Jedlitschky G, Kroemer HK, et al. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization. J Biol Chem. 2010;285(15):11336–11347. doi: 10.1074/jbc.M109.056457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hong M, Hong W, Ni C, Huang J, Zhou C. Protein kinase C affects the internalization and recycling of organic anion transporting polypeptide 1B1. Biochim Biophys Acta. 2015;1848(10 Pt A):2022–2030. doi: 10.1016/j.bbamem.2015.05.011. [DOI] [PubMed] [Google Scholar]
  • 15.Powell J, Farasyn T, Kock K, Meng X, Pahwa S, Brouwer KL, Yue W. Novel mechanism of impaired function of organic anion-transporting polypeptide 1B3 in human hepatocytes: post-translational regulation of OATP1B3 by protein kinase C activation. Drug Metab Dispos. 2014;42(11):1964–1970. doi: 10.1124/dmd.114.056945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Brenner S, Klameth L, Riha J, Scholm M, Hamilton G, Bajna E, Ausch C, Reiner A, Jager W, Thalhammer T, et al. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett. 2015;356(2 Pt B):517–524. doi: 10.1016/j.canlet.2014.09.025. [DOI] [PubMed] [Google Scholar]
  • 17.Schwabedissen HEMZ, Tirona RG, Yip CS, Ho RH, Kim RB. Interplay between the Nuclear Receptor Pregnane X Receptor and the Uptake Transporter Organic Anion Transporter Polypeptide 1A2 Selectively Enhances Estrogen Effects in Breast Cancer. Cancer Res. 2008;68(22):9338–9347. doi: 10.1158/0008-5472.CAN-08-0265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Svoboda M, Mungenast F, Gleiss A, Vergote I, Vanderstichele A, Sehouli J, Braicu E, Mahner S, Jager W, Mechtcheriakova D, et al. Clinical significance of organic anion transporting polypeptide gene expression in high-grade serous ovarian cancer. Front Pharmacol. 2018;9:842. doi: 10.3389/fphar.2018.00842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Cui Y, Konig J, Nies AT, Pfannschmidt M, Hergt M, Franke WW, Alt W, Moll R, Keppler D. Detection of the human organic anion transporters SLC21A6 (OATP2) and SLC21A8 (OATP8) in liver and hepatocellular carcinoma. Lab Invest. 2003;83(4):527–538. doi: 10.1097/01.lab.0000065015.02412.48. [DOI] [PubMed] [Google Scholar]
  • 20.Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N, Venzon D, Maeda K, Nagao K, Sparreboom A, et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res. 2008;14(11):3312–3318. doi: 10.1158/1078-0432.CCR-07-4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, Washington MK, Brunt EM, Zaika A, Kim RB, et al. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res. 2008;68(24):10315–10323. doi: 10.1158/0008-5472.CAN-08-1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, Ohuchi N, Sasano H, Abe T, Unno M. Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci. 2007;98(10):1570–1576. doi: 10.1111/j.1349-7006.2007.00570.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Liu T, Li Q. Organic anion-transporting polypeptides: a novel approach for cancer therapy. J Drug Target. 2014;22(1):14–22. doi: 10.3109/1061186X.2013.832767. [DOI] [PubMed] [Google Scholar]
  • 24.Pressler H, Sissung TM, Venzon D, Price DK, Figg WD. Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS ONE. 2011;6(5):e20372. doi: 10.1371/journal.pone.0020372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Al Sarakbi W, Mokbel R, Salhab M, Jiang WG, Reed MJ, Mokbel K. The role of STS and OATP-B mRNA expression in predicting the clinical outcome in human breast cancer. Anticancer Res. 2006;26(6C):4985–4990. [PubMed] [Google Scholar]
