Skip to main content
Journal of Clinical Medicine logoLink to Journal of Clinical Medicine
editorial
. 2020 Jun 7;9(6):1767. doi: 10.3390/jcm9061767

Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches

Charat Thongprayoon 1, Panupong Hansrivijit 2, Tarun Bathini 3, Saraschandra Vallabhajosyula 4, Poemlarp Mekraksakit 5, Wisit Kaewput 6, Wisit Cheungpasitporn 7,*
PMCID: PMC7355827  PMID: 32517295

Abstract

Cardiac surgery-associated AKI (CSA-AKI) is common after cardiac surgery and has an adverse impact on short- and long-term mortality. Early identification of patients at high risk of CSA-AKI by applying risk prediction models allows clinicians to closely monitor these patients and initiate effective preventive and therapeutic approaches to lessen the incidence of AKI. Several risk prediction models and risk assessment scores have been developed for CSA-AKI. However, the definition of AKI and the variables utilized in these risk scores differ, making general utility complex. Recently, the utility of artificial intelligence coupled with machine learning, has generated much interest and many studies in clinical medicine, including CSA-AKI. In this article, we discussed the evolution of models established by machine learning approaches to predict CSA-AKI.

Keywords: acute kidney injury, AKI, cardiac surgery, machine learning, artificial intelligence, nephrology

1. Introduction

Acute kidney injury (AKI) is a common and serious complication after cardiac surgery related to a complex set of exposures, including cardiopulmonary bypass, tissue damage, cardiac dysfunction, and hemolysis [1,2,3,4,5]. Depending on the definition, patient characteristics, and the type of cardiac surgery, the incidence of cardiac surgery-associated AKI (CSA-AKI) varies between 7% and 40%, Table 1 [6,7,8,9,10,11,12]. The incremental index hospitalization cost associated with CSA-AKI is higher than USD 1 billion in the United States [13]. The development of CSA-AKI has a dramatic impact on intensive care unit (ICU) and hospital length of stay as well as on short- and long-term mortality [14,15,16,17,18,19]. In patients with CSA-AKI requiring dialysis, mortality (at hospital discharge or 30-day mortality) can be as high as 60% to 70% [20]. Risk of end-stage kidney disease (ESKD) after cardiac surgery is also substantial, especially in patients with Acute Kidney Injury Network (AKIN) stage 2 or 3 AKI, with a hazard ratio of 3.8 to develop ESKD compared with all patients [21].

Table 1.

Incidence of acute kidney injury following cardiac procedures and surgeries.

Cardiac Surgery Incidence of AKI Dialysis-Requiring AKI Reference(s)
CABG (off-pump) 4.0–19.1% 2.4% [22,23,24]
CABG (on-pump) 22.2–32.1% 1.1% [23,24]
TAVR (mixed) 7.1–28% 1.0–2.8% [25,26,27,28,29]
TAVR, transfemoral 18.0% N/A [30,31]
TAVR, transapical 38.0% N/A [30,31]
SAVR 12.1–29.7% 3.0–4.1% [26,27,32,33]
MVR, surgical 19.4% 2.8% [33]
MV repair, percutaneous 18.0% 0% [34]
Heart transplant 47.1% 11.8% [35]
Combined valvular surgery and CABG 4.8% N/A [36]
LVAD 24.9% 12.6% [37]
Prophylactic IABP placement 5.2–10.3% 0.0–0.9% [38,39,40]
Aortic repair, open 14.1–42.8% N/A [41,42]
Aortic repair, endovascular 3.7–27.1% N/A [41,42]
ECMO 62.8% 44.9% [43,44]

CABG, coronary artery bypass graft; ECMO, extracorporeal membrane oxygenation; IABP, intra-aortic balloon pump; LVAD, left-ventricular assist device; MVR, mitral valve replacement; SAVR, surgical aortic valve replacement; TAVR, transcatheter aortic valve replacement.

Several risk factors have been identified that are associated with an increased risk to develop CSA-AKI, including female sex, advanced age, left ventricular ejection fraction less than 35%, comorbidities (diabetes, hypertension, hypercholesterolemia, peripheral vascular disease, chronic obstructive pulmonary disease, congestive heart failure), preexisting chronic kidney disease (CKD), previous cardiac surgery, intraoperative (use of an intra-aortic balloon pump, more extended cardiopulmonary bypass (CPB) and prolonged aortic cross-clamping), severe bleeding requiring transfusion of blood products, a requirement for potent vasopressors, prolonged hypotension, and low cardiac output syndrome, systemic inflammatory response syndrome, more complex cardiac disease such as left main coronary disease, complex cardiac operations, and emergency surgery. Perioperative administration of nephrotoxic agents, such as angiotensin-converting enzyme inhibitors, aminoglycoside antibiotics, loop diuretics, or contrast media, may increase the risk of developing a CSA-AKI, Table 2 [20,45,46,47].

Table 2.

Risk predictors for acute kidney injury following cardiac procedures and surgeries from multivariate analysis.

Operative Status Risk Factor Subject Odds Ratio (95% CI) Reference(s)
Pre-operative Age CABG 1.016 (1.002–1.030) [48]
Cardiac surgery 4.870 (3.500–6.240) [49]
BMI (kg/m2) SAVR 1.032 (1.007–1.057) [50]
Diabetes CABG 1.360 (1.022–1.809) [48]
Cardiac surgery 1.520 (1.070–2.160) [49]
CKD TAVR 3.530 (1.940–6.440) [51]
NYHA class III/IV Cardiac surgery 2.530 (1.320–4.860) [49]
Hypertension Cardiac surgery 1.680 (1.440–1.970) [49]
PVD Cardiac surgery 1.310 (1.090–1.570) [49]
Emergency surgery Cardiac surgery 4.760 (3.050–7.430) [49]
Intra-operative On-pump CABG 2.630 (1.543–4.483) [48]
RBC transfusion CABG 2.154 (1.237–3.753) [48]
SAVR 1.094 (1.006–1.191) [50]
CPB time Cardiac surgery 33.780 (23.150–44.410) [49]
Aortic clamping time Cardiac surgery 13.240 (7.780–18.690) [49]
Use of IABP Cardiac surgery 4.440 (2.370–8.300) [49]
Post-operative Prolonged mechanical ventilation CABG 2.697 (1.0240–7.071) [48]
Infection Cardiac surgery 3.580 (1.430–8.970) [49]
Redo operation Cardiac surgery 2.570 (1.750–3.780) [49]
Low cardiac output Cardiac surgery 2.300 (1,050–5.040) [49]
Protective eGFR (per 10 mL/min/1.73m2) TAVR 0.780 (0.680–0.870) [25]
Opium abuse CABG 0.630 (0.409–0.921) [48]

BMI, body mass index; CABG, coronary artery bypass graft; CKD, chronic kidney disease; CPB, cardiopulmonary bypass; eGFR, estimated glomerular filtration rate; IABP, intra-aortic balloon pump; NYHA, New York Heart Association; PVD, peripheral vascular disease; RBC, red blood cell; SAVR, surgical aortic valve replacement; TAVR, transcatheter aortic valve replacement.

Attempts to improve AKI’s clinical outcomes have centered on early diagnosis and customized treatment [52]. Early identification of patients at high risk of CSA-AKI by applying risk prediction models allows clinicians to closely monitor these patients and start effective preventive and therapeutic approaches to lessen the incidence of AKI. Several AKI risk prediction models have been developed [14,16,17,53,54,55,56,57,58,59]. Risk assessment scores have been developed for CSA-AKI [14,16,17,53,54,55,56,57,58,59,60]. The Thakar Score [53], Mehta score [14], and Simplified Renal Index score [16] have been validated for predicting severe AKI that requires renal replacement therapy. The Thakar model has been examined comprehensively and found to have great discriminations. Nonetheless, dialysis events are uncommon, restricting the utility of these risk scores to prognosticate patients who do not need renal replacement therapy. Moreover, the definition of AKI and the variables utilized in these risk scores differ, making general utility complex [55]. Most of these risk scores are based on clinical factors that are accessible in the preoperative setting. These are helpful for risk stratification and counseling of patients. Nonetheless, perioperative events, including prolonged bypass, blood loss, and transfusion, can negatively influence the risk for CSA-AKI.

2. Predicting CSA-AKI by Machine Learning

The model established by machine learning approaches can effectuate early dynamic monitoring based on the actual objective data of all patients and conserve the time of clinicians. [61,62,63,64]. The rise of machine learning is driven by the ability to process “big data” and the need to deliver the best possible value- and evidence-based care. The utility of artificial intelligence (AI) coupled with machine learning, has generated much interest and many studies in clinical medicine [61,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79]. The machine learning approach has been developed recently for advantages in performance and extensibility and has become indispensable for solving complex problems in most sciences [80,81,82]. This method is used to examine postoperative outcomes [83,84,85,86] and predict hypotension [87,88] and the depth of anesthesia [89,90,91,92,93,94]. Machine learning has also been applied in the fields of intensive care unit medicine [95], emergency medicine [96], and neuroimaging [97].

With the notable extension of the application of electronic health records (EHRs) in the area of big data [98,99,100], a substantial amount of EHR data and machine learning algorithms have advanced to fulfill an essential role in the clinical study of AKI. It is presently a relevant tool for AKI diagnosis and prediction [64]. The establishment of an AI-based clinical decision support systems (CDSS) based on a self-learning predictive model may be utilized for monitoring AKI among hospitalized patients in prospective clinical practice [101]. Compared with conventional analysis methods, recent studies have suggested that some machine learning algorithms may reach greater accuracy than the conventional logistic regression models [75,102,103]. Studies have shown that machine learning can predict AKI after general surgery, liver transplant, cardiac surgery, hepatectomy, severe burns, sepsis, and percutaneous coronary intervention [75,104,105,106,107,108,109,110]. Utilizing data from more than 700,000 subjects from multi-centers and stratified by an interval window of 6 hours, a recurrent neural network-based risk prediction model for AKI (AUC of 0.92] was verified [111]. AKI episodes were prognosticated within a 48-h window. Nevertheless, the area under the precision-recall curve was only 30%, which depicts a ratio of two false alerts for each actual alert [111].

Some machine learning algorithms have also been labeled as a “black box”, where there is limited insight into how the model is basing its prediction [112]. This draws into inquiry how clinicians can mitigate certain risk factors in patients to make them a more suitable candidate for treatment without knowing what is influencing their outcome. Nevertheless, there are some machine learning algorithms, such as XGBoost (eXtreme Gradient Boosting), where the relative magnitude of variables in prognosticating a particular outcome can be computed and envisioned. This renders a level of insight comparable to a logistic regression model about individual risk factors and their prognostic significance [113]. A gradient boosting machine (GBM) is currently a widespread approach for predicting AKI onset [75,105,107,114]. Huang et al. [107] presented a hazard prediction model for AKI following a percutaneous coronary intervention (PCI) based on GBM. The investigation involved a substantial amount of data from 947,091 cases that underwent PCI to set a baseline model. Besides, temporal validation was conveyed with data from greater than 900,000 hospitalized patients. The AUC of the GBM model was 79% greater than the baseline linear regression model. Recently, Lee et al. [75,105] presented a prediction model for AKI following liver transplantation and cardiac surgery by several machine learning algorithms. GBM demonstrated the most reliable performance in both investigations [75,105].

In the setting of cardiac surgery, Lee et al. [75] recently used machine learning techniques to predict CSA-AKI among 2010 patients undergoing cardiac surgery based on data obtained from EHR and developed an internet-based risk estimator. In comparison with logistic regression analysis, decision tree, random forest, and support vector machine displayed comparable performance with regards to AUC. GBM method exhibited the best performance with the highest AUC (C-index 0.78, compared with the logistic regression model that had a C-index of 0.69) [75]. These patterns can accurately distinguish groups of cases with different risks, and their incorporation into clinical practice can reduce intricacies and improve outcomes of CSA-AKI.

3. Potential Directions and Future Scope

With the additional deepening of the investigation, machine learning-assisted monitoring may yield valuable upshots to AKI and lessen mortality and morbidity-associated CSA-AKI. The principal benefit of machine learning is in its capability to distribute with many features with multiple interactions and its specific focus on maximizing predictive performance. Nonetheless, the emphasis on data-driven prediction might dismiss mechanistic perception. Future studies are required to assess whether a machine learning model that combines AKI biomarkers (such as IL-18, NGAL, and KIM-1) [115,116,117,118] and EHR data perform better in predicting CSA-AKI than other commonly used models. Essential prerequisites are comprehensive databases with high-quality data and the evaluation and integration of AI into pragmatic clinical settings; hence, the understanding of AI and its applications in our profession is important for the present and prospective advancement of Nephrology.

4. Conclusions

In summary, CSA-AKI is a complex and multifaceted syndrome associated with significant morbidity and mortality. In the present era of using big data, the application of machine learning in Nephrology clinical practice to predict AKI, including CSA-AKI, holds great future promise.

Author Contributions

C.T., P.H., and W.C. drafted the manuscript. All authors gave comments on the earlier versions of the manuscript. All authors edited the manuscript and approved the final version. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Chew S.T.H., Hwang N.C. Acute kidney injury after cardiac surgery: A narrative review of the literature. J. Cardiothorac. Vasc. Anesth. 2019;33:1122–1138. doi: 10.1053/j.jvca.2018.08.003. [DOI] [PubMed] [Google Scholar]
  • 2.Sakhuja A., Kashani K., Schold J., Cheungpasitporn W., Soltesz E., Demirjian S. Hospital procedure volume does not predict acute kidney injury after coronary artery bypass grafting-a nationwide study. Clin. Kidney J. 2017;10:769–775. doi: 10.1093/ckj/sfx049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Thongprayoon C., Cheungpasitporn W., Mao M.A., Srivali N., Kittanamongkolchai W., Harrison A.M., Greason K.L., Kashani K.B. Persistent acute kidney injury following transcatheter aortic valve replacement. J. Card. Surg. 2017;32:550–555. doi: 10.1111/jocs.13200. [DOI] [PubMed] [Google Scholar]
  • 4.Thongprayoon C., Cheungpasitporn W., Srivali N., Kittanamongkolchai W., Sakhuja A., Greason K.L., Kashani K.B. The association between renal recovery after acute kidney injury and long-term mortality after transcatheter aortic valve replacement. PLoS ONE. 2017;12:e0183350. doi: 10.1371/journal.pone.0183350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Thongprayoon C., Cheungpasitporn W., Shah I.K., Kashyap R., Park S.J., Kashani K., Dillon J.J. Long-term Outcomes and Prognostic Factors for Patients Requiring Renal Replacement Therapy After Cardiac Surgery. Mayo Clin. Proc. 2015;90:857–864. doi: 10.1016/j.mayocp.2015.03.026. [DOI] [PubMed] [Google Scholar]
  • 6.Brown J.R., Kramer R.S., Coca S.G., Parikh C.R. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann. Thorac. Surg. 2010;90:1142–1148. doi: 10.1016/j.athoracsur.2010.04.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kuitunen A., Vento A., Suojaranta-Ylinen R., Pettilä V. Acute renal failure after cardiac surgery: Evaluation of the RIFLE classification. Ann. Thorac. Surg. 2006;81:542–546. doi: 10.1016/j.athoracsur.2005.07.047. [DOI] [PubMed] [Google Scholar]
  • 8.Englberger L., Suri R.M., Li Z., Casey E.T., Daly R.C., Dearani J.A., Schaff H.V. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit. Care. 2011;15:R16. doi: 10.1186/cc9960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Robert A.M., Kramer R.S., Dacey L.J., Charlesworth D.C., Leavitt B.J., Helm R.E., Hernandez F., Sardella G.L., Frumiento C., Likosky D.S. Cardiac surgery-associated acute kidney injury: A comparison of two consensus criteria. Ann. Thorac. Surg. 2010;90:1939–1943. doi: 10.1016/j.athoracsur.2010.08.018. [DOI] [PubMed] [Google Scholar]
  • 10.Thongprayoon C., Cheungpasitporn W., Thamcharoen N., Ungprasert P., Kittanamongkolchai W., Mao M.A., Sakhuja A., Greason K.L., Kashani K. Association of frailty status with acute kidney injury and mortality after transcatheter aortic valve replacement: A systematic review and meta-analysis. PLoS ONE. 2017;12:e0177157. doi: 10.1371/journal.pone.0177157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Thongprayoon C., Cheungpasitporn W., Gillaspie E.A., Greason K.L., Kashani K.B. Association of blood transfusion with acute kidney injury after transcatheter aortic valve replacement: A meta-analysis. World J. Nephrol. 2016;5:482–488. doi: 10.5527/wjn.v5.i5.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Thongprayoon C., Cheungpasitporn W., Podboy A.J., Gillaspie E.A., Greason K.L., Kashani K.B. The effects of contrast media volume on acute kidney injury after transcatheter aortic valve replacement: A systematic review and meta-analysis. J. Evid. Based Med. 2016;9:188–193. doi: 10.1111/jebm.12208. [DOI] [PubMed] [Google Scholar]
  • 13.Alshaikh H.N., Katz N.M., Gani F., Nagarajan N., Canner J.K., Kacker S., Najjar P.A., Higgins R.S., Schneider E.B. Financial impact of acute kidney injury after cardiac operations in the United States. Ann. Thorac. Surg. 2018;105:469–475. doi: 10.1016/j.athoracsur.2017.10.053. [DOI] [PubMed] [Google Scholar]
  • 14.Mehta R.H., Grab J.D., O’Brien S.M., Bridges C.R., Gammie J.S., Haan C.K., Ferguson T.B., Peterson E.D., Investigators, Society of Thoracic Surgeons National Cardiac Surgery Database Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114:2208–2216. doi: 10.1161/CIRCULATIONAHA.106.635573. [DOI] [PubMed] [Google Scholar]
  • 15.Rahmanian P.B., Filsoufi F., Castillo J.G., Zaku B., Chikwe J., Carpentier A., Adams D.H. Predicting postoperative renal failure requiring dialysis, and an analysis of long-term outcome in patients undergoing valve surgery. J. Heart Valve Dis. 2008;17:657–665. [PubMed] [Google Scholar]
  • 16.Wijeysundera D.N., Karkouti K., Dupuis J.-Y., Rao V., Chan C.T., Granton J.T., Beattie W.S. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. Jama. 2007;297:1801–1809. doi: 10.1001/jama.297.16.1801. [DOI] [PubMed] [Google Scholar]
  • 17.Chertow G.M., Levy E.M., Hammermeister K.E., Grover F., Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am. J. Med. 1998;104:343–348. doi: 10.1016/S0002-9343(98)00058-8. [DOI] [PubMed] [Google Scholar]
  • 18.Metnitz P.G., Krenn C.G., Steltzer H., Lang T., Ploder J., Lenz K., Le Gall J.-R., Druml W. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit. Care Med. 2002;30:2051–2058. doi: 10.1097/00003246-200209000-00016. [DOI] [PubMed] [Google Scholar]
  • 19.Srivastava V., D’Silva C., Tang A., Sogliani F., Ngaage D.L. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2012;15:14–17. doi: 10.1093/icvts/ivs106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Rosner M.H., Okusa M.D. Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2006;1:19–32. doi: 10.2215/CJN.00240605. [DOI] [PubMed] [Google Scholar]
  • 21.Rydén L., Sartipy U., Evans M., Holzmann M.J. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130:2005–2011. doi: 10.1161/CIRCULATIONAHA.114.010622. [DOI] [PubMed] [Google Scholar]
  • 22.Seabra V.F., Alobaidi S., Balk E.M., Poon A.H., Jaber B.L. Off-pump coronary artery bypass surgery and acute kidney injury: A meta-analysis of randomized controlled trials. Clin. J. Am. Soc. Nephrol. 2010;5:1734–1744. doi: 10.2215/CJN.02800310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Cheungpasitporn W., Thongprayoon C., Kittanamongkolchai W., Srivali N., O’Corragain O.A., Edmonds P.J., Ratanapo S., Spanuchart I., Erickson S.B. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: A systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton) 2015;20:727–735. doi: 10.1111/nep.12506. [DOI] [PubMed] [Google Scholar]
  • 24.Lamy A., Devereaux P.J., Prabhakaran D., Taggart D.P., Hu S., Paolasso E., Straka Z., Piegas L.S., Akar A.R., Jain A.R., et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N. Engl. J. Med. 2012;366:1489–1497. doi: 10.1056/NEJMoa1200388. [DOI] [PubMed] [Google Scholar]
  • 25.Thongprayoon C., Cheungpasitporn W., Srivali N., Kittanamongkolchai W., Greason K.L., Kashani K.B. Incidence and risk factors of acute kidney injury following transcatheter aortic valve replacement. Nephrology (Carlton) 2016;21:1041–1046. doi: 10.1111/nep.12704. [DOI] [PubMed] [Google Scholar]
  • 26.Shah K., Chaker Z., Busu T., Shah R., Osman M., Alqahtani F., Alkhouli M. Meta-Analysis Comparing Renal Outcomes after Transcatheter versus Surgical Aortic Valve Replacement. J. Interv. Cardiol. 2019;2019:3537256. doi: 10.1155/2019/3537256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Catalano M., Lin D., Cassiere H., Kohn N., Rutkin B., Maurer G., Berg J.A., Jahn J., Esposito R., Hartman A., et al. Incidence of Acute Kidney Injury in Patients with Chronic Renal Insufficiency: Transcatheter versus Surgical Aortic Valve Replacement. J. Interv. Cardiol. 2019;2019:9780415. doi: 10.1155/2019/9780415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Cheungpasitporn W., Thongprayoon C., Kashani K. Transcatheter Aortic Valve Replacement: A Kidney’s Perspective. J. Ren. Inj. Prev. 2016;5:1–7. doi: 10.15171/jrip.2016.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Thongprayoon C., Cheungpasitporn W., Srivali N., Ungprasert P., Kittanamongkolchai W., Greason K.L., Kashani K.B. Acute kidney injury after transcatheter aortic valve replacement: A systematic review and meta-analysis. Am. J. Nephrol. 2015;41:372–382. doi: 10.1159/000431337. [DOI] [PubMed] [Google Scholar]
  • 30.Thongprayoon C., Cheungpasitporn W., Srivali N., Harrison A.M., Kittanamongkolchai W., Greason K.L., Kashani K.B. Transapical versus transfemoral approach and risk of acute kidney injury following transcatheter aortic valve replacement: A propensity-adjusted analysis. Ren. Fail. 2017;39:13–18. doi: 10.1080/0886022X.2016.1244072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Thongprayoon C., Cheungpasitporn W., Gillaspie E.A., Greason K.L., Kashani K.B. The risk of acute kidney injury following transapical versus transfemoral transcatheter aortic valve replacement: A systematic review and meta-analysis. Clin. Kidney J. 2016;9:560–566. doi: 10.1093/ckj/sfw055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Thongprayoon C., Cheungpasitporn W., Srivali N., Harrison A.M., Gunderson T.M., Kittanamongkolchai W., Greason K.L., Kashani K.B. AKI after Transcatheter or Surgical Aortic Valve Replacement. J. Am. Soc. Nephrol. 2016;27:1854–1860. doi: 10.1681/ASN.2015050577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Thongprayoon C., Cheungpasitporn W., Lin J., Mao M.A., Qian Q. Acute kidney injury in octogenarians after heart valve replacement surgery: A study of two periods over the last decade. Clin. Kidney J. 2017;10:648–654. doi: 10.1093/ckj/sfx016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Spieker M., Hellhammer K., Katsianos S., Wiora J., Zeus T., Horn P., Kelm M., Westenfeld R. Effect of Acute Kidney Injury After Percutaneous Mitral Valve Repair on Outcome. Am. J. Cardiol. 2018;122:316–322. doi: 10.1016/j.amjcard.2018.03.358. [DOI] [PubMed] [Google Scholar]
  • 35.Thongprayoon C., Lertjitbanjong P., Hansrivijit P., Crisafio A., Mao M.A., Watthanasuntorn K., Aeddula N.R., Bathini T., Kaewput W., Cheungpasitporn W. Acute Kidney Injury in Patients Undergoing Cardiac Transplantation: A Meta-Analysis. Medicines (Basel) 2019;6:108. doi: 10.3390/medicines6040108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ramos K.A., Dias C.B. Acute Kidney Injury after Cardiac Surgery in Patients Without Chronic Kidney Disease. Braz. J. Cardiovasc. Surg. 2018;33:454–461. doi: 10.21470/1678-9741-2018-0084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Thongprayoon C., Lertjitbanjong P., Cheungpasitporn W., Hansrivijit P., Fülöp T., Kovvuru K., Kanduri S.R., Davis P.W., Vallabhajosyula S., Bathini T., et al. Incidence and impact of acute kidney injury on patients with implantable left ventricular assist devices: a Meta-analysis. Ren Fail. 2020;42:495–512. doi: 10.1080/0886022X.2020.1768116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wang J., Yu W., Gao M., Gu C., Yu Y. Preoperative Prophylactic Intraaortic Balloon Pump Reduces the Incidence of Postoperative Acute Kidney Injury and Short-Term Death of High-Risk Patients Undergoing Coronary Artery Bypass Grafting: A Meta-Analysis of 17 Studies. Ann. Thorac. Surg. 2016;101:2007–2019. doi: 10.1016/j.athoracsur.2015.10.078. [DOI] [PubMed] [Google Scholar]
  • 39.Ding W., Ji Q., Wei Q., Shi Y., Ma R., Wang C. Prophylactic application of an intra-aortic balloon pump in high-risk patients undergoing off-pump coronary artery bypass grafting. Cardiology. 2015;131:109–115. doi: 10.1159/000377720. [DOI] [PubMed] [Google Scholar]
  • 40.Shi M., Huang J., Pang L., Wang Y. Preoperative insertion of an intra-aortic balloon pump improved the prognosis of high-risk patients undergoing off-pump coronary artery bypass grafting. J. Int. Med. Res. 2011;39:1163–1168. doi: 10.1177/147323001103900404. [DOI] [PubMed] [Google Scholar]
  • 41.Nonaka T., Kimura N., Hori D., Sasabuchi Y., Nakano M., Yuri K., Sanui M., Matsumoto H., Yamaguchi A. Predictors of Acute Kidney Injury Following Elective Open and Endovascular Aortic Repair for Abdominal Aortic Aneurysm. Ann. Vasc. Dis. 2018;11:298–305. doi: 10.3400/avd.oa.18-00029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tang Y., Chen J., Huang K., Luo D., Liang P., Feng M., Chai W., Fung E., Lan H.Y., Xu A. The incidence, risk factors and in-hospital mortality of acute kidney injury in patients after abdominal aortic aneurysm repair surgery. BMC Nephrol. 2017;18:184. doi: 10.1186/s12882-017-0594-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hansrivijit P., Lertjitbanjong P., Thongprayoon C., Cheungpasitporn W., Aeddula N.R., Salim S.A., Chewcharat A., Watthanasuntorn K., Srivali N., Mao M.A., et al. Acute Kidney Injury in Pediatric Patients on Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-analysis. Medicines (Basel) 2019;6:109. doi: 10.3390/medicines6040109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Thongprayoon C., Cheungpasitporn W., Lertjitbanjong P., Aeddula N.R., Bathini T., Watthanasuntorn K., Srivali N., Mao M.A., Kashani K. Incidence and Impact of Acute Kidney Injury in Patients Receiving Extracorporeal Membrane Oxygenation: A Meta-Analysis. J. Clin. Med. 2019;8:981. doi: 10.3390/jcm8070981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Coleman M.D., Shaefi S., Sladen R.N. Preventing acute kidney injury after cardiac surgery. Curr. Opin. Anaesthesiol. 2011;24:70–76. doi: 10.1097/ACO.0b013e3283422ebc. [DOI] [PubMed] [Google Scholar]
  • 46.Candela-Toha A., Elías-Martín E., Abraira V., Tenorio M.T., Parise D., de Pablo A., Centella T., Liaño F. Predicting acute renal failure after cardiac surgery: External validation of two new clinical scores. Clin. J. Am. Soc. Nephrol. 2008;3:1260–1265. doi: 10.2215/CJN.00560208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Thakar C.V., Christianson A., Freyberg R., Almenoff P., Render M.L. Incidence and outcomes of acute kidney injury in intensive care units: A Veterans Administration study. Crit. Care Med. 2009;37:2552–2558. doi: 10.1097/CCM.0b013e3181a5906f. [DOI] [PubMed] [Google Scholar]
  • 48.Amini S., Najafi M.N., Karrari S.P., Mashhadi M.E., Mirzaei S., Tashnizi M.A., Moeinipour A.A., Hoseinikhah H., Aazami M.H., Jafari M. Risk Factors and Outcome of Acute Kidney Injury after Isolated CABG Surgery: A Prospective Cohort Study. Braz. J. Cardiovasc. Surg. 2019;34:70–75. doi: 10.21470/1678-9741-2017-0209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Yi Q., Li K., Jian Z., Xiao Y.B., Chen L., Zhang Y., Ma R.Y. Risk Factors for Acute Kidney Injury after Cardiovascular Surgery: Evidence from 2,157 Cases and 49,777 Controls—A Meta-Analysis. Cardiorenal Med. 2016;6:237–250. doi: 10.1159/000444094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Najjar M., Yerebakan H., Sorabella R.A., Donovan D.J., Kossar A.P., Sreekanth S., Kurlansky P., Borger M.A., Argenziano M., Smith C.R., et al. Acute kidney injury following surgical aortic valve replacement. J. Card. Surg. 2015;30:631–639. doi: 10.1111/jocs.12586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Wang J., Yu W., Zhou Y., Yang Y., Li C., Liu N., Hou X., Wang L. Independent Risk Factors Contributing to Acute Kidney Injury According to Updated Valve Academic Research Consortium-2 Criteria After Transcatheter Aortic Valve Implantation: A Meta-analysis and Meta-regression of 13 Studies. J. Cardiothorac Vasc. Anesth. 2017;31:816–826. doi: 10.1053/j.jvca.2016.12.021. [DOI] [PubMed] [Google Scholar]
  • 52.Thongprayoon C., Hansrivijit P., Kovvuru K., Kanduri S.R., Torres-Ortiz A., Acharya P., Gonzalez-Suarez M.L., Kaewput W., Bathini T., Cheungpasitporn W. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm. J. Clin. Med. 2020;9:1104. doi: 10.3390/jcm9041104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Thakar C.V., Arrigain S., Worley S., Yared J.-P., Paganini E.P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 2005;16:162–168. doi: 10.1681/ASN.2004040331. [DOI] [PubMed] [Google Scholar]
  • 54.Aronson S., Fontes M.L., Miao Y., Mangano D. Risk index for perioperative renal dysfunction/failure. Circulation. 2007;115:733–742. doi: 10.1161/CIRCULATIONAHA.106.623538. [DOI] [PubMed] [Google Scholar]
  • 55.Birnie K., Verheyden V., Pagano D., Bhabra M., Tilling K., Sterne J.A., Murphy G.J. Predictive models for kidney disease: Improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit. Care. 2014;18:606. doi: 10.1186/s13054-014-0606-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Jorge-Monjas P., Bustamante-Munguira J., Lorenzo M., Heredia-Rodríguez M., Fierro I., Gómez-Sánchez E., Hernandez A., Álvarez F.J., Bermejo-Martin J.F., Gómez-Pesquera E. Predicting cardiac surgery–associated acute kidney injury: The CRATE score. J. Crit. Care. 2016;31:130–138. doi: 10.1016/j.jcrc.2015.11.004. [DOI] [PubMed] [Google Scholar]
  • 57.Wong B., St. Onge J., Korkola S., Prasad B. Validating a scoring tool to predict acute kidney injury (AKI) following cardiac surgery. Can. J. Kidney Health Dis. 2015;2:37. doi: 10.1186/s40697-015-0037-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Huen S.C., Parikh C.R. Predicting acute kidney injury after cardiac surgery: A systematic review. Ann. Thorac. Surg. 2012;93:337–347. doi: 10.1016/j.athoracsur.2011.09.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Englberger L., Suri R.M., Li Z., Dearani J.A., Park S.J., Sundt T.M., III, Schaff H.V. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 2010;56:623–631. doi: 10.1053/j.ajkd.2010.04.017. [DOI] [PubMed] [Google Scholar]
  • 60.Nah C.W., Ti L.K., Liu W., Ng R.R.G., Shen L., Chew S.T.H. A clinical score to predict acute kidney injury after cardiac surgery in a Southeast-Asian population. Interact. Cardiovasc. Thorac. Surg. 2016;23:757–761. doi: 10.1093/icvts/ivw227. [DOI] [PubMed] [Google Scholar]
  • 61.Li Q., Fan Q.-L., Han Q.-X., Geng W.-J., Zhao H.-H., Ding X.-N., Yan J.-Y., Zhu H.-Y. Machine learning in nephrology: Scratching the surface. Chin. Med. J. 2020:687–698. doi: 10.1097/CM9.0000000000000694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Molitoris B.A. Beyond Biomarkers: Machine Learning in Diagnosing Acute Kidney Injury. Mayo Clin. Proc. 2019;94:748–750. doi: 10.1016/j.mayocp.2019.03.017. [DOI] [PubMed] [Google Scholar]
  • 63.Chiofolo C., Chbat N., Ghosh E., Eshelman L., Kashani K. Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model. Mayo Clin. Proc. 2019;94:783–792. doi: 10.1016/j.mayocp.2019.02.009. [DOI] [PubMed] [Google Scholar]
  • 64.Sutherland S.M., Goldstein S.L., Bagshaw S.M. Acute Kidney Injury and Big Data. Contrib. Nephrol. 2018;193:55–67. doi: 10.1159/000484963. [DOI] [PubMed] [Google Scholar]
  • 65.Rajkomar A., Dean J., Kohane I. Machine Learning in Medicine. N. Engl. J. Med. 2019;380:1347–1358. doi: 10.1056/NEJMra1814259. [DOI] [PubMed] [Google Scholar]
  • 66.Baxter R.D., Fann J.I., DiMaio J.M., Lobdell K. Digital Health Primer for Cardiothoracic Surgeons. Ann. Thorac. Surg. 2020 doi: 10.1016/j.athoracsur.2020.02.072. [DOI] [PubMed] [Google Scholar]
  • 67.Chae D. Data Science and Machine Learning in Anesthesiology. Korean J. Anesthesiol. 2020 doi: 10.4097/kja.20124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Yuan Q., Zhang H., Deng T., Tang S., Yuan X., Tang W., Xie Y., Ge H., Wang X., Zhou Q., et al. Role of Artificial Intelligence in Kidney Disease. Int. J. Med. Sci. 2020;17:970–984. doi: 10.7150/ijms.42078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Sanchez-Pinto L.N., Venable L.R., Fahrenbach J., Churpek M.M. Comparison of variable selection methods for clinical predictive modeling. Int J. Med. Inf. 2018;116:10–17. doi: 10.1016/j.ijmedinf.2018.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Yin W.J., Yi Y.H., Guan X.F., Zhou L.Y., Wang J.L., Li D.Y., Zuo X.C. Preprocedural Prediction Model for Contrast-Induced Nephropathy Patients. J. Am. Heart Assoc. 2017:6. doi: 10.1161/JAHA.116.004498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Tang C.Q., Li J.Q., Xu D.Y., Liu X.B., Hou W.J., Lyu K.Y., Xiao S.C., Xia Z.F. Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients. Zhonghua Shao Shang Za Zhi. 2018;34:343–348. doi: 10.3760/cma.j.issn.1009-2587.2018.06.006. [DOI] [PubMed] [Google Scholar]
  • 72.Zimmerman L.P., Reyfman P.A., Smith A.D.R., Zeng Z., Kho A., Sanchez-Pinto L.N., Luo Y. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med. Inf. Decis. Mak. 2019;19:16. doi: 10.1186/s12911-019-0733-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Goldstein B.A., Navar A.M., Carter R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur. Heart J. 2017;38:1805–1814. doi: 10.1093/eurheartj/ehw302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Szlosek D.A., Ferrett J. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems. EGEMS (Wash DC) 2016;4:1222. doi: 10.13063/2327-9214.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Lee H.C., Yoon H.K., Nam K., Cho Y.J., Kim T.K., Kim W.H., Bahk J.H. Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery. J. Clin. Med. 2018;7:322. doi: 10.3390/jcm7100322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Rau C.-S., Wu S.-C., Chuang J.-F., Huang C.-Y., Liu H.-T., Chien P.-C., Hsieh C.-H. Machine learning models of survival prediction in trauma patients. J. Clin. Med. 2019;8:799. doi: 10.3390/jcm8060799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Chicco D., Jurman G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med. Inform. Decis. Mak. 2020;20:16. doi: 10.1186/s12911-020-1023-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Cao Y., Fang X., Ottosson J., Näslund E., Stenberg E. A Comparative Study of Machine Learning Algorithms in Predicting Severe Complications after Bariatric Surgery. J. Clin. Med. 2019;8:668. doi: 10.3390/jcm8050668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Lin K., Hu Y., Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J. Med. Inf. 2019;125:55–61. doi: 10.1016/j.ijmedinf.2019.02.002. [DOI] [PubMed] [Google Scholar]
  • 80.Shorten G., Srinivasan K.K., Reinertsen I. Machine learning and evidence-based training in technical skills. Br. J. Anaesth. 2018;121:521–523. doi: 10.1016/j.bja.2018.04.012. [DOI] [PubMed] [Google Scholar]
  • 81.Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452–459. doi: 10.1038/nature14541. [DOI] [PubMed] [Google Scholar]
  • 82.Quax S., van Gerven M. Emergent mechanisms of evidence integration in recurrent neural networks. PLoS ONE. 2018:13. doi: 10.1371/journal.pone.0205676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Voglis S., van Niftrik C.H.B., Staartjes V.E., Brandi G., Tschopp O., Regli L., Serra C. Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery. Pituitary. 2020 doi: 10.1007/s11102-020-01056-w. Epub ahead of print. [DOI] [PubMed] [Google Scholar]
  • 84.Lee C.K., Hofer I., Gabel E., Baldi P., Cannesson M. Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology. 2018;129:649. doi: 10.1097/ALN.0000000000002186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Olsen R.M., Aasvang E.K., Meyhoff C.S., Sorensen H.B.D. Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Comput. Biol. Med. 2018;101:15–21. doi: 10.1016/j.compbiomed.2018.07.018. [DOI] [PubMed] [Google Scholar]
  • 86.Meiring C., Dixit A., Harris S., MacCallum N.S., Brealey D.A., Watkinson P.J., Jones A., Ashworth S., Beale R., Brett S.J. Optimal intensive care outcome prediction over time using machine learning. PLoS ONE. 2018;13:e0206862. doi: 10.1371/journal.pone.0206862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Hatib F., Jian Z., Buddi S., Lee C., Settels J., Sibert K., Rinehart J., Cannesson M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiol. J. Am. Soc. Anesthesiol. 2018;129:663–674. doi: 10.1097/ALN.0000000000002300. [DOI] [PubMed] [Google Scholar]
  • 88.Kendale S., Kulkarni P., Rosenberg A.D., Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiol. J. Am. Soc. Anesthesiol. 2018;129:675–688. doi: 10.1097/ALN.0000000000002374. [DOI] [PubMed] [Google Scholar]
  • 89.Lee H.-C., Ryu H.-G., Chung E.-J., Jung C.-W. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil. Anesthesiology. 2018;128:492–501. doi: 10.1097/ALN.0000000000001892. [DOI] [PubMed] [Google Scholar]
  • 90.Peker M., Şen B., Gürüler H. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks. J. Med. Syst. 2015;39:18. doi: 10.1007/s10916-015-0197-3. [DOI] [PubMed] [Google Scholar]
  • 91.Nagaraj S.B., Biswal S., Boyle E.J., Zhou D.W., McClain L.M., Bajwa E.K., Quraishi S.A., Oluwaseun A., Barbieri R., Purdon P.L. Patient-specific classification of ICU sedation levels from heart rate variability. Crit. Care Med. 2017;45:e683. doi: 10.1097/CCM.0000000000002364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Shalbaf R., Behnam H., Sleigh J.W., Steyn-Ross A., Voss L.J. Monitoring the depth of anesthesia using entropy features and an artificial neural network. J. Neurosci. Methods. 2013;218:17–24. doi: 10.1016/j.jneumeth.2013.03.008. [DOI] [PubMed] [Google Scholar]
  • 93.Shalbaf A., Shalbaf R., Saffar M., Sleigh J. Monitoring the level of hypnosis using a hierarchical SVM system. J. Clin. Monit. Comput. 2019:1–8. doi: 10.1007/s10877-019-00311-1. [DOI] [PubMed] [Google Scholar]
  • 94.Ortolani O., Conti A., Di Filippo A., Adembri C., Moraldi E., Evangelisti A., Maggini M., Roberts S. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. Br. J. Anaesth. 2002;88:644–648. doi: 10.1093/bja/88.5.644. [DOI] [PubMed] [Google Scholar]
  • 95.Hever G., Cohen L., O’Connor M.F., Matot I., Lerner B., Bitan Y. Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. J. Clin. Monit. Comput. 2019;34:339–352. doi: 10.1007/s10877-019-00307-x. [DOI] [PubMed] [Google Scholar]
  • 96.Lee S., Mohr N.M., Street W.N., Nadkarni P. Machine learning in relation to emergency medicine clinical and operational scenarios: An overview. West. J. Emerg. Med. 2019;20:219. doi: 10.5811/westjem.2019.1.41244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Abraham A., Pedregosa F., Eickenberg M., Gervais P., Mueller A., Kossaifi J., Gramfort A., Thirion B., Varoquaux G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinformatics. 2014;8:14. doi: 10.3389/fninf.2014.00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Abdul Salim S., Tran H., Thongprayoon C., Fulop T., Cheungpasitporn W. Comparison of drug-coated balloon angioplasty versus conventional angioplasty for arteriovenous fistula stenosis: Systematic review and meta-analysis. J. Vasc. Access. 2020;21:357–365. doi: 10.1177/1129729819878612. [DOI] [PubMed] [Google Scholar]
  • 99.Cheungpasitporn W., Kashani K. Electronic Data Systems and Acute Kidney Injury. Contrib. Nephrol. 2016;187:73–83. doi: 10.1159/000442367. [DOI] [PubMed] [Google Scholar]
  • 100.The L. Artificial intelligence in health care: Within touching distance. Lancet. 2018;390:2739. doi: 10.1016/s0140-6736(17)31540-4. [DOI] [PubMed] [Google Scholar]
  • 101.Laszczyńska O., Severo M., Azevedo A. Electronic Medical Record-Based Predictive Model for Acute Kidney Injury in an Acute Care Hospital. Stud. Health Technol. Inf. 2016;228:810–812. [PubMed] [Google Scholar]
  • 102.Geubbels N., de Brauw L.M., Acherman Y.I., van de Laar A.W., Bruin S.C. Risk Stratification Models: How Well do They Predict Adverse Outcomes in a Large Dutch Bariatric Cohort? Obes. Surg. 2015;25:2290–2301. doi: 10.1007/s11695-015-1699-2. [DOI] [PubMed] [Google Scholar]
  • 103.Stenberg E., Cao Y., Szabo E., Näslund E., Näslund I., Ottosson J. Risk Prediction Model for Severe Postoperative Complication in Bariatric Surgery. Obes Surg. 2018;28:1869–1875. doi: 10.1007/s11695-017-3099-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Lei L., Wang Y., Xue Q., Tong J., Zhou C.M., Yang J.J. A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection. PeerJ. 2020;8:e8583. doi: 10.7717/peerj.8583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Lee H.-C., Yoon S.B., Yang S.-M., Kim W.H., Ryu H.-G., Jung C.-W., Suh K.-S., Lee K.H. Prediction of acute kidney injury after liver transplantation: Machine learning approaches vs. logistic regression model. J. Clin. Med. 2018;7:428. doi: 10.3390/jcm7110428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Tran N.K., Sen S., Palmieri T.L., Lima K., Falwell S., Wajda J., Rashidi H.H. Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: A proof of concept. Burns. 2019;45:1350–1358. doi: 10.1016/j.burns.2019.03.021. [DOI] [PubMed] [Google Scholar]
  • 107.Huang C., Murugiah K., Mahajan S., Li S.X., Dhruva S.S., Haimovich J.S., Wang Y., Schulz W.L., Testani J.M., Wilson F.P., et al. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. PLoS Med. 2018;15:e1002703. doi: 10.1371/journal.pmed.1002703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Thottakkara P., Ozrazgat-Baslanti T., Hupf B.B., Rashidi P., Pardalos P., Momcilovic P., Bihorac A. Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications. PLoS ONE. 2016;11:e0155705. doi: 10.1371/journal.pone.0155705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Mohamadlou H., Lynn-Palevsky A., Barton C., Chettipally U., Shieh L., Calvert J., Saber N.R., Das R. Prediction of Acute Kidney Injury with a Machine Learning Algorithm Using Electronic Health Record Data. Can. J. Kidney Health Dis. 2018;5:2054358118776326. doi: 10.1177/2054358118776326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Grogan K.L., Goldsmith M.P., Masino A.J., Nelson O., Tsui F.-C., Simpao A.F. A narrative review of analytics in pediatric cardiac anesthesia and critical care medicine. J. Cardiothorac. Vasc. Anesth. 2020;34:479–482. doi: 10.1053/j.jvca.2019.06.009. [DOI] [PubMed] [Google Scholar]
  • 111.Tomašev N., Glorot X., Rae J.W., Zielinski M., Askham H., Saraiva A., Mottram A., Meyer C., Ravuri S., Protsyuk I., et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572:116–119. doi: 10.1038/s41586-019-1390-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Dorado-Díaz P.I., Sampedro-Gómez J., Vicente-Palacios V., Sánchez P.L. Applications of artificial intelligence in Cardiology. The future is already here. Rev. Española De Cardiol. (Engl. Ed) 2019;72:1065–1075. doi: 10.1016/j.recesp.2019.05.016. [DOI] [PubMed] [Google Scholar]
  • 113.Kilic A. Artificial Intelligence and Machine Learning in Cardiovascular Health Care. Ann. Thorac. Surg. 2020;109:1323–1329. doi: 10.1016/j.athoracsur.2019.09.042. [DOI] [PubMed] [Google Scholar]
  • 114.Koyner J.L., Carey K.A., Edelson D.P., Churpek M.M. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit. Care Med. 2018;46:1070–1077. doi: 10.1097/CCM.0000000000003123. [DOI] [PubMed] [Google Scholar]
  • 115.Parikh C.R., Coca S.G., Thiessen-Philbrook H., Shlipak M.G., Koyner J.L., Wang Z., Edelstein C.L., Devarajan P., Patel U.D., Zappitelli M. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J. Am. Soc. Nephrol. 2011;22:1748–1757. doi: 10.1681/ASN.2010121302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Coca S.G., Garg A.X., Thiessen-Philbrook H., Koyner J.L., Patel U.D., Krumholz H.M., Shlipak M.G., Parikh C.R. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J. Am. Soc. Nephrol. 2014;25:1063–1071. doi: 10.1681/ASN.2013070742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Arthur J.M., Hill E.G., Alge J.L., Lewis E.C., Neely B.A., Janech M.G., Tumlin J.A., Chawla L.S., Shaw A.D. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int. 2014;85:431–438. doi: 10.1038/ki.2013.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Koyner J.L., Vaidya V.S., Bennett M.R., Ma Q., Worcester E., Akhter S.A., Raman J., Jeevanandam V., O’Connor M.F., Devarajan P., et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2010;5:2154–2165. doi: 10.2215/CJN.00740110. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Medicine are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES