Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2016 Nov;37(11):1003–1007. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2016.11.017

DNA甲基化修饰在白血病发生中作用的研究进展

Modification of DNA methylation in leukemia development

高 爱 1, 郑 亚伟 1, 程 涛 1,
Editor: 董 文革1
PMCID: PMC7348520  PMID: 27995891

DNA甲基化修饰是表观遗传调控的重要机制之一,由DNA甲基转移酶(DNA methyltransferase, DNMT)、DNA羟甲基化酶(ten-eleven translocation, TET)和异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)调控的DNA甲基化不仅调控正常造血干细胞(hematopoietic stem cell, HSC)的自我更新和分化,在白血病的发生发展中也具有重要意义。针对DNA甲基化修饰酶的药物作为白血病的新型治疗手段受到广泛关注。我们对DNA的甲基化修饰在白血病发生发展中的作用以及针对DNA甲基化修饰异常的白血病靶向治疗等方面的研究进展综述如下。

一、DNA的甲基化修饰分子

DNA甲基化通常是对胞嘧啶的修饰,哺乳动物调控DNA甲基化修饰的酶主要包括DNMT、TET和IDH家族。

1.DNMT:DNA甲基化是指在DNMT的作用下,以S-腺苷甲硫氨酸为甲基(CH3)供体,将甲基基团转移到CpG的胞嘧啶(C-5)变成mCpG的过程[1]。哺乳动物DNA甲基化被至少3种DNMT调控:DNMT1维持甲基化状态,DNMT3A和DNMT3B调控DNA从头甲基化[2]。而DNMT3L(DNMT3-like)不含催化结构域,在胚胎发育和基因印记过程中作为DNMT3A的辅助蛋白[3]

2.TET:TET家族有TET1、TET2和TET3 3名成员。TET将5-甲基胞嘧啶(5mC)的甲基基团羟基化,使其转变成5-羟甲基胞嘧啶(5hmC),进一步阻止能够识别甲基化DNA的蛋白质间的结合,从而诱导细胞分裂过程中的去甲基化作用[4][6]

3.IDH:IDH1和IDH2在三羧酸循环的过程中催化异柠檬酸的氧化脱羧,从而产生ɑ-戊酮二酸(ɑ-KG),而突变的IDH会特异性地改变酶的催化活性,直接催化ɑ-KG生成R-2-羟戊二酸(R-2-HG),竞争性抑制TET等多种ɑ-KG依赖的加双氧酶,从而促进肿瘤的发生发展[7]

二、DNA甲基化修饰在白血病发生中的作用

相关研究显示,在肿瘤发生的过程中会出现全基因组DNA的低甲基化以及区域的高甲基化[8][9]。Weissman研究团队利用外显子测序和扩增子靶向测序(targeted amplicon sequencing)对16例急性髓系白血病(AML)患者进行突变基因分析,发现在多种突变中,DNA甲基化调控分子的突变多发生在白血病早期[10]。可见,在血液系统恶性肿瘤中,异常的DNA甲基化和白血病的发生息息相关。