  • 26.Matsumoto J, Ariyoshi N, Sakakibara M, Nakanishi T, Okubo Y, Shiina N, Fujisaki K, Nagashima T, Nakatani Y, Tamai I, et al. Organic anion transporting polypeptide 2B1 expression correlates with uptake of estrone-3-sulfate and cell proliferation in estrogen receptor-positive breast cancer cells. Drug Metab Pharmacokinet. 2015;30(2):133–141. doi: 10.1016/j.dmpk.2014.10.005. [DOI] [PubMed] [Google Scholar]
  • 27.Lu X, Xu C, Ng WV, Zhu L, Zhou F. The interaction of herbal compounds with human Organic anion/cation transporters. Journal of Pharmacogenomics pharmacoproteomics. 2014;5(5):142. [Google Scholar]
  • 28.Cui T, Liu Y, Men X, Xu Z, Wu L, Liu S, Xing A. Bile acid transport correlative protein mRNA expression profile in human placenta with intrahepatic cholestasis of pregnancy. Saudi Med J. 2009;30(11):1406–1410. [PubMed] [Google Scholar]
  • 29.Wojtal KA, Eloranta JJ, Hruz P, Gutmann H, Drewe J, Staumann A, Beglinger C, Fried M, Kullak-Ublick GA, Vavricka SR. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos. 2009;37(9):1871–1877. doi: 10.1124/dmd.109.027367. [DOI] [PubMed] [Google Scholar]
  • 30.Plaza F, Gabler F, Romero C, Vantman D, Valladares L, Vega M. The conversion of dehydroepiandrosterone into androst-5-ene-3 beta,17 beta-diol (androstenediol) is increased in endometria from untreated women with polycystic ovarian syndrome. Steroids. 2010;75(12):810–817. doi: 10.1016/j.steroids.2010.06.011. [DOI] [PubMed] [Google Scholar]
  • 31.Petrovic V, Kojovic D, Cressman A, Piquette-Miller M. Maternal bacterial infections impact expression of drug transporters in human placenta. Int Immunopharmacol. 2015;26(2):349–356. doi: 10.1016/j.intimp.2015.04.020. [DOI] [PubMed] [Google Scholar]
  • 32.Oswald M, Kullak-Ublick GA, Paumgartner G, Beuers U. Expression of hepatic transporters OATP-C and MRP2 in primary sclerosing cholangitis. Liver. 2001;21(4):247–253. doi: 10.1034/j.1600-0676.2001.021004247.x. [DOI] [PubMed] [Google Scholar]
  • 33.Stieger B, Geier A. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis. Expert Opinion on Drug Metabolism & Toxicology. 2011;7(4):411–425. doi: 10.1517/17425255.2011.557067. [DOI] [PubMed] [Google Scholar]
  • 34.Le Vee M, Gripon P, Stieger B, Fardel O. Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1beta. Drug Metab Dispos. 2008;36(2):217–222. doi: 10.1124/dmd.107.016907. [DOI] [PubMed] [Google Scholar]
  • 35.Le Vee M, Jouan E, Moreau A, Fardel O. Regulation of drug transporter mRNA expression by interferon-gamma in primary human hepatocytes. Fundam Clin Pharmacol. 2011;25(1):99–103. doi: 10.1111/j.1472-8206.2010.00822.x. [DOI] [PubMed] [Google Scholar]
  • 36.Le Vee M, Jouan E, Stieger B, Lecureur V, Fardel O. Regulation of drug transporter expression by oncostatin M in human hepatocytes. Biochem Pharmacol. 2011;82(3):304–311. doi: 10.1016/j.bcp.2011.04.017. [DOI] [PubMed] [Google Scholar]
  • 37.Clarke JD, Novak P, Lake AD, Hardwick RN, Cherrington NJ. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 2017;37(7):1074–1081. doi: 10.1111/liv.13362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wang L, Collins C, Kelly EJ, Chu X, Ray AS, Salphati L, Xiao G, Lee C, Lai Y, Liao M, et al. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. Drug Metab Dispos. 2016;44(11):1752–1758. doi: 10.1124/dmd.116.071050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Chen HL, Liu YJ, Chen HL, Wu SH, Ni YH, Ho MC, Lai HS, Hsu WM, Hsu HY, Tseng HC, et al. Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia. Pediatr Res. 2008;63(6):667–673. doi: 10.1203/PDR.0b013e318170a6b5. [DOI] [PubMed] [Google Scholar]
  • 40.Congiu M, Mashford ML, Slavin JL, Desmond PV. Coordinate regulation of metabolic enzymes and transporters by nuclear transcription factors in human liver disease. J Gastroenterol Hepatol. 2009;24(6):1038–1044. doi: 10.1111/j.1440-1746.2009.05800.x. [DOI] [PubMed] [Google Scholar]
  • 41.Keitel V, Burdelski M, Warskulat U, Kuhlkamp T, Keppler D, Haussinger D, Kubitz R. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology. 2005;41(5):1160–1172. doi: 10.1002/hep.20682. [DOI] [PubMed] [Google Scholar]
  • 42.van de Steeg E, Stranecky V, Hartmannova H, Noskova L, Hrebicek M, Wagenaar E, van Esch A, de Waart DR, Oude Elferink RP, Kenworthy KE, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest. 2012;122(2):519–528. doi: 10.1172/JCI59526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos. 2014;42(4):561–565. doi: 10.1124/dmd.113.055772. [DOI] [PubMed] [Google Scholar]
  • 44.Buyukkale G, Turker G, Kasap M, Akpinar G, Arisoy E, Gunlemez A, Gokalp A. Neonatal hyperbilirubinemia and organic anion transporting polypeptide-2 gene mutations. Am J Perinatol. 2011;28(8):619–626. doi: 10.1055/s-0031-1276736. [DOI] [PubMed] [Google Scholar]
  • 45.Ieiri I, Suzuki H, Kimura M, Takane H, Nishizato Y, Irie S, Urae A, Kawabata K, Higuchi S, Otsubo K, et al. Influence of common variants in the pharmacokinetic genes (OATP-C, UGT1A1, and MRP2) on serum bilirubin levels in healthy subjects. Hepatol Res. 2004;30(2):91–95. doi: 10.1016/j.hepres.2004.07.005. [DOI] [PubMed] [Google Scholar]
  • 46.Zhang W, He YJ, Gan Z, Fan L, Li Q, Wang A, Liu ZQ, Deng S, Huang YF, Xu LY, et al. OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin Exp Pharmacol Physiol. 2007;34(12):1240–1244. doi: 10.1111/j.1440-1681.2007.04798.x. [DOI] [PubMed] [Google Scholar]
  • 47.Zhang Z, Xia W, He J, Zhang Z, Ke Y, Yue H, Wang C, Zhang H, Gu J, Hu W, et al. Exome sequencing identifies SLCO2A1 mutations as a cause of primary hypertrophic osteoarthropathy. Am J Hum Genet. 2012;90(1):125–132. doi: 10.1016/j.ajhg.2011.11.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Niemi M, Neuvonen PJ, Hofmann U, Backman JT, Schwab M, Lutjohann D, von Bergmann K, Eichelbaum M, Kivisto KT. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics. 2005;15(5):303–309. doi: 10.1097/01213011-200505000-00005. [DOI] [PubMed] [Google Scholar]
  • 49.Zhang A, Wang C, Liu Q, Meng Q, Peng J, Sun H, Ma X, Huo X, Liu K. Involvement of organic anion-transporting polypeptides in the hepatic uptake of dioscin in rats and humans. Drug Metab Dispos. 2013;41(5):994–1003. doi: 10.1124/dmd.112.049452. [DOI] [PubMed] [Google Scholar]
  • 50.Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, Sora ES, James CE, Gibbons S, Bray PG, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genom. 2010;20(2):112–120. doi: 10.1097/FPC.0b013e328335b02d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yamakawa Y, Hamada A, Shuto T, Yuki M, Uchida T, Kai H, Kawaguchi T, Saito H. Pharmacokinetic impact of SLCO1A2 polymorphisms on imatinib disposition in patients with chronic myeloid leukemia. Clin Pharmacol Ther. 2011;90(1):157–163. doi: 10.1038/clpt.2011.102. [DOI] [PubMed] [Google Scholar]
  • 52.Akamine Y, Miura M, Sunagawa S, Kagaya H, Yasui-Furukori N, Uno T. Influence of drug-transporter polymorphisms on the pharmacokinetics of fexofenadine enantiomers. Xenobiotica. 2010;40(11):782–789. doi: 10.3109/00498254.2010.515318. [DOI] [PubMed] [Google Scholar]
  • 53.Sebastian K, Detro-Dassen S, Rinis N, Fahrenkamp D, Muller-Newen G, Merk HF, Schmalzing G, Zwadlo-Klarwasser G, Baron JM. Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function. PLoS ONE. 2013;8(12):e83257. doi: 10.1371/journal.pone.0083257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Isidor B, Pichon O, Redon R, Day-Salvatore D, Hamel A, Siwicka KA, Bitner-Glindzicz M, Heymann D, Kjellen L, Kraus C, et al. Mesomelia-Synostoses Syndrome Results from Deletion of SULF1 and SLCO5A1 Genes at 8q13. Am J Hum Genet. 2010;87(1):95–100. doi: 10.1016/j.ajhg.2010.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Vo KT, Montgomery ME, Mitchell ST, Scheerlinck PH, Colby DK, Meier KH, Kim-Katz S, Anderson IB, Offerman SR, Olson KR, et al. Amanita phalloides Mushroom Poisonings - Northern California, December 2016. MMWR Morb Mortal Wkly Rep. 2017;66(21):549–553. doi: 10.15585/mmwr.mm6621a1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Nahrstedt A, Butterweck V. Lessons learned from herbal medicinal products: the example of St. John’s Wort (perpendicular) J Nat Prod. 2010;73(5):1015–1021. doi: 10.1021/np1000329. [DOI] [PubMed] [Google Scholar]
  • 57.Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA. 2006;296(10):1255–1265. doi: 10.1001/jama.296.10.1255. [DOI] [PubMed] [Google Scholar]
  • 58.Stieger B, Mahdi ZM, Jager W. Intestinal and hepatocellular transporters: therapeutic effects and drug interactions of herbal supplements. Annu Rev Pharmacol Toxicol. 2017;57:399–416. doi: 10.1146/annurev-pharmtox-010716-105010. [DOI] [PubMed] [Google Scholar]
  • 59.Lu X, Chan T, Zhu L, Bao X, Velkov T, Zhou QT, Li J, Chan HK, Zhou F. The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models. Eur J Pharm Sci. 2018;115:132–143. doi: 10.1016/j.ejps.2018.01.002. [DOI] [PubMed] [Google Scholar]
  • 60.Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–892. doi: 10.1007/s40262-017-0506-8. [DOI] [PubMed] [Google Scholar]
  • 61.Konig J, Muller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65(3):944–966. doi: 10.1124/pr.113.007518. [DOI] [PubMed] [Google Scholar]
  • 62.Tamai I, Nakanishi T. OATP transporter-mediated drug absorption and interaction. Curr Opin Pharmacol. 2013;13(6):859–863. doi: 10.1016/j.coph.2013.09.001. [DOI] [PubMed] [Google Scholar]
  • 63.Li Z, Cheung FS, Zheng J, Chan T, Zhu L, Zhou F. Interaction of the bioactive flavonol, icariin, with the essential human solute carrier transporters. J Biochem Mol Toxicol. 2014;28(2):91–97. doi: 10.1002/jbt.21540. [DOI] [PubMed] [Google Scholar]
  • 64.Li Z, Wang K, Zheng J, Cheung FS, Chan T, Zhu L, Zhou F. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm Biol. 2014;52(12):1510–1517. doi: 10.3109/13880209.2014.900809. [DOI] [PubMed] [Google Scholar]
  • 65.Roth M, Timmermann BN, Hagenbuch B. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab Dispos. 2011;39(5):920–926. doi: 10.1124/dmd.110.036640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Shams T, Lu X, Zhu L, Zhou F. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters. Xenobiotica. 2018;48(2):197–205. doi: 10.1080/00498254.2017.1282647. [DOI] [PubMed] [Google Scholar]
  • 67.Xu F, Li Z, Zheng J, Gee Cheung FS, Chan T, Zhu L, Zhuge H, Zhou F. The inhibitory effects of the bioactive components isolated from Scutellaria baicalensis on the cellular uptake mediated by the essential solute carrier transporters. J Pharm Sci. 2013;102(11):4205–4211. doi: 10.1002/jps.23727. [DOI] [PubMed] [Google Scholar]
  • 68.Oh Y, Jeong YS, Kim MS, Min JS, Ryoo G, Park JE, Jun Y, Song YK, Chun SE, Han S, et al. Inhibition of organic anion transporting polypeptide 1B1 and 1B3 by betulinic acid: effects of preincubation and albumin in the media. J Pharm Sci. 2018;107(6):1713–1723. doi: 10.1016/j.xphs.2018.02.010. [DOI] [PubMed] [Google Scholar]
  • 69.Dolton MJ, Roufogalis BD, McLachlan AJ. Fruit juices as perpetrators of drug interactions: the role of organic anion-transporting polypeptides. Clin Pharmacol Ther. 2012;92(5):622–630. doi: 10.1038/clpt.2012.159. [DOI] [PubMed] [Google Scholar]
  • 70.Jiro Ogura HY. Nariyasu Mano: stimulatory effect on the transport mediated by organic anion transporting polypeptide 2B1. Asian J Pharm Sci. 2019;15(2):181–191. doi: 10.1016/j.ajps.2019.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Iijima R, Watanabe T, Ishiuchi K, Matsumoto T, Watanabe J, Makino T. Interactions between crude drug extracts used in Japanese traditional Kampo medicines and organic anion-transporting polypeptide 2B1. J Ethnopharmacol. 2018;214:153–159. doi: 10.1016/j.jep.2017.12.016. [DOI] [PubMed] [Google Scholar]
  • 72.Wu LX, Guo CX, Qu Q, Yu J, Chen WQ, Wang G, Fan L, Li Q, Zhang W, Zhou HH. Effects of natural products on the function of human organic anion transporting polypeptide 1B1. Xenobiotica. 2012;42(4):339–348. doi: 10.3109/00498254.2011.623796. [DOI] [PubMed] [Google Scholar]
  • 73.Lilja JJ, Raaska K, Neuvonen PJ. Effects of orange juice on the pharmacokinetics of atenolol. Eur J Clin Pharmacol. 2005;61(5–6):337–340. doi: 10.1007/s00228-005-0930-9. [DOI] [PubMed] [Google Scholar]
  • 74.Wang XD, Wolkoff AW, Morris ME. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab Dispos. 2005;33(11):1666–1672. doi: 10.1124/dmd.105.005926. [DOI] [PubMed] [Google Scholar]
  • 75.Kock K, Xie Y, Hawke RL, Oberlies NH, Brouwer KL. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug Metab Dispos. 2013;41(5):958–965. doi: 10.1124/dmd.112.048272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Wen FJ, Shi MZ, Bian JL, Zhang HJ, Gui CS. Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake. Pharmaceutical Biology. 2016;54(2):293–302. doi: 10.3109/13880209.2015.1034326. [DOI] [PubMed] [Google Scholar]
  • 77.Bailey DG, Dresser GK, Leake BF, Kim RB. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin Pharmacol Ther. 2007;81(4):495–502. doi: 10.1038/sj.clpt.6100104. [DOI] [PubMed] [Google Scholar]
  • 78.Mandery K, Bujok K, Schmidt I, Keiser M, Siegmund W, Balk B, Konig J, Fromm MF, Glaeser H. Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochem Pharmacol. 2010;80(11):1746–1753. doi: 10.1016/j.bcp.2010.08.008. [DOI] [PubMed] [Google Scholar]
  • 79.Kondo A, Narumi K, Ogura J, Sasaki A, Yabe K, Kobayashi T, Furugen A, Kobayashi M, Iseki K. Organic anion-transporting polypeptide (OATP) 2B1 contributes to the cellular uptake of theaflavin. Drug Metab Pharmacokinet. 2017;32(2):145–150. doi: 10.1016/j.dmpk.2016.11.009. [DOI] [PubMed] [Google Scholar]
  • 80.Iwase S, Yamaguchi T, Miyaji T, Terawaki K, Inui A, Uezono Y. The clinical use of Kampo medicines (traditional Japanese herbal treatments) for controlling cancer patients’ symptoms in Japan: a national cross-sectional survey. Bmc Complementary and Alternative Medicine. 2012;12:222. doi: 10.1186/1472-6882-12-222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Lilja JJ, Raaska K, Neuvonen PJ. Effects of grapefruit juice on the pharmacokinetics of acebutolol. Br J Clin Pharmacol. 2005;60(6):659–663. doi: 10.1111/j.1365-2125.2005.02489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Ogura J, Koizumi T, Segawa M, Yabe K, Kuwayama K, Sasaki S, Kaneko C, Tsujimoto T, Kobayashi M, Yamaguchi H, et al. Quercetin-3-rhamnoglucoside (rutin) stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1. Biopharm Drug Dispos. 2014;35(3):173–182. doi: 10.1002/bdd.1882. [DOI] [PubMed] [Google Scholar]
  • 83.Segawa M, Ogura J, Seki S, Itagaki S, Takahashi N, Kobayashi M, Hirano T, Yamaguchi H, Iseki K. Rapid stimulating effect of the antiarrhythmic agent amiodarone on absorption of organic anion compounds. Drug Metab Pharmacokinet. 2013;28(3):178–186. doi: 10.2133/dmpk.dmpk-12-rg-010. [DOI] [PubMed] [Google Scholar]
  • 84.Atkins WM. Implications of the allosteric kinetics of cytochrome P450s. Drug Discov Today. 2004;9(11):478–484. doi: 10.1016/S1359-6446(04)03072-7. [DOI] [PubMed] [Google Scholar]
  • 85.Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, Kim RB. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71(1):11–20. doi: 10.1067/mcp.2002.121152. [DOI] [PubMed] [Google Scholar]
  • 86.Lilja JJ, Backman JT, Laitila J, Luurila H, Neuvonen PJ. Itraconazole increases but grapefruit juice greatly decreases plasma concentrations of celiprolol. Clin Pharmacol Ther. 2003;73(3):192–198. doi: 10.1067/mcp.2003.26. [DOI] [PubMed] [Google Scholar]
  • 87.Kim TE, Ha N, Kim Y, Kim H, Lee JW, Jeon JY, Kim MG. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des Devel Ther. 2017;11:1409–1416. doi: 10.2147/DDDT.S130050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Gui C, Obaidat A, Chaguturu R, Hagenbuch B. Development of a cell-based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr Chem Genomics. 2010;4:1–8. doi: 10.2174/1875397301004010001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Ismair MG, Stanca C, Ha HR, Renner EL, Meier PJ, Kullak-Ublick GA. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol Res. 2003;26(4):343–347. doi: 10.1016/s1386-6346(03)00154-2. [DOI] [PubMed] [Google Scholar]
  • 90.Werba JP, Misaka S, Giroli MG, Shimomura K, Amato M, Simonelli N, Vigo L, Tremoli E. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J Food Drug Anal. 2018;26(2S):S72–S77. doi: 10.1016/j.jfda.2018.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Misaka S, Yatabe J, Muller F, Takano K, Kawabe K, Glaeser H, Yatabe MS, Onoue S, Werba JP, Watanabe H, et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther. 2014;95(4):432–438. doi: 10.1038/clpt.2013.241. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All the data used to support the findings of this study are available from the corresponding author upon reasonable request.


Articles from Chinese Medicine are provided here courtesy of BMC

RESOURCES