Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

ArXiv logoLink to ArXiv
[Preprint]. 2020 Jul 6:arXiv:2007.03678v1. [Version 1]

GPU-Accelerated Drug Discovery with Docking on the Summit Supercomputer: Porting, Optimization, and Application to COVID-19 Research

Scott LeGrand, Aaron Scheinberg, Andreas F Tillack, Mathialakan Thavappiragasam, Josh V Vermaas, Rupesh Agarwal, Jeff Larkin, Duncan Poole, Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas Koch, Stefano Forli, Oscar Hernandez, Jeremy C Smith, Ada Sedova
PMCID: PMC7359529  PMID: 32676519

Abstract

Protein-ligand docking is an in silico tool used to screen potential drug compounds for their ability to bind to a given protein receptor within a drug-discovery campaign. Experimental drug screening is expensive and time consuming, and it is desirable to carry out large scale docking calculations in a high-throughput manner to narrow the experimental search space. Few of the existing computational docking tools were designed with high performance computing in mind. Therefore, optimizations to maximize use of high-performance computational resources available at leadership-class computing facilities enables these facilities to be leveraged for drug discovery. Here we present the porting, optimization, and validation of the AutoDock-GPU program for the Summit supercomputer, and its application to initial compound screening efforts to target proteins of the SARS-CoV-2 virus responsible for the current COVID-19 pandemic.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from ArXiv are provided here courtesy of arXiv

RESOURCES