1.DNMT3A:在血液系统恶性肿瘤中,DNMT3A的突变会影响髓系、淋系及混合系,导致不良预后[11][13]。在AML中,DNMT3A的突变率高达22%,且将近60%的突变为R882;突变的DNMT3A作为野生型DNMT3A的显性负抑制剂,破坏其四聚体化,扰乱正常甲基化的功能[14]。而在伴DNMT3A突变的急性T淋巴细胞白血病(T-ALL)患者中,R882突变仅占20%[15]。这些观察结果证明,DNMT3A作为一个经典的抑癌基因,通过丧失其蛋白质的功能而促进肿瘤的恶性发展。最近的数据表明,在AML患者中,携带DNMT3A突变的HSC可能表型正常并且可以产生多种血细胞谱系,处于一种前白血病阶段(pre-leukaemic state)[10],[16]。这些带有DNMT3A突变的前白血病细胞处于临床沉默状态,但会在治疗的过程中生存下来,甚至在缓解期间扩增[17]。由于前白血病干细胞仍具有自我更新能力,这就使其转变成恶性肿瘤细胞成为可能。由此可见,DNMT3A的突变发生较早,诱发白血病的发生,并使细胞在向白血病转换的期间获得额外的突变。Challen等[18]敲除小鼠HSC中DNMT3A,发现HSC的表型仍正常,且移植后HSC可扩增,而并未导致白血病的发生。这与人类携带DNMT3A突变的HSC仍具有自我更新能力这一结论相一致。而DNMT3A敲除的小鼠在不进行连续移植的情况下也会发生类似人类携带DNMT3A突变导致的血液系统恶性肿瘤。2015年,Goodell研究团队发现,受致死剂量照射的小鼠移植DNMT3A敲除的HSC后在1年内全部死亡。HSC中缺失DNMT3A会导致小鼠造血系统的恶变倾向,引起骨髓增生异常综合征(MDS)、AML及T-ALL等,这些肿瘤均表现出广泛的低甲基化,而淋巴系统的恶性肿瘤则表现出个别区域的高甲基化,尤其在启动子区域[19]。由此可见,DNMT3A缺失导致的不同肿瘤表现出不同的甲基化异常,预示DNMT3A的缺失会导致谱系特异性的甲基化异常。而目前还没有确定关键的下游基因来解释DNMT3A在AML中的作用,直到2015年,Ferreira等[20]使用全基因组亚硫酸盐测序和DNA甲基化微阵列技术在DNMT3A突变的AML患者中确定了引起白血病发生的基因HOX的辅因子MEIS1是一个与启动子低甲基化相关的转录激活的关键基因,提示DNMT3A可以介导一种依赖MEIS1的信号通路而导致白血病的发生。

2.DNMT3B:在HSC中,DNMT3A和DNMT3B的联合缺失会导致比DNMT3A单独缺失更严重的分化阻滞效应[21]。在白血病细胞中,DNMT3B的高表达会导致AML患者的不良预后[22]。然而,DNMT3B介导的DNA甲基化如何影响白血病的发生发展却鲜有报道。2016年1月,Schulze等[23]发现在Myc-Bcl2诱导的小鼠白血病模型中DNMT3B的过表达会引起广泛的高甲基化,而在MLL-AF9诱导的白血病模型中不会引起明显的高甲基化。尽管如此,两种白血病模型中,DNMT3B的高表达都会抑制白血病的进展。对二者甲基化测序结果的分析显示,他们具有一组相同的高甲基化区域,从而抑制干细胞相关基因(H1F0、Gpr56等)的表达。由此可见,DNMT3B的活性增加会阻滞白血病的进展,而特定位点DNA甲基化的缺失对白血病干细胞的形成至关重要,对白血病的发生成为非常重要的一步。

3.TET:尽管突变频率较低,TET的功能缺失性突变在髓系肿瘤中也被观察到。这些突变会破坏TET酶的功能,减少了5mC的羟基化,从而引起高水平的5mC,导致HSC分化谱系的偏斜以及自我更新和重建能力的增强,促进恶变。TET2突变在AML中占10%~20%[24],在CMML中占50%~60%[25]。研究证明在小鼠中敲除TET2会引起骨髓中造血干祖细胞(HSPC)的扩增并导致和CMLL相似的髓系肿瘤的发生[26][28]。2015年4月,Rasmussen等[29]使用人AML1-ETO诱导的小鼠白血病模型,发现在造血细胞中TET2的缺失导致全基因组超过25%的基因增强子的高度甲基化,从而改变基因的表达,使一些抑癌基因(如Mtss1、Las2、Lxn、Ctdspl、Grap2)表达下调,同时上调了一些癌基因(Aff3、Pim2、Nepn、Notch3、Igf1r)的表达,导致白血病的发生。该研究证明,TET2是通过防止增强子受到异常DNA甲基化的修饰,来阻止白血病的进展。进一步研究表明,在TET2失活的情况下,合作突变(cooperative mutations)对恶性肿瘤的成熟同样至关重要。近来,这样的突变已在多种血液系统的恶性肿瘤中被证实[30][32]。2015年,Zhao等[33]发现TET1与TET2的联合缺失会协同促进急性B淋巴细胞白血病(B-ALL)的发展。但在髓系白血病中,TET1缺失会延缓TET2缺失所导致的髓系肿瘤发生。2016年,Scourzic等[34]利用逆转录病毒系统,将DNMT3AR882H转染至TET2敲除(TET2−/−)的小鼠HSPC中,发现移植后6个月,10%的小鼠发生了髓系恶性肿瘤,而大部分小鼠则发生了淋系的恶性肿瘤;并通过基因的表达谱证明DNMT3AR882H Tet2−/− T-ALL和Notch1的突变相似,并且DNMT3AR882H Tet2−/− T-ALL表现出全基因组DNA甲基化的增加,影响了肿瘤抑制基因,以及局部的低甲基化影响参与Notch通路的基因表达。这表明,在肿瘤发生的过程中TET2的突变常与其他突变共存,发生协同或拮抗作用,影响白血病的进展。

