Skip to main content
Journal of Radiation Research logoLink to Journal of Radiation Research
. 2019 Oct 28;60(6):786–802. doi: 10.1093/jrr/rrz058

Japanese Structure Survey of Radiation Oncology in 2011

Hodaka Numasaki 1,, Teruki Teshima 2, Tetsuo Nishimura 3, Keizo Akuta 4, Yutaka Ando 5, Hiroshi Ikeda 6, Norihiko Kamikonya 7, Masahiko Koizumi 8, Tomonari Sasaki 9, Kenji Sekiguchi 10, Masao Tago 11, Atsuro Terahara 12, Katsumasa Nakamura 13, Masamichi Nishio 14, Masao Murakami 15, Yoshimasa Mori 16, Kazuhiko Ogawa 17; Japanese Society for Radiation Oncology Database Committee
PMCID: PMC7357227  PMID: 31665374

ABSTRACT

We evaluated the evolving structure of radiation oncology in Japan in terms of equipment, personnel, patient load and geographic distribution to identify and overcome any existing limitations. From March 2012 to August 2015, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2011. Data were analyzed based on the institutional stratification by the annual number of new patients treated with radiotherapy per institution. The estimated annual numbers of new and total (new plus repeat) patients treated with radiation were 211 000 and 250 000, respectively. Additionally, the estimated cancer incidence was 851 537 cases with approximately 24.8% of all newly diagnosed patients being treated with radiation. The types and numbers of treatment devices actually used included linear accelerator (LINAC; n = 836), telecobalt (n = 3), Gamma Knife (n = 46), 60Co remote afterloading system (RALS; n = 24), and 192Ir RALS (n = 125). The LINAC system used dual-energy functions in 619 units, 3D conformal radiotherapy functions in 719 and intensity-modulated radiotherapy (IMRT) functions in 412. There were 756 JRS or JASTRO-certified radiation oncologists, 1018.5 full-time equivalent (FTE) radiation oncologists, 2026.7 FTE radiotherapy technologists, 149.1 FTE medical physicists, 141.5 FTE radiotherapy quality managers and 716.3 FTE nurses. The frequency of IMRT use significantly increased during this time. To conclude, although there was a shortage of personnel in 2011, the Japanese structure of radiation oncology has clearly improved in terms of equipment and utility.

Keywords: structure survey, radiotherapy institution, radiotherapy personnel, radiotherapy equipment

PREFACE

We highly appreciate the substantial contributions of the many radiation oncologists (ROs), radiation technologists and other staff to the national structure survey of radiation oncology. Despite some delays, the updated Japanese national structure survey data of radiation oncology in 2011 is now available.

Table 2.

Number of radiotherapy institutions by scale classification and institution category

Scale category (annual number of new patients) Institution category Total Institution ratio [%]
U G N P O H
A (≤99) 5 1 11 41 32 21 111 16.0
B (100–199) 10 2 28 78 73 41 232 33.4
C (200–299) 13 2 11 46 39 24 135 19.5
D (300–399) 19 5 4 16 22 16 82 11.8
E (400–499) 17 1 3 12 7 12 52 7.5
F (≥500) 47 17 1 5 4 8 82 11.8
Total 111 28 58 198 177 122 694
Institution ratio [%] 16.0 4.0 8.4 28.5 25.5 17.6 100.0

Table 3.

Annual number of new patients by scale classification and institution category

Scale category (number of institutions) Institution category (number of institutions) Total (694) Average
U (111) G (28) N (58) P (198) O (177) H (122)
A (111) 212 75 591 2318 2342 1491 7029 63.3
B (232) 1380 244 4100 10 443 10 820 5891 32 878 141.7
C (135) 3331 575 2736 9134 11 025 5900 32 701 242.2
D (82) 6594 1825 1401 7549 5486 5576 28 431 346.7
E (52) 7679 440 1249 3049 5282 5402 23 101 444.3
F (82) 34 532 15 544 721 2649 2931 4938 61 315 747.7
Total (694) 53 728 18 703 10 798 35 142 37 886 29,198 185 455 267.2
Average 484.0 668.0 186.2 177.5 214.0 239.3 267.2

Table 4.

Annual number of total (new plus repeat) patients by scale classification and institution category

Scale category (number of institutions) Institution category (number of institutions) Total (694) Average
U (111) G (28) N (58) P (198) O (177) H (122)
A (111) 227 135 745 2757 2633 1814 8311 74.9
B (232) 1600 254 4828 12 413 11 896 7113 38 104 164.2
C (135) 3861 726 3210 13 168 10 580 7561 39 106 289.7
D (82) 7890 2202 1602 6411 9560 6805 34 470 420.4
E (52) 9493 565 1444 6227 3735 6452 27 916 536.8
F (82) 40 135 18 867 800 3,355 2987 6041 72 185 880.3
Total (694) 63 206 22 749 12 629 44 331 41 391 35 786 220 092 317.1
Average 569.4 812.5 217.7 223.9 233.8 293.3 317.1

Table 5.

Number of treatment devices and their functions by scale classification

Treatment devices and their functions Scale category (number of institutions) Total (694)
A (111) B (232) C (135) D (82) E (52) F (82)
LINAC 108 224 139 105 82 178 836
with dual energy function 56 163 108 85 62 145 619
with 3DCRT function (MLC width ≤1.0 cm) 74 180 120 98 76 171 719
with IMRT function 16 75 62 71 53 144 421
with cone beam CT or CT on rail 11 61 55 47 42 78 294
with treatment position verification system (x-ray perspective image) 22 57 56 47 39 76 297
with treatment position verification system (other than those above) 16 56 40 39 18 65 234
Annual no. patients/LINAC 77.0 170.1 281.3 328.3 340.4 405.5 263.3
CyberKnife® 2 4 2 4 2 3 17
Novalis® 1 3 4 9 6 8 31
Tomotherapy® 0 4 1 4 5 1 15
Particle 0 1 0 1 1 9 12
Microtoron 0 5 0 3 0 3 11
Telecobalt (actual use) 1 (1) 1 (2) 1 (0) 0 (0) 0 (0) 0 (0) 3 (3)
Gamma Knife® 5 10 9 8 8 6 46
Other accelerator 0 1 3 0 0 1 5
Other external irradiation device 0 1 2 0 0 4 7
New type 60Co RALS (actual use) 0 (0) 3 (3) 5 (4) 4 (4) 4 (4) 3 (3) 19 (18)
Old type 60Co RALS (actual use) 1 (0) 4 (3) 5 (2) 0 (0) 2 (1) 0 (0) 12 (6)
192Ir RALS (actual use) 1 (0) 9 (8) 15 (13) 23 (22) 21 (21) 61 (61) 130 (125)
137Cs RALS (actual use) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (0) 2 (1)

LINAC = linear accelerator, 3DCRT = 3D conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography, Co = cobalt, RALS = remote-controlled after-loading system, Ir = iridium, Cs = caesium.

Table 6.

Number of treatment planning equipment and accessories by scale classification

Treatment planning equipment and accessories Scale category (number of institutions) Total (694)
A (111) B (232) C (135) D (82) E (52) F (82)
X-ray simulator 49 96 46 41 27 61 320
CT simulator 86 206 128 85 52 97 654
RTP computer (≥2) 116 (14) 306 (51) 221 (53) 194 (46) 188 (41) 459 (77) 1484 (282)
X-ray CT (≥2) 186 (66) 526 (188) 380 (117) 274 (79) 187 (47) 434 (80) 1987 (577)
for RT only 35 127 93 71 40 91 457
MRI (≥2) 128 (25) 326 (93) 244 (99) 172 (66) 129 (46) 251 (74) 1250 (403)
for RT only 1 2 5 6 6 3 23
Computer use for RT recording 113 281 165 104 65 116 844
Water phantom (≥2) 109 (18) 266 (53) 170 (43) 112 (29) 88 (24) 171 (48) 916 (215)
Film densitometer (≥2) 32 (2) 93 (1) 70 (0) 60 (1) 50 (7) 84 (9) 389 (20)
Dosemeter (≥3) 281 (46) 759 (141) 497 (80) 362 (58) 279 (40) 540 (70) 2718 (435)

CT = computed tomography, RTP = radiotherapy planning, MRI = magnetic resonance imaging, RT = radiotherapy.

Table 7.

Number of personnel and annual patients by scale classification

Scale category (number of institutions) Total (694)
A (111) B (232) C (135) D (82) E (52) F (82)
Scale (annual no. of new patients) ≤99 100–199 200–299 300–399 400–499 ≥500
Institution ratio [%] 16.0% 33.4% 19.5% 11.8% 7.5% 11.8% 100%
New patients 7029 32 878 32 701 28 431 23 101 61 315 185 455
New patients/institution 63.3 141.7 242.2 346.7 444.3 747.7 267.2
Total patients 8311 38 104 39 106 34 470 27 916 72 185 220 092
Total patients/institution 74.9 164.2 289.7 420.4 536.8 880.3 317.1
Beds 37 008 99 656 65 101 46 505 33 805 64 075 346 150
Institutions with RT beds (%) 19 (17.1) 52 (22.4) 39 (28.9) 28 (34.1) 28 (53.8) 56 (68.3) 222 (32)
RT beds 64.5 256.5 205.0 165.5 296.0 827.7 1,815.2
RT beds/total beds (%) 0.2% 0.3% 0.3% 0.4% 0.9% 1.3% 0.5%
RT beds/institution 0.6 1.1 1.5 2.0 5.7 10.1 2.6
RT beds/institution with RT beds 3.4 4.9 5.3 5.9 10.6 14.8 8.2
JRS-certified institutions (%) 3 (2.7) 31 (13.4) 43 (31.9) 48 (58.5) 37 (71.2) 74 (90.2) 236 (34)
JRS-cooperation institutions (%) 37 (33.3) 111 (47.8) 52 (38.5) 27 (32.9) 10 (19.2) 16 (19.5) 253 (36.5)
JASTRO-certified institutions (%) 1 (0.9) 47 (20.3) 59 (43.7) 57 (69.5) 41 (78.8) 78 (95.1) 283 (40.8)
JRS membership (full time) 50 176 135 143 122 415 1041
JASTRO membership (full time) 35 160 130 132 113 415 985
JRS or JASTRO-certified ROs (full time) 22 133 115 108 86 292 756
Institutions with full time RO (%) 44 (39.6) 151 (65.1) 109 (80.7) 78 (95.1) 49 (94.2) 82 (100) 513 (73.9)
ROs (full time) 59 190 145 149 130 429 1,102
ROs (full time)/institution 0.5 0.8 1.1 1.8 2.5 5.2 1.6
FTE RO (full time) 24.4 145.0 125.3 121.9 103.1 359.4 878.9
FTE RO (full time)/institution 0.22 0.63 0.93 1.49 1.98 4.38 1.27
ROs (part time) 90 201 104 57 63 103 618
ROs (part time)/institution 0.81 0.87 0.77 0.70 1.21 1.26 0.89
FTE RO (part time) 15.2 34.8 19.3 9.6 15.0 45.8 139.6
FTE RO (part time)/institution 0.1 0.1 0.1 0.1 0.3 0.6 0.2
FTE RO (full plus part time) 39.6 179.8 144.5 131.5 118.1 405.2 1018.5
FTE RO (full plus part time)/institution 0.36 0.77 1.07 1.60 2.27 4.94 1.47
Radiologists (full time) 116.0 437.0 380.8 380.0 315.0 901.0 2,529.8
Radiologists (part time) 134.7 360.0 240.1 144.9 105.0 173.0 1157.7
RTTs (full time)* 331 800 547 415 308 696 3097
FTE RTT 156.0 470.1 334.5 286.4 228.8 551.0 2026.7
Medical physicists (full-time)* 14 71 49 66 43 104 347
FTE Medical physicist 4.4 25.2 18.5 25.2 19.0 56.9 149.1
RT quality manager (full-time)* 35 122 86 71 61 119 494
FTE RT quality manager 9.6 32.0 26.2 18.8 19.0 36.0 141.5
Dosimetrists (full-time)* 14 45 23 24 5 54 165
FTE dosimetrist 2.2 7.3 4.2 5.4 2.0 11.2 32.3
Craftworkers (full-time)* 45 101 52 32 21 62 313
FTE craftworker 7.2 15.9 8.0 5.7 1.8 7.5 46.0
Nurses (full time) 120 298 229 188 131 238 1204
FTE nurse 44.8 167.09 124.09 106.97 79.8 193.5 716.3
Nursing assistants 3.3 5.8 12.9 10.6 17 22.54 72.1
Clerks 18.9 62.4 69.25 66.9 56.4 116.9 390.8

*Overlap is included in the total number of each staff (radiotherapy technologist, medical physicist and radiotherapy quality manager).

RT = radiotherapy, JRS = Japan Radiological Society, RO = radiation oncologist, JASTRO = Japanese Society for Radiation Oncology, FTE = full-time equivalent, RTT = radiotherapy technologist.

Table 8.

Number of population, patients, institutions and patient load according to prefecture

Prefecture Population (×103) [32] Institutions New patients New patients/institution Total patients Total patients/institution
Hokkaido 5486 30 9285 309.5 11704 390.1
Aomori 1363 10 2107 210.7 2366 236.6
Iwate 1314 8 1606 200.8 2059 257.4
Miyagi 2327 12 3754 312.8 4621 385.1
Akita 1075 10 1644 164.4 2015 201.5
Yamagata 1161 6 1316 219.3 1490 248.3
Fukushima 1990 10 2726 272.6 3147 314.7
Ibaraki 2958 12 3331 277.6 4009 334.1
Tochigi 2000 9 2659 295.4 3363 373.7
Gunma 2001 14 3760 268.6 4225 301.8
Saitama 7207 20 7101 355.1 3094 404.7
Chiba 6214 23 7609 330.8 8877 386.0
Tokyo 13 196 65 23 627 363.5 28250 434.6
Kanagawa 9058 39 11 779 302.0 13412 343.9
Niigata 2,362 14 3637 259.8 4225 303.9
Toyama 1088 8 1608 201.0 1919 239.9
Ishikawa 1166 7 1789 255.6 2144 306.3
Fukui 803 6 1130 188.3 1375 229.2
Yamanashi 857 3 959 319.7 1188 396.0
Nagano 2142 15 3466 231.1 3880 258.7
Gifu 2071 11 2815 255.9 3509 319.0
Shizuoka 3749 23 6205 269.8 7837 340.7
Aichi 7416 38 10 197 268.3 12390 326.1
Mie 1847 12 1870 155.8 2169 180.8
Shiga 1414 10 1755 175.5 2158 215.8
Kyoto 2632 13 3900 300.0 4680 360.0
Osaka 8861 51 13 474 264.2 15987 313.5
Hyogo 5582 30 7855 261.8 8934 297.8
Nara 1396 8 2152 269.0 2523 315.4
Wakayama 995 9 1569 174.3 1812 201.3
Tottori 585 7 1036 148.0 1160 165.7
Shimane 712 5 985 197.0 1166 233.2
Okayama 1941 10 2680 268.0 3156 315.6
Hiroshima 2855 19 4562 240.1 5512 290.1
Yamaguchi 1442 14 1833 130.9 2069 147.8
Tokushima 780 5 1320 264.0 1425 285.0
Kagawa 992 5 961 192.2 1123 224.6
Ehime 1423 10 2439 243.9 2867 286.7
Kochi 758 5 1231 246.2 1397 279.4
Fukuoka 5079 25 8048 321.9 9944 397.8
Saga 847 4 830 207.5 969 242.3
Nagasaki 1417 9 2277 253.0 2695 299.4
Kumamoto 1813 13 3004 231.1 3446 265.1
Oita 1191 11 1621 147.4 1948 177.1
Miyazaki 1131 7 1569 224.1 1893 270.4
Kagoshima 1699 12 2618 218.2 2928 244.0
Okinawa 1401 7 1756 250.9 2002 286.0
Total 127 797 694 185 455 267.2 220092 317.1

Table 9.

Number of population, patients, radiation oncologists and patient load according to prefecture

Prefecture Population (×103) [32] Total patients JRS or JASTRO—certified RO FTE RO Total patients/FTE RO
Hokkaido 5486 11 704 41 51.1 229.0
Aomori 1363 2366 10 9.7 243.9
Iwate 1314 2059 9 10.0 206.9
Miyagi 2327 4621 11 21.8 212.5
Akita 1075 2015 4 7.6 265.1
Yamagata 1161 1490 5 8.5 175.3
Fukushima 1990 3147 8 13.9 226.4
Ibaraki 2958 4009 11 16.3 246.0
Tochigi 2000 3363 10 13.1 256.7
Gunma 2001 4225 26 31.6 133.7
Saitama 7207 8094 19 27.5 294.8
Chiba 6214 8877 33 50.8 174.9
Tokyo 13 196 28 250 91 122.4 230.9
Kanagawa 9058 13 412 45 57.1 234.9
Niigata 2362 4255 14 19.0 223.9
Toyama 1088 1919 6 9.5 202.0
Ishikawa 1166 2144 8 8.6 249.3
Fukui 803 1375 10 10.1 136.1
Yamanashi 857 1188 5 7.6 156.3
Nagano 2142 3880 8 12.3 316.7
Gifu 2071 3509 6 10.1 347.4
Shizuoka 3749 7837 24 30.8 254.4
Aichi 716 12 390 40 57.8 214.4
Mie 1847 2169 5 9.0 241.0
Shiga 1414 2158 7 13.1 165.1
Kyoto 2632 4680 20 30.0 156.0
Osaka 8861 15 987 62 80.3 199.1
Hyogo 5582 8934 35 44.9 199.0
Nara 1396 2523 9 15.7 160.7
Wakayama 995 1812 7 7.7 235.3
Tottori 585 1160 5 4.5 257.8
Shimane 712 1166 7 7.3 159.7
Okayama 1941 3156 12 18.4 172.0
Hiroshima 2855 5512 23 26.6 207.2
Yamaguchi 1442 2069 7 10.8 191.6
Tokushima 780 1425 7 7.2 197.9
Kagawa 992 1123 3 4.7 238.9
Ehime 1423 2867 9 12.2 235.0
Kochi 758 1397 5 4.3 324.9
Fukuoka 5079 9944 32 44.1 225.5
Saga 847 969 7 5.6 173.0
Nagasaki 1417 2695 10 10.5 256.7
Kumamoto 1813 3446 12 18.4 187.3
Oita 1191 1948 5 7.3 266.8
Miyazaki 1131 1893 9 7.6 249.1
Kagoshima 1699 2928 10 13.7 213.7
Okinawa 1401 2002 4 7.8 256.7
Total 127 797 220 092 756 1018.5 216.1

JASTRO = Japanese Society for Radiation Oncology, RO = radiation oncologist, FTE = full-time equivalent.

Table 10.

Number of population, patients, staff and patient load according to prefecture

Prefecture Total patients FTE RTT Total patients/FTE RTT FTE MP FTE RTQM
Hokkaido 11 704 74.0 158.2 16.8 5.7
Aomori 2366 26.1 90.7 2.8 2.6
Iwate 2059 22.5 91.7 1.3 0.7
Miyagi 4621 39.7 116.4 3.0 2.1
Akita 2015 19.0 106.1 1.1 1.6
Yamagata 1490 16.1 92.5 0.7 1.5
Fukushima 3147 35.7 88.3 2.5 1.5
Ibaraki 4009 42.0 95.5 1.6 2.1
Tochigi 3363 28.8 116.8 0.9 2.4
Gunma 4225 46.0 91.8 2.8 3.1
Saitama 8094 59.9 135.1 3.4 4.5
Chiba 8877 81.9 108.4 7.2 3.0
Tokyo 28 250 242.4 116.5 14.5 10.8
Kanagawa 13 412 139.5 96.1 6.6 8.1
Niigata 4255 41.5 102.5 2.1 0.8
Toyama 1919 20.4 94.3 0.7 1.9
Ishikawa 2144 22.7 94.4 1.7 1.7
Fukui 1375 21.8 63.1 0.0 0.6
Yamanashi 1188 6.3 190.1 0.4 1.1
Nagano 3880 31.7 122.4 2.3 1.7
Gifu 3509 29.7 118.2 1.4 2.9
Shizuoka 7837 78.0 100.5 4.3 6.6
Aichi 12 390 108.1 114.6 8.4 6.8
Mie 2169 28.1 77.2 1.2 2.5
Shiga 2158 31.3 69.1 0.7 2.5
Kyoto 4680 37.5 124.8 5.7 5.2
Osaka 15 987 156.3 102.3 20.3 13.2
Hyogo 8934 99.6 89.7 4.0 5.5
Nara 2523 23.7 106.5 1.6 2.5
Wakayama 1812 24.2 74.9 0.3 0.2
Tottori 1160 13.4 86.6 0.3 1.9
Shimane 1166 12.5 93.3 0.2 2.2
Okayama 3156 30.3 104.2 2.3 2.9
Hiroshima 5512 44.4 124.1 3.1 4.8
Yamaguchi 2069 25.6 80.8 0.1 1.3
Tokushima 1425 14.9 95.6 0.3 2.0
Kagawa 1123 7.7 145.8 0.1 0.0
Ehime 2867 25.5 112.4 2.2 3.3
Kochi 1397 9.6 145.5 1.1 0.8
Fukuoka 9944 69.5 143.2 5.6 7.3
Saga 969 9.2 105.3 0.1 0.1
Nagasaki 2695 18.5 145.7 2.1 2.1
Kumamoto 3446 31.0 111.2 6.3 3.1
Oita 1948 19.2 101.7 1.3 1.9
Miyazaki 1893 17.5 108.2 0.8 1.2
Kagoshima 2928 28.4 103.1 2.8 1.0
Okinawa 2002 15.4 130.4 0.4 0.6
Total 220 092 2026.7 108.6 149.1 141.5

FTE = full-time equivalent, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager, NS = nurse.

Table 11.

Number of institutions and patients with special radiotherapy by scale classification

Specific therapy 2011 2010
A (111) B (232) C (135) D (82) E (52) F (82) Total (694) Total (705)
Intracavitary radiotherapy
Treatment institutions 0 14 19 25 25 59 142 152
Patients 0 117 265 442 404 1780 3008 3245
Interstitial radiotherapy
Treatment institutions 0 13 10 18 14 50 105 115
Patients 0 198 299 476 685 2413 4071 4194
Radioactive iodine therapy for prostate
Treatment institutions 0 10 10 16 13 44 93 101
Patients 0 160 298 443 472 1900 3273 3115
Radioactive iodine therapy for hyperthyroidism
Treatment institutions 0 3 12 4 12 23 54 59
Patients 0 53 207 125 417 1077 1879 2080
Total body radiotherapy
Treatment institutions 9 14 25 27 28 59 162 186
Patients 69 109 252 220 322 985 1957 1937
Intraoperative radiotherapy
Treatment institutions 3 1 1 5 2 8 20 24
Patients 4 1 1 36 13 47 102 161
Stereotactic brain radiotherapy
Treatment institutions 14 40 42 44 34 40 214 211
Patients 888 1921 2698 2676 2712 2873 13 768 13 800
Stereotactic body radiotherapy
Treatment institutions 2 35 47 46 33 59 222 203
Patients 4 210 572 877 438 1451 3552 3536
IMRT
Treatment institutions 2 19 27 31 27 58 164 136
Patients 8 880 1263 1723 1584 3429 8887 6356
Thermoradiotherapy
Treatment institutions 1 6 4 2 1 5 19 20
Patients 22 47 41 61 74 82 327 359
90Sr-90 radiotherapy for pterygia
Treatment institutions 1 1 3 2 0 1 8 5
Patients 1 2 9 14 0 19 45 33
Internal 89Sr radiotherapy
Treatment institutions 7 31 35 29 27 40 169 142
Patients 21 119 170 135 141 383 969 793
Internal 90Y radiotherapy
Treatment institutions 2 4 4 0 6 15 31 33
Patients 16 20 12 0 15 43 106 153

IMRT = intensity-modulated radiotherapy, Sr = strontium, Y = yttrium.

Table 12.

Annual number of new patients by disease site*

Primary site n %
Cerebrospinal 7728 4.4
Head and neck (including thyroid) 16 168 9.1
Esophagus 9392 5.3
Lung, trachea and mediastinum 34 071 19.2
Lung 30 442 17.2
Breast 41 421 23.4
Liver, biliary tract pancreas 6310 3.6
Gastric, small intestine, colorectal 8297 4.7
Gynecologic 8358 4.7
Urogenital 27 909 15.7
Prostate 22 321 12.6
Hematopoietic and lymphatic 8388 4.7
Skin, bonel, and soft tissue 4132 2.3
Other (malignant) 2738 1.5
Benign tumors 2,445 1.4
Pediatric = < 15 years (included in totals above) 852 0.5
Total 177 357 100

*Total number of new patients in Table 3 differ from these data because no data on primary sites were reported by some institutions.

Table 13.

Annual number of total patients (new plus repeat) treated for any brain metastasis and bone metastasis by scale classification.

Metastasis Scale category (number of institutions) Total (694)
A (111) B (232) C (135) D (82) E (52) F (82)
n % n % n % n % n % n % n %
Brain 1104 13.3 3680 9.7 4165 10.7 3096 9.0 2861 10.2 5974 8.3 20 934 9.5
Bone 1207 14.5 5658 14.8 5192 13.3 4578 13.3 3400 12.2 8521 11.8 28556 13.0

Table 14.

Classification of institutions by number of FTE radiation oncologists in all radiotherapy institutions and designated cancer care hospitals

Institution category Description Institutions
RH-A All radiotherapy hospitals (FTE RO ≥1.0) 394
RH-B All radiotherapy hospitals (FTE RO <1.0) 300
Total 694
DCCH-A Designated cancer care hospitals (FTE RO ≥1.0) 272
DCCH-B Designated cancer care hospitals (FTE RO <1.0) 108
Total 380

FTE = full-time equivalent, RO = radiation oncologist.

Table 15.

Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC and patient load per personnel according to institution categories shown Table 14; all radiotherapy hospitals

RH-A (394) RH-B (300) Total (694)
Average per hospital Total number Average per hospital Total number Average per hospital Total number
Total patients 431.8 170 117 166.6 49 975 317.1 220 092
New patients 361.7 142 505 143.2 42 950 267.2 185 455
LINAC 1.4 546 1.0 290 1.2 836
Annual no. of total patients/LINAC 311.6 172.3 263.3
Annual no. of new patients/LINAC 261.0 148.1 221.8
FTE RO 2.3 900.0 0.4 118.5 1.5 1018.5
JRS or JASTRO-certified RO (full time) 1.7 672 0.3 84 1.1 756
Annual no. of total patients/FTE RO 189.0 421.7 216.1
Annual no. of new patients/FTE RO 158.3 362.4 182.1
FTE RT technologist 3.8 1485.0 1.8 541.7 2.9 2026.7
Annual no. of total patients/FTE RTT 114.6 92.3 108.6
Annual no. of new patients/FTE RTT 96.0 79.3 91.5
FTE RT technologist/LINAC 2.7 1.9 2.4
FTE medical physicist 0.33 128.7 0.07 20.4 0.21 149.1
Annual no. of total patients/FTE MP 1322.0 2449.8 1476.3
Annual no. of new patients/FTE MP 1107.4 2105.4 1244.0
FTE RT quality manager 0.28 110.2 0.10 31.3 0.20 141.5
Annual no. of total patients/FTE RTQM 1543.7 1596.6 1555.4
Annual No. of new patients/FTE RTQM 1293.1 1372.2 1310.6
FTE RT quality manager/LINAC 0.20 0.11 0.17

LINAC = linear accelerator, FTE = full-time equivalent, RO = radiation oncologist, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager.

Table 16.

Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC and patient load per personnel according to institution categories shown Table 14; designated cancer care hospitals (DCCH)

DCCH-A (272) DCCH-B (108) Total (380)
Average per hospital Total number Average per hospital Total number Average per hospital Total number
Total patients 498.7 135 633 200.0 21 595 413.8 157 228
New patients 416.7 113 329 175.6 18 968 348.2 132 297
LINAC 1.5 418 1.1 114 1.4 532
Annual no. of total patients/LINAC 324.5 189.4 295.5
Annual no. of new patients/LINAC 271.1 166.4 248.7
FTE RO 2.5 677.8 0.5 54.6 1.9 732.4
JRS or JASTRO-certified RO (full time) 1.9 515 0.4 44 1.5 559
Annual no. of total patients/FTE RO 200.1 395.9 214.7
Annual no. of new patients/FTE RO 167.2 347.7 180.6
FTE RT technologist 4.1 1112.9 2.1 229.4 3.5 1342.3
Annual no. of total patients/FTE RTT 121.9 94.2 117.1
Annual no. of new patients/FTE RTT 101.8 82.7 98.6
FTE RT technologist/LINAC 2.7 2.0 2.5
FTE medical physicist 0.36 98.7 0.09 10.0 0.29 108.7
Annual no. of total patients/FTE MP 1374.1 2159.5 1446.3
Annual no. of new patients/FTE MP 1148.1 1896.8 1217.0
FTE RT quality manager 0.30 81.7 0.14 15.3 0.26 97.0
Annual no. of total patients/FTE RTQM 1660.1 1416.1 1621.7
Annual no. of new patients/FTE RTQM 1387.1 1243.8 1364.6
FTE RT quality manager/LINAC 0.20 0.13 0.18

LINAC = linear accelerator, FTE = full-time equivalent, RO = radiation oncologist, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager.

Table 17.

Number of items of equipment and their functions according to institution categories shown Table 14

RH-A (n = 394) RH-B (n = 300) Total (n = 694)
n % n % n %
LINAC 546 96.4 290 94.7 836 95.7
with dual energy function 430 84.0 189 62.7 619 74.8
with 3DCRT function (MLC width = < 1.0 cm) 505 90.6 214 70.3 719 81.8
with IMRT function 352 62.9 69 22.7 421 45.5
with cone beam CT or CT on rail 241 50.3 53 17.7 294 36.2
with treatment position verification system (x-ray perspective image) 230 45.9 67 21.7 297 35.4
with treatment position verification system (other than those above) 171 35.5 63 20.3 234 29.0
CT simulator 402 92.4 252 79.7 654 86.9
DCCH-A (n = 272) DCCH-B (n = 108) Total (n = 380)
n % n % n %
LINAC 418 99.6 114 100.0 532 99.7
with dual energy function 340 91.5 84 76.9 424 87.4
with 3DCRT function (MLC width = < 1.0 cm) 397 95.6 90 80.6 487 91.3
with IMRT function 280 69.9 35 31.5 315 58.9
with cone beam CT or CT on rail 192 56.6 24 22.2 216 46.8
with treatment position verification system (x-ray perspective image) 181 51.5 30 26.9 211 44.5
with treatment position verification system (other than those above) 130 37.5 30 25.9 160 34.2
CT simulator 280 95.2 98 84.3 378 92.1

LINAC = linear accelerator, 3DCRT = 3D conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography.

Fig. 2.

Fig. 2

Distribution of annual total (new plus repeat) patient load per LINAC in radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per LINAC within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 3.

Fig. 3

Distribution of annual total (new plus repeat) patient load per FTE radiation oncologist in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE radiation oncologist within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 4.

Fig. 4

Distribution of annual total (new plus repeat) patient load per FTE radiotherapy technologist (RTT) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 5.

Fig. 5

Distribution of annual total (new plus repeat) patient load per FTE radiation oncologist in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE radiation oncologist within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Since 1991, the Japanese Society for Radiation Oncology (JASTRO) has conducted national structure surveys every 2 years [1–25]. From March 2012 to August 2015, a questionnaire regarding the 2011 national structure survey of radiation oncology was conducted that included the number of treatment systems by type, number of personnel by category and number of patients by type, site and treatment modality. To measure variables over a longer time period, data for the year 2011 were also considered. In total, 694 of 787 active institutions attempted the survey; the response rate was 88.2%.

The current report analyzes these institutional structure data (equipment, personnel, patient load and geographic distribution) based on institutional stratification by the annual number of new patients treated with radiotherapy at each institution. Clinical working hours of each staff member performing radiotherapy were derived from full-time equivalent (FTE; 40 h per week for radiation oncology work only) data. The Japanese Blue Book Guidelines (JBBG) [26, 27] were used for comparison with the results of this study. These guidelines pertain to the structure of radiation oncology in Japan based on Patterns of Care Study (PCS) [28, 29] data. The standard guidelines were set at 250–300 (warning level, 400) for annual patient load per external beam machine, at 200 (warning level, 300) for annual patient load per FTE RO and at 120 (warning level, 200) for annual patient load per FTE radiotherapy technologist. Furthermore, we analyzed data from the designated cancer care hospitals accredited by the Ministry of Health, Labor and Welfare. As on 1 October 2016, Japan had 427 designated cancer care hospitals [30]. Forty-seven institutions did not return the survey; therefore, the structure data for these 380 designated cancer care hospitals were analyzed and compared with the data for all radiotherapy hospitals. The analysis was conducted in two groups: institutions with <1.0 FTE RO and those with ≥1.0 FTE RO.

Here, preliminary results have been presented as tables and figures (Tables 118 and Figs 16). We have briefly summarized the Japanese national structure survey of radiation oncology for 2011. In total, 787

Table 1.

Category of radiotherapy institution

Institution category
U University hospital
G Cancer center (including national centers)
N National hospital organization (excluding cancer centers)
P Public hospital (excluding cancer centers)
O Red cross hospital, saiseikai hospital, company hospital, public corporation hospital, national health insurance hospital, social insurance hospital, mutual insurance hospital, industrial accident hospital, association hospital and Japan agricultural co-operative hospital
H Medical corporation hospital, medical association hospital, private hospital and other hospital

Table 18.

Number of radiotherapy institutions, treatment devices, patient load and personnel: trend 1990–2011

Survey year
1990 1993 1995 1997 1999 2001 2003 2005 2007 2009 2010 2011
Institution 378 629 504 568 636 603 726 712 721 700 705 694
Response rate 48.5% 88.3% 73.9% 78.6% 86.3% 85.3% 100% 96.9% 94.2% 90.9% 90.4% 88.2%
New patients 62 829 71 696 84 379 107 150 118 016 149 793 156 318 170 229 182 390 190 322 185 455
Total patients 191 173 205 087 217 829 226 851 220 092
Average of new patients 166 142 149 168 196 206 220 236 261 270 267
Treatment device (actual use)
LINAC 311 508 407 475 626 626 744 765 807 816 829 836
Telecobalt 170 213 127 98 83 45 42 11 15 11 9 3
192Ir RALS 29 50 73 93 117 119 123 130 131 125
Full time RO 547 748 821 889 925 878 921 1003 1007 1085 1123 1102
FTE RO 774 826 939 959 1019
Full time JASTRO-certified RO 308 369 426 477 529 564 756
FTE RT technologist 592 877 665 733 771 918 1555 1635 1634 1836 1841 2027
Treatment planning equipment
X-ray simulators 295 430 394 452 512 464 532 502 445 361 348 320
CT simulators 30 75 55 96 164 247 329 407 497 575 633 654
RTP computers 238 468 374 453 682 680 874 940 1070 1271 1381 1484

LINAC = linear accelerator, Ir = iridium, RO = radiation oncologist, FTE = full-time equivalent, JASTRO = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japan Radiological Society, JASTRO = Japanese Society for Radiation Oncology, CT = computed tomography, RTP = radiotherapy planning.

Fig. 1.

Fig. 1

Estimate of increase in demand for radiotherapy in Japan, based on statistical correction of annual change in the number of new patients per year at Patterns of Care Study survey facilities [26]. x and o denote the estimated number of total (new plus repeat) and new patients by the results in structure surveys by the JASTRO.

Fig. 6.

Fig. 6

Distribution of annual total (new plus repeat) patient load per FTE radiotherapy technologist (RTT) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

radiotherapy institutions were surveyed, and the estimated number of new patients was approximately 211 000, whereas that of total patients (new plus repeat) was 250 000. The estimated annual numbers of patients treated with radiation had not increased since 2010. It is assumed that there are two reasons for the above. First, because the response rate of this survey was lower than usual, the calculation of the estimated value had even more errors than usual. Secondly, the treatment time for each patient has increased because of an increase in the number of patients with high-precision radiotherapy such as SBRT and IMRT. In 2011, based on Japanese cancer registries, the cancer incidence was estimated at 851 537 cases [31] with approximately 24.8% (211 000 of 851 537) of all newly diagnosed patients being treated with radiation. Overall, 836 linear accelerators (LINACs), 3 telecobalt units, 46 Gamma Knife, 24 60Co remote afterloading systems (RALS) and 125 192Ir RALS were actually used. The LINAC system used dual-energy functions in 619 units, 3D conformal radiotherapy functions in 719 and intensity-modulated radiotherapy (IMRT) functions in 412. Regarding personnel, there were a total 756 board-certified ROs [JASTRO or JRS (Japan Radiological Society)], 1018.5 FTE ROs, 2026.7 FTE radiotherapy technologists, 149.1 FTE medical physicists, 141.5 FTE radiotherapy quality managers and 716.3 FTE nurses. Approximately 50.6% of all radiotherapy institutions had >200 new radiotherapy patients per year, whereas 31.1% of the institutions had >300. Additionally, 43.2% of all radiotherapy institutions had <1.0 FTE ROs. We expect that this updated national structure survey of radiation oncology for 2011 will aid the continuous improvement of all aspects of radiation oncology in Japan.

FUNDING

This study was supported by the JASTRO and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [JSPS KAKENHI Grant No. JP17K10475].

CONFLICT OF INTEREST

None declared.

REFERENCES

  • 1). Tsunemoto H. Present status of Japanese radiation oncology: National survey of structure in 1990 (in Japanese). J Jpn Soc Ther Radiol Oncol (Special Report) 1992;1–30. [Google Scholar]
  • 2). Sato S, Nakamura Y, Kawashima K et al. Present status of radiotherapy in Japan -a census in 1990- finding on radiotherapy facilities (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 1994;6:83–9. [Google Scholar]
  • 3). Morita K, Uchiyama Y. Present status of radiotherapy in Japan -the second census in 1993- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 1995;7:251–61. [Google Scholar]
  • 4). JASTRO Database Committee Present status of radiotherapy in Japan -the regular census in 1995- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 1997;9:231–53. [Google Scholar]
  • 5). JASTRO Database Committee Present status of radiotherapy in Japan -the regular census in 1997- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2001;13:175–82. [Google Scholar]
  • 6). JASTRO Database Committee Present status of radiotherapy in Japan -the regular structure survey in 1999- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2001;13:227–35. [Google Scholar]
  • 7). JASTRO Database Committee Present status of radiotherapy in Japan -the regular structure survey in 2001- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2003;15:51–9. [Google Scholar]
  • 8). JASTRO Database Committee Present status of radiotherapy in Japan -the regular structure survey in 2003- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2005;17:115–21. [Google Scholar]
  • 9). Shibuya H, Tsujii H. The structural characteristics of radiation oncology in Japan in 2003. Int J Radiat Oncol Biol Phys 2005;62:1472–6. [DOI] [PubMed] [Google Scholar]
  • 10). Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (first report) (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2007;19:181–92. [Google Scholar]
  • 11). Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (second report) (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2007;19:193–205. [Google Scholar]
  • 12). Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2008;72:144–52. [DOI] [PubMed] [Google Scholar]
  • 13). Numasaki H, Teshima T, Shibuya H et al. National structure of radiation oncology in Japan with special reference to designated cancer care hospital. Int J Clin Oncol 2009;14:237–44. [DOI] [PubMed] [Google Scholar]
  • 14). Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (first report) (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2009;21:113–25. [Google Scholar]
  • 15). Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (second report) (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 2009;21:126–38. [Google Scholar]
  • 16). Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2010;72:144–52. [DOI] [PubMed] [Google Scholar]
  • 17). Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals. Strahlenther Onkol 2011;187:167–74. [DOI] [PubMed] [Google Scholar]
  • 18). Numasaki H, Shibuya H, Nishio M et al. National medical care system may impede fostering of true specialization of radiation oncologists: Study based on structure survey in Japan. Int J Radiat Oncol Biol Phys 2012;82:e111–7. [DOI] [PubMed] [Google Scholar]
  • 19). Teshima T, Numasaki H, Nishimura T et al. Japanese structure survey of radiation oncology in 2009 (first report) (in Japanese). http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
  • 20). Teshima T, Numasaki H, Nishimura T et al. Japanese structure survey of radiation oncology in 2009 (second report) (in Japanese). http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
  • 21). Teshima T, Numasaki H, Nishio M et al. Japanese structure survey of radiation oncology in 2009 based on institutional stratification of patterns of care study. J Radiat Res 2012;53:710–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22). Numasaki H, Nishio M, Ikeda H et al. Japanese structure survey of radiation oncology in 2009 with special reference to designated cancer care hospitals. Int J Clin Oncol 2013;18:775–83. [DOI] [PubMed] [Google Scholar]
  • 23). Teshima T, Numasaki H, Nishimura T et al. Japanese structure survey of radiation oncology in 2010 (first report) (in Japanese). http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed). [DOI] [PMC free article] [PubMed]
  • 24). Teshima T, Numasaki H, Nishimura T et al. Japanese structure survey of radiation oncology in 2010 (second report) (in Japanese). http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed). [DOI] [PMC free article] [PubMed]
  • 25). Numasaki H, Teshima T, Nishimura T et al. Japanese structure survey of radiation oncology in 2010. J Radiat Res 2019;60:80–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26). Japanese PCS Working Group Radiation oncology in multidisciplinary cancer therapy -Basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health. Labor, and Welfare Cancer Research Grant Planned Research Study 2005;14–6. [Google Scholar]
  • 27). Japanese PCS Working Group Radiation oncology in multidisciplinary cancer therapy -Basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health. Labor, and Welfare Cancer Research Grant Planned Research Study 2010;18–4. [Google Scholar]
  • 28). Tanisada K, Teshima T, Ohno Y et al. Patterns of care study quantitative evaluation of the quality of radiotherapy in Japan. Cancer 2002;95:164–71. [DOI] [PubMed] [Google Scholar]
  • 29). Teshima T. Japanese PCS working group. Patterns of care study in Japan. Jpn J Clin Oncol 2005;35:497–506. [DOI] [PubMed] [Google Scholar]
  • 30). Ministry of Health , Labor and Welfare. A list of designated cancer hospitals http://www.mhlw.go.jp/ (1 November 2016, date last accessed).
  • 31). Cancer Information Service, National Cancer Center, Japan Cancer Registry and Statistics http://ganjoho.jp/reg_stat/statistics/dl/index.html (1 August 2015, date last accessed).
  • 32). Statistics Bureau , Ministry of Internal Affairs and Communications. 2011 population census http://www.stat.go.jp/data/jinsui/2011np/index.htm (1 August 2015, date last accessed).

Articles from Journal of Radiation Research are provided here courtesy of Oxford University Press

RESOURCES