4.IDH:IDH的突变在AML中高达20%[35]。IDH1/2的突变导致2-HG的产生,其作为ɑ-KG的竞争性抑制物,损害包括TET2在内的依赖Fe2+/ɑ-KG催化活性的双加氧酶(dioxygenases),破坏5mC和5hmC的平衡[36]。相关研究显示,利用逆转录病毒系统将IDH突变和其他癌基因共同转染至小鼠的骨髓细胞,移植后会导致白血病的发生[37][38],这表明IDH的突变对白血病的发生至关重要。2014年,Kats等[39]利用四环素诱导系统,构建了表达IDH2(R140Q)突变的转基因小鼠模型,发现IDH2 (R140Q)突变与HoxA9和Meis1a的过表达以及FLT3突变协同驱动白血病的发生,并进一步发现,在和其他突变同时存在时,通过四环素诱导系统使IDH2 (R140Q)突变失活,小鼠的白血病达到完全缓解且消除了任何可检测到的白血病细胞。由此可见,在和其他突变共存的情况下,IDH突变对白血病细胞的增殖和维持至关重要。2015年,Ogawara等[40]将IDH2 (R140Q)突变及在AML中与其并存的其他突变NPMc、DNMT3A(R882H)和FLT3 (ITD)进行组合,构建了一个新的小鼠AML模型,发现条件性敲除IDH2的突变基因可以阻碍AML的进展,再次证明IDH突变对白血病的维持至关重要。

三、针对DNA甲基化修饰异常的靶向治疗

DNA甲基化修饰分子的突变不仅可以为白血病的预后提供有价值的信息,反映不同疗法的治疗效果,还可以作为治疗的潜在靶点。既然DNMT3A和IDH1/2的突变会影响DNA甲基化,那么DNA甲基转移酶抑制剂和IDH1/2抑制剂很有可能成为治疗携带这些突变的AML患者的新手段。

1.DNMT抑制剂:作为DNMT抑制剂,阿扎胞苷和地西他滨均属嘧啶类似物,且二者均被批准用于临床治疗MDS和原始细胞数较低的AML。在欧洲,地西他滨也被批准用于治疗原始细胞数>30%且不适合强烈化疗的老年AML患者。阿扎胞苷自身主要通过整合入RNA发挥作用,但也可转换成地西他滨而整合入DNA中[41]。阿扎胞苷和地西他滨通过逆转异常甲基化的DNA,从而恢复抑癌基因的表达来发挥其功效。在Ⅱ、Ⅲ期临床研究中,地西他滨单药治疗无法接受强烈化疗的老年AML患者,完全缓解(CR)率达18%~47%,中位生存时间7.7~12.6个月[42][43]。同样,阿扎胞苷对骨髓原始细胞达20%~30%的老年AML患者有效,其CR率达18%,中位生存时间为24.5个月[44]。二者均延长了老年AML患者的总体生存率。提示这些去甲基化化合物适用于那些不适合接受强烈化疗的患者。对于MDS的治疗,尤其是那些具有特定基因突变(如TET2、DNMT3A)的患者,使用DNMT抑制剂治疗的效果更佳[45]。而类似的研究也应在AML患者中进行,以明确AML的哪种亚型更受益于DNMT抑制剂的治疗。

2.DNMT抑制剂与其他药物的联合应用:基因的沉默是由多种相互作用机制引起的,这便提示我们通过联合用药来影响多种表观遗传通路,从而达到治疗目的。近来,DNMT抑制剂已和包括吉妥珠单抗和索拉菲尼在内的非表观遗传药物联合应用[46],并且,地西他滨和硼替佐米的联合应用,在少数老年AML患者中显示出一定的临床活动性[47]。一项DNMT抑制剂和组蛋白去乙酰化酶(HDAC)抑制剂的联合应用的Ⅱ期临床试验结果显示,HDAC抑制剂丙戊酸和低剂量的地西他滨联合应用并没有更好地改善MDS和AML患者的预后[48],而在另一个Ⅱ期试验中,HDAC抑制剂恩替诺特甚至与阿扎胞苷发生了对抗作用[49]。由此可见,找到与DNMT抑制剂的最优组合仍具有一定的挑战性。

3.新型DNMT抑制剂:由于AML患者具有较高频率的体细胞表观遗传突变,并且DNMT抑制剂在AML治疗中具有举足轻重的地位,这就使得新型表观遗传治疗迅速发展。一种新型DNMT抑制剂SGI-110,是地西他滨和脱氧鸟苷缩合的去甲基化二核苷酸,并可不被胞嘧啶核苷脱氨酶所降解,从而增加药物的生物有效性,提高地西他滨的疗效[41]。Ⅱ期临床试验结果显示,SGI-110治疗初治的老年AML患者CR率达53%,疗效与传统的DNMT抑制剂相当[50]

4.IDH1/2抑制剂:许多IDH1/2抑制剂正处于不同的研发阶段并进行临床前研究评估。IDH2 (R140Q)突变的选择性抑制剂AGI-6780,通过与二聚体表面的别构部位结合发挥作用,从而诱导AML细胞系的体外分化[51]。另外,一些实验数据提示,其他的药物如BCL2抑制剂,也可以靶向IDH突变,达到治疗效果[52]。而IDH1(R132H)的突变,会导致一种肿瘤特异性的潜在的新抗原的出现,为肿瘤疫苗的接种战略发展提供可能性,从而诱导突变特异性的T细胞应答[53]。此外,谷氨酰胺作为ɑ-KG的主要来源,也将成为对IDH突变介导的白血病的一种潜在疗法。现已具备IDH1/2突变的动物模型,为我们在分子水平上研究特定药物的作用提供了很好的机会。

四、展望

DNA甲基化调控对维持正常造血至关重要,是调控HSC存活及自我更新和分化潜能所必需的。不同DNA甲基化修饰分子的突变对白血病的发生发展具有不同的作用,在许多情况下,这些突变会导致白血病的早期病变,甚至持续到治疗后并导致复发。一些DNA甲基转移酶的小分子抑制剂已进入临床试验阶段,开创了靶向表观调控的治疗白血病的新手段,但是目前临床指标难以预测药物反应且分子标志欠缺。DNA甲基化修饰如何调控HSC的分化和自我更新以及DNA甲基化修饰分子的突变如何导致白血病发生的精确分子机制还需要进一步阐明。最近,Greer等[54]首次发现线虫中存在DNA甲基化并证实其甲基化位点6mA(adenine N6-methylation)的存在。尽管迄今为止还未在哺乳动物DNA中发现6mA,但是新的测序技术可以揭示出一些以前检测不到的修饰,而新的甲基化位点在哺乳动物细胞特别是HSC及白血病中可能具有举足轻重的作用。另外,单细胞DNA甲基化组分析技术(Single cell RRBS)[55]作为一种基因组甲基化研究的新方法,对研究HSC异质性及白血病克隆演变可能发挥重要作用,并从单细胞水平促进精准医疗的发展。

Funding Statement

基金项目:国家自然科学基金重点项目(81430004);国家自然科学基金创新群体(81421002);国家自然科学基金委重大研究计划(91519315)

References

  • 1.Jeong M, Goodell MA. New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells[J] Exp Hematol. 2014;42(8):609–617. doi: 10.1016/j.exphem.2014.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J] Nat Genet. 2003;33 Suppl:245–254. doi: 10.1038/ng1089. [DOI] [PubMed] [Google Scholar]
  • 3.Wienholz BL, Kareta MS, Moarefi AH, et al. DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo[J] PLoS Genet. 2010;6(9):e1001106. doi: 10.1371/journal.pgen.1001106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J] Science. 2009;324(5929):930–935. doi: 10.1126/science.1170116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells[J] Nature. 2011;473(7347):394–397. doi: 10.1038/nature10102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos[J] Science. 2011;334(6053):194. doi: 10.1126/science.1212483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate[J] Nature. 2009;462(7274):739–44. doi: 10.1038/nature08617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics[J] Trends Genet. 2000;16(4):168–174. doi: 10.1016/s0168-9525(99)01971-x. [DOI] [PubMed] [Google Scholar]
  • 9.Jones PA, Baylin SB. The epigenomics of cancer[J] Cell. 2007;128(4):683–692. doi: 10.1016/j.cell.2007.01.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Corces-Zimmerman MR, Hong WJ, Weissman IL, et al. Preleu-kemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission[J] Proc Natl Acad Sci U S A. 2014;111(7):2548–2553. doi: 10.1073/pnas.1324297111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma[J] N Engl J Med. 2012;366(1):95–96. doi: 10.1056/NEJMc1111708. [DOI] [PubMed] [Google Scholar]
  • 12.Li KK, Luo LF, Shen Y, et al. DNA methyltransferases in hematologic malignancies[J] Semin Hematol. 2013;50(1):48–60. doi: 10.1053/j.seminhematol.2013.01.005. [DOI] [PubMed] [Google Scholar]
  • 13.Roller A, Grossmann V, Bacher U, et al. Landmark analysis of DNMT3A mutations in hematological malignancies[J] Leukemia. 2013;27(7):1573–1578. doi: 10.1038/leu.2013.65. [DOI] [PubMed] [Google Scholar]
  • 14.Russler-Germain DA, Spencer DH, Young MA, et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers[J] Cancer Cell. 2014;25(4):442–454. doi: 10.1016/j.ccr.2014.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Grossmann V, Haferlach C, Weissmann S, et al. The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL[J] Genes Chromosomes Cancer. 2013;52(4):410–422. doi: 10.1002/gcc.22039. [DOI] [PubMed] [Google Scholar]
  • 16.Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia[J] Nature. 2014;506(7488):328–333. doi: 10.1038/nature13038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jan M, Snyder TM, Corces-Zimmerman MR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia[J] Sci Transl Med. 2012;4(149):149ra118. doi: 10.1126/scitranslmed.3004315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation[J] Nat Genet. 2012;44(1):23–31. doi: 10.1038/ng.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mayle A, Yang L, Rodriguez B, et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation[J] Blood. 2015;125(4):629–638. doi: 10.1182/blood-2014-08-594648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ferreira HJ, Heyn H, Vizoso M, et al. DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia[J] Oncogene. 2015 doi: 10.1038/onc.2015.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Challen GA, Sun D, Mayle A, et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells[J] Cell Stem Cell. 2014;15(3):350–364. doi: 10.1016/j.stem.2014.06.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Niederwieser C, Kohlschmidt J, Volinia S, et al. Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia[J] Leukemia. 2015;29(3):567–575. doi: 10.1038/leu.2014.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Schulze I, Rohde C, Scheller-Wendorff M, et al. Increased DNA methylation of Dnmt3b targets impairs leukemogenesis[J] Blood. 2016;127(12):1575–1586. doi: 10.1182/blood-2015-07-655928. [DOI] [PubMed] [Google Scholar]
  • 24.Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers[J] N Engl J Med. 2009;360(22):2289–2301. doi: 10.1056/NEJMoa0810069. [DOI] [PubMed] [Google Scholar]
  • 25.Itzykson R, Kosmider O, Renneville A, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia[J] J Clin Oncol. 2013;31(19):2428–2436. doi: 10.1200/JCO.2012.47.3314. [DOI] [PubMed] [Google Scholar]
  • 26.Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation[J] Cancer Cell. 2011;20(1):11–24. doi: 10.1016/j.ccr.2011.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Quivoron C, Couronné L, Della VV, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis[J] Cancer Cell. 2011;20(1):25–38. doi: 10.1016/j.ccr.2011.06.003. [DOI] [PubMed] [Google Scholar]
  • 28.Ko M, Bandukwala HS, An J, et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice[J] Proc Natl Acad Sci U S A. 2011;108(35):14566–14571. doi: 10.1073/pnas.1112317108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis[J] Genes Dev. 2015;29(9):910–922. doi: 10.1101/gad.260174.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Chen E, Schneider RK, Breyfogle LJ, et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms[J] Blood. 2015;125(2):327–335. doi: 10.1182/blood-2014-04-567024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Kameda T, Shide K, Yamaji T, et al. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator[J] Blood. 2015;125(2):304–315. doi: 10.1182/blood-2014-04-555508. [DOI] [PubMed] [Google Scholar]
  • 32.Lobry C, Ntziachristos P, Ndiaye-Lobry D, et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation[J] J Exp Med. 2013;210(2):301–319. doi: 10.1084/jem.20121484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Zhao Z, Chen L, Dawlaty MM, et al. Combined Loss of Tet1 and Tet2 Promotes B Cell, but Not Myeloid Malignancies, in Mice[J] Cell Rep. 2015;13(8):1692–704. doi: 10.1016/j.celrep.2015.10.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Scourzic L, Couronné L, Pedersen MT, et al. DNMT3AR882H mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice[J] Leukemia. 2016 doi: 10.1038/leu.2016.29. [Epub ahead of print] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J] N Engl J Med. 2013;368(22):2059–2074. doi: 10.1056/NEJMoa1301689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J] Cancer Cell. 2010;18(6):553–67. doi: 10.1016/j.ccr.2010.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Chaturvedi A, Araujo CMM, Jyotsana N, et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML[J] Blood. 2013;122(16):2877–2887. doi: 10.1182/blood-2013-03-491571. [DOI] [PubMed] [Google Scholar]
  • 38.Chen C, Liu Y, Lu C, et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition[J] Genes Dev. 2013;27(18):1974–1985. doi: 10.1101/gad.226613.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Kats LM, Reschke M, Taulli R, et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance[J] Cell Stem Cell. 2014;14(3):329–341. doi: 10.1016/j.stem.2013.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Ogawara Y, Katsumoto T, Aikawa Y, et al. IDH2 and NPM1 Mutations Cooperate to Activate Hoxa9/Meis1 and Hypoxia Pathways in Acute Myeloid Leukemia[J] Cancer Res. 2015;75(10):2005–2016. doi: 10.1158/0008-5472.CAN-14-2200. [DOI] [PubMed] [Google Scholar]
  • 41.Navada SC, Steinmann J, Lübbert M, et al. Clinical development of demethylating agents in hematology[J] J Clin Invest. 2014;124(1):40–46. doi: 10.1172/JCI69739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Huls G. Azacitidine in AML: a treatment option?[J] Blood. 2015;126(3):283–284. doi: 10.1182/blood-2015-06-648071. [DOI] [PubMed] [Google Scholar]
  • 43.He J, Xiu L, De Porre P, et al. Decitabine reduces transfusion dependence in older patients with acute myeloid leukemia: results from a post hoc analysis of a randomized phase III study[J] Leuk Lymphoma. 2015;56(4):1033–1042. doi: 10.3109/10428194.2014.951845. [DOI] [PubMed] [Google Scholar]
  • 44.Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies[J] Leukemia. 2014;28(9):1774–1783. doi: 10.1038/leu.2014.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Traina F, Visconte V, Elson P, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms[J] Leukemia. 2014;28(1):78–87. doi: 10.1038/leu.2013.269. [DOI] [PubMed] [Google Scholar]
  • 46.Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation[J] Blood. 2013;121(23):4655–4662. doi: 10.1182/blood-2013-01-480228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Blum W, Schwind S, Tarighat SS, et al. Clinical and pharmaco-dynamic activity of bortezomib and decitabine in acute myeloid leukemia[J] Blood. 2012;119(25):6025–6031. doi: 10.1182/blood-2012-03-413898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Issa JP, Garcia-Manero G, Huang X, et al. Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia[J] Cancer. 2015;121(4):556–561. doi: 10.1002/cncr.29085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Prebet T, Sun Z, Figueroa ME, et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905[J] J Clin Oncol. 2014;32(12):1242–1248. doi: 10.1200/JCO.2013.50.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kantarjian HM, Jabbour E, Yee K, et al. First clinical results of a randomized phase 2 study of SGI-110, a novel subcutaneous (SQ) hypomethylating agent (HMA), in adult patients with acute myeloid leukemia (AML) Blood. 2013;122(21):497. [Google Scholar]
  • 51.Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation[J] Science. 2013;340(6132):622–626. doi: 10.1126/science.1234769. [DOI] [PubMed] [Google Scholar]
  • 52.Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia[J] Nat Med. 2015;21(2):178–184. doi: 10.1038/nm.3788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity[J] Nature. 2014;512(7514):324–327. doi: 10.1038/nature13387. [DOI] [PubMed] [Google Scholar]
  • 54.Greer EL, Blanco MA, Gu L, et al. DNA Methylation on N6-Adenine in C. elegans[J] Cell. 161(4):868–878. doi: 10.1016/j.cell.2015.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Guo H, Zhu P, Wu X, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[J] Genome Res. 2013;23(12):2126–2135. doi: 10.1101/gr.161679.113. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES