Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Jul 15;13(2):91–113. doi: 10.1007/s12200-020-1011-5

Review of fabrication methods of large-area transparent graphene electrodes for industry

Petri Mustonen 1,, David M A Mackenzie 1, Harri Lipsanen 1
PMCID: PMC7362318  PMID: 36641556

Abstract

Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5, slightly over the minimum required for industry of 35, while CVD reaches as high as 419.

graphic file with name 12200_2020_1011_Fig1_HTML.jpg

Keywords: transparent electrodes, graphene, liquid exfoliation, chemical vapor deposition (CVD)

Acknowledgements

The work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement GrapheneCore2 number 785219, and GrapheneCore3 number 881603. We acknowledge the financial support from Academy of Finland (projects 298297 and 320167-PREIN Flagship).

Funding note

Open access funding provided by Aalto University.

Footnotes

Petri Mustonen got his B.Sc. and M.Sc. degrees from Aalto University, Finland and continued his work there as a doctoral candidate in Department of Electronics and Nanoengineering. He has been working in the field of 2D materials since 2014 and currently his focus is on chemical vapor deposition and characterization of graphene and other novel 2D materials. In general, his interests lie in bridging the gap between laboratory- and industrial-scale manufacturing of 2D materials.

David M. A. Mackenzie graduated from University of Canterbury, New Zealand in 2010 with a Ph.D. degree in Physics based on nanoscale cluster devices. He joined the Micro and Nanotechnology Department at Technical University of Denmark, Denmark in 2012 as a Postdoctoral Researcher where he worked on 2D material devices including nanopatterned transistors and nanopatterned gas sensors. He moved to Aalto University in Finland in 2018 and is currently involved with growth and characterization of novel 2D materials.

Prof. Harri Lipsanen received his Ph.D. degree from Helsinki University of Technology, Finland in 1994 and is Full Professor in Department of Electronics and Nanoengineering, Aalto University, Finland. He studies nanomaterials and nanofabrication for various applications in photonics and nanoelectronics. His current research focus on materials includes graphene and other 2D materials, semiconductor nanowires and their heterostructures. The nanofabrication activities extend over many methods such as atomic layer deposition, metalorganic vapor phase epitaxy, electron beam lithography, and self-assembly. Prof. Lipsanen has published over 300 peer-reviewed articles.

References

  • 1.Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. doi: 10.1126/science.1102896. [DOI] [PubMed] [Google Scholar]
  • 2.Peierls R. Quelques propriétés typiques des corps solides. Annales de l’Institut Henri Poincaré. 1935;5(3):177–222. [Google Scholar]
  • 3.Landau L D. On the theory of phase transitions. Ukrainian Journal of Physical. 1937;11:19–32. [Google Scholar]
  • 4.Mermin N D. Crystalline order in two dimensions. Physical Review. 1968;176(1):250–254. [Google Scholar]
  • 5.Nelson D R, Peliti L. Fluctuations in membranes with crystalline and hexatic order. Journal de Physique. 1988;49(1):139. [Google Scholar]
  • 6.Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Beschoten B, Stampfer C. Ballistic transport exceeding 28 µm in CVD grown graphene. Nano Letters. 2016;16(2):1387–1391. doi: 10.1021/acs.nanolett.5b04840. [DOI] [PubMed] [Google Scholar]
  • 7.Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters. 2011;11(6):2396–2399. doi: 10.1021/nl200758b. [DOI] [PubMed] [Google Scholar]
  • 8.Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342(6158):614–617. doi: 10.1126/science.1244358. [DOI] [PubMed] [Google Scholar]
  • 9.Hwang E H, Adam S, Sarma S D. Carrier transport in two-dimensional graphene layers. Physical Review Letters. 2007;98(18):186806. doi: 10.1103/PhysRevLett.98.186806. [DOI] [PubMed] [Google Scholar]
  • 10.Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J. High-strength chemical-vapor-deposited graphene and grain boundaries. Science. 2013;340(6136):1073–1076. doi: 10.1126/science.1235126. [DOI] [PubMed] [Google Scholar]
  • 11.Xu J, Yuan G, Zhu Q, Wang J, Tang S, Gao L. Enhancing the strength of graphene by a denser grain boundary. ACS Nano. 2018;12(5):4529–4535. doi: 10.1021/acsnano.8b00869. [DOI] [PubMed] [Google Scholar]
  • 12.Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388. doi: 10.1126/science.1157996. [DOI] [PubMed] [Google Scholar]
  • 13.Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308. doi: 10.1126/science.1156965. [DOI] [PubMed] [Google Scholar]
  • 14.Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials. 2011;10(8):569–581. doi: 10.1038/nmat3064. [DOI] [PubMed] [Google Scholar]
  • 15.Zheng Q, Ip W H, Lin X, Yousefi N, Yeung K K, Li Z, Kim J K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano. 2011;5(7):6039–6051. doi: 10.1021/nn2018683. [DOI] [PubMed] [Google Scholar]
  • 16.Pham V P, Mishra A, Young Yeom G. The enhancement of Hall mobility and conductivity of CVD graphene through radical doping and vacuum annealing. RSC Advances. 2017;7(26):16104–16108. [Google Scholar]
  • 17.Suzuki S, Yoshimura M. Chemical stability of graphene coated silver substrates for surface-enhanced raman scattering. Scientific Reports. 2017;7(1):14851. doi: 10.1038/s41598-017-14782-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials. 2007;6(3):198–201. doi: 10.1038/nmat1846. [DOI] [PubMed] [Google Scholar]
  • 19.Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science. 2007;315(5817):1379. doi: 10.1126/science.1137201. [DOI] [PubMed] [Google Scholar]
  • 20.Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438(7065):201–204. doi: 10.1038/nature04235. [DOI] [PubMed] [Google Scholar]
  • 21.Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim P. Observation of the fractional quantum Hall effect in graphene. Nature. 2009;462(7270):196–199. doi: 10.1038/nature08582. [DOI] [PubMed] [Google Scholar]
  • 22.Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, Niu Q. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B: Condensed Matter and Materials Physics. 2010;82(16):161414. [Google Scholar]
  • 23.Levy D, Castellón E. Transparent Conductive Materials: Materials, Synthesis, Characterization, Applications. New York: John Wiley & Sons; 2018. [Google Scholar]
  • 24.Hu Y, Diao X, Wang C, Hao W, Wang T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum. 2004;75(2):183–188. [Google Scholar]
  • 25.Alzoubi K, Hamasha M M, Lu S, Sammakia B. Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology. 2011;7(11):593–600. [Google Scholar]
  • 26.Im H G, Jeong S, Jin J, Lee J, Youn D Y, Koo W T, Kang S B, Kim H J, Jang J, Lee D, Kim H K, Kim I D, Lee J Y, Bae B S. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials. 2016;8(6):e282. [Google Scholar]
  • 27.Park S H, Lee S J, Lee J H, Kal J, Hahn J, Kim H K. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Organic Electronics. 2016;30:112–121. [Google Scholar]
  • 28.Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. doi: 10.1126/science.1102896. [DOI] [PubMed] [Google Scholar]
  • 29.Suslick K S. Sonochemistry. Science. 1990;247(4949):1439–1445. doi: 10.1126/science.247.4949.1439. [DOI] [PubMed] [Google Scholar]
  • 30.Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of grapheme. Journal of Materials Chemistry A, Materials for Energy and Sustainability. 2015;3(22):11700–11715. [Google Scholar]
  • 31.Chen X, Dobson J F, Raston C L. Vortex fluidic exfoliation of graphite and boron nitride. Chemical Communications (Cambridge) 2012;48(31):3703–3705. doi: 10.1039/c2cc17611d. [DOI] [PubMed] [Google Scholar]
  • 32.Paton K R, Varrla E, Backes C, Smith R J, Khan U, O’Neill A, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien S E, McGuire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials. 2014;13(6):624–630. doi: 10.1038/nmat3944. [DOI] [PubMed] [Google Scholar]
  • 33.Lin Z, Karthik P S, Hada M, Nishikawa T, Hayashi Y. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication. Nanomaterials (Basel, Switzerland) 2017;7(6):125. doi: 10.3390/nano7060125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S. Graphene-based liquid crystal device. Nano Letters. 2008;8(6):1704–1708. doi: 10.1021/nl080649i. [DOI] [PubMed] [Google Scholar]
  • 35.Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology. 2008;3(9):563–568. doi: 10.1038/nnano.2008.215. [DOI] [PubMed] [Google Scholar]
  • 36.Bunch J S, Yaish Y, Brink M, Bolotin K, McEuen P L. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Letters. 2005;5(2):287–290. doi: 10.1021/nl048111+. [DOI] [PubMed] [Google Scholar]
  • 37.Hernandez Y, Lotya M, Rickard D, Bergin S D, Coleman J N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir. 2010;26(5):3208–3213. doi: 10.1021/la903188a. [DOI] [PubMed] [Google Scholar]
  • 38.Bergin S D, Nicolosi V, Streich P V, Giordani S, Sun Z, Windle A H, Ryan P, Niraj N P P, Wang Z T T, Carpenter L, Blau W J, Boland J J, Hamilton J P, Coleman J N. Towards solutions of single-walled carbon nanotubes in common solvents. Advanced Materials. 2008;20(10):1876–1881. [Google Scholar]
  • 39.Coleman J N. Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials. 2009;19(23):3680–3695. [Google Scholar]
  • 40.Liang Y T, Hersam M C. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. Journal of the American Chemical Society. 2010;132(50):17661–17663. doi: 10.1021/ja107661g. [DOI] [PubMed] [Google Scholar]
  • 41.Park K H, Kim B H, Song S H, Kwon J, Kong B S, Kang K, Jeon S. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Letters. 2012;12(6):2871–2876. doi: 10.1021/nl3004732. [DOI] [PubMed] [Google Scholar]
  • 42.Tomašević-Ilić T, Pešić J, Milošević I, Vujin J, Matković A, Spasenović M, Gajić R. Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics. 2016;48(6):319. [Google Scholar]
  • 43.Majee S, Song M, Zhang S L, Zhang Z B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon. 2016;102:51–57. [Google Scholar]
  • 44.Narayan R, Kim S O. Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence. 2015;2(1):20. doi: 10.1186/s40580-015-0050-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials. 2008;18(10):1518–1525. [Google Scholar]
  • 46.Khan U, O’Neill A, Lotya M, De S, Coleman J N. High-concentration solvent exfoliation of graphene. Small. 2010;6(7):864–871. doi: 10.1002/smll.200902066. [DOI] [PubMed] [Google Scholar]
  • 47.Li J, Yan H, Dang D, Wei W, Meng L. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science. 2019;535:92–99. doi: 10.1016/j.jcis.2018.09.094. [DOI] [PubMed] [Google Scholar]
  • 48.Zhang M, Parajuli R R, Mastrogiovanni D, Dai B, Lo P, Cheung W, Brukh R, Chiu P L, Zhou T, Liu Z, Garfunkel E, He H. Production of graphene sheets by direct dispersion with aromatic healing agents. Small. 2010;6(10):1100–1107. doi: 10.1002/smll.200901978. [DOI] [PubMed] [Google Scholar]
  • 49.Liu L, Rim K T, Eom D, Heinz T F, Flynn G W. Direct observation of atomic scale graphitic layer growth. Nano Letters. 2008;8(7):1872–1878. doi: 10.1021/nl0804046. [DOI] [PubMed] [Google Scholar]
  • 50.Tung T T, Yoo J, Alotaibi F K, Nine M J, Karunagaran R, Krebsz M, Nguyen G T, Tran D N H, Feller J F, Losic D. Graphene oxideassisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Applied Materials & Interfaces. 2016;8(25):16521–16532. doi: 10.1021/acsami.6b04872. [DOI] [PubMed] [Google Scholar]
  • 51.Majee S, Song M, Zhang S L, Zhang Z B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon. 2016;102:51–57. [Google Scholar]
  • 52.Shin D W, Barnes M D, Walsh K, Dimov D, Tian P, Neves A I S, Wright C D, Yu S M, Yoo J B, Russo S, Craciun M F. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Advanced Materials. 2018;30(39):1802953. doi: 10.1002/adma.201802953. [DOI] [PubMed] [Google Scholar]
  • 53.Fukushima T, Aida T. Ionic liquids for soft functional materials with carbon nanotubes. Chemistry (Weinheim an der Bergstrasse, Germany) 2007;13(18):5048–5058. doi: 10.1002/chem.200700554. [DOI] [PubMed] [Google Scholar]
  • 54.Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N, Li L J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano. 2011;5(3):2332–2339. doi: 10.1021/nn200025p. [DOI] [PubMed] [Google Scholar]
  • 55.Liu J, Notarianni M, Will G, Tiong V T, Wang H, Motta N. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir. 2013;29(43):13307–13314. doi: 10.1021/la403159n. [DOI] [PubMed] [Google Scholar]
  • 56.Parvez K, Wu Z S, Li R, Liu X, Graf R, Feng X, Müllen K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society. 2014;136(16):6083–6091. doi: 10.1021/ja5017156. [DOI] [PubMed] [Google Scholar]
  • 57.Zhang Y, Xu Y. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Advanced Functional Materials. 2019;29(37):1902171. [Google Scholar]
  • 58.Roscher S, Hoffmann R, Prescher M, Knittel P, Ambacher O. High voltage electrochemical exfoliation of graphite for high-yield graphene production. RSC Advances. 2019;9:29305–29311. doi: 10.1039/c9ra04795f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Hummers W S, Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society. 1958;80(6):1339. [Google Scholar]
  • 60.Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon. 2004;42(14):2929–2937. [Google Scholar]
  • 61.Shahriary L, Athawale A A. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering. 2014;2(1):58–63. [Google Scholar]
  • 62.Dreyer D R, Todd A D, Bielawski C W. Harnessing the chemistry of graphene oxide. Chemical Society Reviews. 2014;43(15):5288–5301. doi: 10.1039/c4cs00060a. [DOI] [PubMed] [Google Scholar]
  • 63.Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials. 2009;19(16):2577–2583. [Google Scholar]
  • 64.Wang S J, Geng Y, Zheng Q, Kim J K. Fabrication of highly conducting and transparent graphene films. Carbon. 2010;48(6):1815–1823. [Google Scholar]
  • 65.Geng J, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. Journal of Physical Chemistry C. 2010;114(18):8227–8234. [Google Scholar]
  • 66.Pham V H, Cuong T V, Hur S H, Shin E W, Kim J S, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon. 2010;48(7):1945–1951. [Google Scholar]
  • 67.Alahbakhshi M, Fallahi A, Mohajerani E, Fathollahi M R, Taromi F A, Shahinpoor M. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes. Optical Materials. 2017;64:366–375. [Google Scholar]
  • 68.Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2(3):463–470. doi: 10.1021/nn700375n. [DOI] [PubMed] [Google Scholar]
  • 69.Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials. 2012;24(21):2874–2878. doi: 10.1002/adma.201200055. [DOI] [PubMed] [Google Scholar]
  • 70.De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano. 2010;4(5):2713–2720. doi: 10.1021/nn100343f. [DOI] [PubMed] [Google Scholar]
  • 71.Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z, McGovern I T, Duesberg G S, Coleman J N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society. 2009;131(10):3611–3620. doi: 10.1021/ja807449u. [DOI] [PubMed] [Google Scholar]
  • 72.De S, King P J, Lotya M, O’Neill A, Doherty E M, Hernandez Y, Duesberg G S, Coleman J N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small. 2010;6(3):458–464. doi: 10.1002/smll.200901162. [DOI] [PubMed] [Google Scholar]
  • 73.Au C T, Ng C F, Liao M S. Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: a theoretical study. Journal of Catalysis. 1999;185(1):12–22. [Google Scholar]
  • 74.Nandamuri G, Roumimov S, Solanki R. Chemical vapor deposition of graphene films. Nanotechnology. 2010;21(14):145604. doi: 10.1088/0957-4484/21/14/145604. [DOI] [PubMed] [Google Scholar]
  • 75.An H, Lee W J, Jung J. Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics. 2011;11(4):S81–S85. [Google Scholar]
  • 76.Cushing G W, Johánek V, Navin J K, Harrison I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. Journal of Physical Chemistry C. 2015;119(9):4759–4768. [Google Scholar]
  • 77.Imamura G, Saiki K. Synthesis of nitrogen-doped graphene on Pt (111) by chemical vapor deposition. Journal of Physical Chemistry C. 2011;115(20):10000–10005. [Google Scholar]
  • 78.Zhao L, Rim K T, Zhou H, He R, Heinz T F, Pinczuk A, Flynn G W, Pasupathy A N. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Communications. 2011;151(7):509–513. [Google Scholar]
  • 79.Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Growth of graphene from solid carbon sources. Nature. 2010;468(7323):549–552. doi: 10.1038/nature09579. [DOI] [PubMed] [Google Scholar]
  • 80.Virojanadara C, Syväjarvi M, Yakimova R, Johansson L I, Zakharov A A, Balasubramanian T. Homogeneous large-area graphene layer growth on 6 H-SiC(0001) Physical Review B: Condensed Matter and Materials Physics. 2008;78(24):245403. [Google Scholar]
  • 81.Wassei J K, Mecklenburg M, Torres J A, Fowler J D, Regan B C, Kaner R B, Weiller B H. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small. 2012;8(9):1415–1422. doi: 10.1002/smll.201102276. [DOI] [PubMed] [Google Scholar]
  • 82.Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials. 2012;24(20):3906–3915. [Google Scholar]
  • 83.Backes C, Abdelkader A M, Alonso C, Andrieux-Ledier A, Arenal R, Azpeitia J, Balakrishnan N, Banszerus L, Barjon J, Bartali R, Bellani S, Berger C, Berger R, Bernal Ortega M M, Bernard C, Beton P H, Beyer A, Bianco A, Bøggild P, Bonaccorso F, Barin G B, Botas C, Bueno R A, Carriazo D, Castellanos-Gomez A, Christian M, Ciesielski A, Ciuk T, Cole M T, Coleman J, Coletti C, Crema L, Cun H, Dasler D, Fazio D D, Díez N, Drieschner S, Duesberg G S, Fasel R, Feng X, Fina A, Forti S, Galiotis C, Garberoglio G, García J M, Garrido J A, Gibertini M, Gölzhäuser A, Gómez J, Greber T, Hauke F, Hemmi A, Hernandez-Rodriguez I, Hirsch A, Hodge S A, Huttel Y, Jepsen P U, Jimenez I, Kaiser U, Kaplas T, Kim H, Kis A, Papagelis K, Kostarelos K, Krajewska A, Lee K, Li C, Lipsanen H, Liscio A, Lohe M R, Loiseau A, Lombardi L, López M F, Martin O, Martín C, Martínez L, Martin-Gago J A, Martínez J I, Marzari N, Mayoral A, Melucci M J, Méndez J, Merino C, Merino P, Meyer A P, Miniussi E, Miseikis V, Mishra N, Morandi V, Munuera C, Muñoz R, Nolan H, Ortolani L, Ott A K, Palacio I, Palermo V, Parthenios J, Pasternak I, Patane A, Prato M, Prevost H, Prudkovskiy V, Pugno N, Rojo T, Rossi A, Ruffieux P, Samorì P, Schué L, Setijadi E, Seyller T, Speranza G, Stampfer C, Stenger I, Strupinski W, Svirko Y, Taioli S, Teo K B K, Testi M, Tomarchio F, Tortello M, Treossi E, Turchanin A, Vazquez E, Villaro E, Whelan P R, Xia Z, Yakimova R, Yang S, Yazdi G R, Yim C, Yoon D, Zhang X, Zhuang X, Colombo L, Ferrari A C, Garcia-Hernandez M. Production and processing of graphene and related materials. 2D Materials. 2020;7(2):022001. [Google Scholar]
  • 84.Losurdo M, Giangregorio M M, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics. 2011;13(46):20836–20843. doi: 10.1039/c1cp22347j. [DOI] [PubMed] [Google Scholar]
  • 85.Gajewski G, Pao C W. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface. Journal of Chemical Physics. 2011;135(6):064707. doi: 10.1063/1.3624524. [DOI] [PubMed] [Google Scholar]
  • 86.Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano. 2012;6(4):3614–3623. doi: 10.1021/nn3008965. [DOI] [PubMed] [Google Scholar]
  • 87.Xing S, Wu W, Wang Y, Bao J, Pei S S. Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters. 2013;580:62–66. [Google Scholar]
  • 88.Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S. Growth kinetics and defects of CVD graphene on Cu. ECS Transactions. 2010;28:109–114. [Google Scholar]
  • 89.Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science. 2013;342(6159):720–723. doi: 10.1126/science.1243879. [DOI] [PubMed] [Google Scholar]
  • 90.Shu H, Chen X, Tao X, Ding F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano. 2012;6(4):3243–3250. doi: 10.1021/nn300726r. [DOI] [PubMed] [Google Scholar]
  • 91.Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chemical Physics Letters. 2014;610–611:33–38. [Google Scholar]
  • 92.Liao M S, Au C T, Ng C F. Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study. Chemical Physics Letters. 1997;272(5–6):445–452. [Google Scholar]
  • 93.Guéret C, Daroux M, Billaud F. Methane pyrolysis: thermodynamics. Chemical Engineering Science. 1997;52(5):815–827. [Google Scholar]
  • 94.Viñes F, Lykhach Y, Staudt T, Lorenz M P A, Papp C, Steinrück H P, Libuda J, Neyman K M, Görling A. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany) 2010;16(22):6530–6539. doi: 10.1002/chem.201000296. [DOI] [PubMed] [Google Scholar]
  • 95.Loginova E, Bartelt N C, Feibelman P J, McCarty K F. Evidence for graphene growth by C cluster attachment. New Journal of Physics. 2008;10(9):093026. [Google Scholar]
  • 96.Loginova E, Bartelt N C, Feibelman P J, McCarty K F. Factors influencing graphene growth on metal surfaces. New Journal of Physics. 2009;11(6):063046. [Google Scholar]
  • 97.López G A, Mittemeijer E J. The solubility of C in solid Cu. Scripta Materialia. 2004;51(1):1–5. [Google Scholar]
  • 98.Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706–710. doi: 10.1038/nature07719. [DOI] [PubMed] [Google Scholar]
  • 99.Cai W, Piner R D, Zhu Y, Li X, Tan Z, Floresca H C, Yang C, Lu L, Kim M J, Ruoff R S. Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research. 2009;2(11):851–856. [Google Scholar]
  • 100.Wu P, Zhang W, Li Z, Yang J. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. Small. 2014;10(11):2136–2150. doi: 10.1002/smll.201303680. [DOI] [PubMed] [Google Scholar]
  • 101.Huang L, Chang Q H, Guo G L, Liu Y, Xie Y Q, Wang T, Ling B, Yang H F. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon. 2012;50(2):551–556. [Google Scholar]
  • 102.Li H B, Page A J, Wang Y, Irle S, Morokuma K. Sub-surface nucleation of graphene precursors near a Ni(111) step-edge. Chemical Communications (Cambridge) 2012;48(64):7937–7939. doi: 10.1039/c2cc32995f. [DOI] [PubMed] [Google Scholar]
  • 103.Verma V P, Das S, Lahiri I, Choi W. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters. 2010;96(20):203108. [Google Scholar]
  • 104.Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry. 2010;20(43):9713–9717. [Google Scholar]
  • 105.Nagai Y, Sugime H, Noda S. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science. 2019;201:319–324. [Google Scholar]
  • 106.Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology. 2010;5(8):574–578. doi: 10.1038/nnano.2010.132. [DOI] [PubMed] [Google Scholar]
  • 107.Kim Y, Kim S, Lee W H, Kim H. Direct transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose. 2020;27:1685–1693. [Google Scholar]
  • 108.Kim M, Shah A, Li C, Mustonen P, Susoma J, Manoocheri F, Riikonen J, Lipsanen H. Direct transfer of wafer-scale graphene films. 2D Materials. 2017;4(3):035004. [Google Scholar]
  • 109.Park I J, Kim T I, Yoon T, Kang S, Cho H, Cho N S, Lee J I, Kim T S, Choi S Y. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Advanced Functional Materials. 2018;28(10):1704435. [Google Scholar]
  • 110.Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A. Toward clean and crackless transfer of graphene. ACS Nano. 2011;5(11):9144–9153. doi: 10.1021/nn203377t. [DOI] [PubMed] [Google Scholar]
  • 111.Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters. 2009;9(12):4359–4363. doi: 10.1021/nl902623y. [DOI] [PubMed] [Google Scholar]
  • 112.Gammelgaard L, Caridad J M, Cagliani A, Mackenzie D M A, Petersen D H, Booth T J, Bøggild P. Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials. 2014;1(3):035005. [Google Scholar]
  • 113.Chan J, Venugopal A, Pirkle A, McDonnell S, Hinojos D, Magnuson C W, Ruoff R S, Colombo L, Wallace R M, Vogel E M. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano. 2012;6(4):3224–3229. doi: 10.1021/nn300107f. [DOI] [PubMed] [Google Scholar]
  • 114.Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W. Graphene annealing: how clean can it be? Nano Letters. 2012;12(1):414–419. doi: 10.1021/nl203733r. [DOI] [PubMed] [Google Scholar]
  • 115.Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications. 2017;8(1):14560. doi: 10.1038/ncomms14560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W. Clean transfer of graphene for isolation and suspension. ACS Nano. 2011;5(3):2362–2368. doi: 10.1021/nn200105j. [DOI] [PubMed] [Google Scholar]
  • 117.Kang M H, Prieto López L O, Chen B, Teo K, Williams J A, Milne W I, Cole M T. Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces. 2016;8(34):22506–22515. doi: 10.1021/acsami.6b06557. [DOI] [PubMed] [Google Scholar]
  • 118.Song J, Kam F Y, Png R Q, Seah W L, Zhuo J M, Lim G K, Ho P K H, Chua L L. A general method for transferring graphene onto soft surfaces. Nature Nanotechnology. 2013;8(5):356–362. doi: 10.1038/nnano.2013.63. [DOI] [PubMed] [Google Scholar]
  • 119.Yoon J C, Thiyagarajan P, Ahn H J, Jang J H. A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances. 2015;5(77):62772–62777. [Google Scholar]
  • 120.Qin L, Kattel B, Kafle T R, Alamri M, Gong M, Panth M, Hou Y, Wu J, Chan W. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Advanced Materials Interfaces. 2019;6(1):1801419. [Google Scholar]
  • 121.Chandrashekar B N, Deng B, Smitha A S, Chen Y, Tan C, Zhang H, Peng H, Liu Z. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Advanced Materials. 2015;27(35):5210–5216. doi: 10.1002/adma.201502560. [DOI] [PubMed] [Google Scholar]
  • 122.Marchena M, Wagner F, Arliguie T, Zhu B, Johnson B, Fernández M, Chen T L, Chang T, Lee R, Pruneri V, Mazumder P. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Materials. 2018;5(3):035022. [Google Scholar]
  • 123.Shivayogimath A, Whelan P R, Mackenzie D M A, Luo B, Huang D, Luo D, Wang M, Gammelgaard L, Shi H, Ruoff R S, Bøggild P, Booth T J. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chemistry of Materials. 2019;31(7):2328–2336. [Google Scholar]
  • 124.Kang J, Hwang S, Kim J H, Kim M H, Ryu J, Seo S J, Hong B H, Kim M K, Choi J B. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano. 2012;6(6):5360–5365. doi: 10.1021/nn301207d. [DOI] [PubMed] [Google Scholar]
  • 125.Fechine G J M, Martin-Fernandez I, Yiapanis G, Bentini R, Kulkarni E S, Bof de Oliveira R V, Hu X, Yarovsky I, Castro Neto A H, Özyílmaz B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon. 2015;83:224–231. [Google Scholar]
  • 126.Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Özyilmaz B. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small. 2015;11(2):189–194. doi: 10.1002/smll.201402024. [DOI] [PubMed] [Google Scholar]
  • 127.Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano. 2011;5(12):9927–9933. doi: 10.1021/nn203700w. [DOI] [PubMed] [Google Scholar]
  • 128.Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, Bøggild P, Booth T J. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon. 2015;85:397–405. [Google Scholar]
  • 129.Zhan Z, Sun J, Liu L, Wang E, Cao Y, Lindvall N, Skoblin G, Yurgens A. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices. 2015;3(33):8634. [Google Scholar]
  • 130.Sun J, Chen Y, Cai X, Ma B, Chen Z, Priydarshi M K, Chen K, Gao T, Song X, Ji Q, Guo X, Zou D, Zhang Y, Liu Z. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research. 2015;8(11):3496–3504. [Google Scholar]
  • 131.Wei D, Peng L, Li M, Mao H, Niu T, Han C, Chen W, Wee A T S. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS Nano. 2015;9(1):164–171. doi: 10.1021/nn505214f. [DOI] [PubMed] [Google Scholar]
  • 132.Zheng S, Zhong G, Wu X, D’Arsiè L, Robertson J. Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition. RSC Advances. 2017;7:33185–33193. [Google Scholar]
  • 133.Schmidt M E, Xu C, Cooke M, Mizuta H, Chong H M H. Metalfree plasma-enhanced chemical vapor deposition of large area nanocrystalline grapheme. Materials Research Express. 2014;1(2):025031. [Google Scholar]
  • 134.Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z. Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, Materials for Energy and Sustainability. 2019;7(9):4813–4822. [Google Scholar]
  • 135.Chen Z, Liu Y, Zhang W, Guo X, Yin L, Wang Y, Li L, Zhang Y, Wang Z, Zhang T. Growth of graphene/Ag nanowire/graphene sandwich films for transparent touch-sensitive electrodes. Materials Chemistry and Physics. 2019;221:78–88. [Google Scholar]
  • 136.Vishwakarma R, Zhu R, Abuelwafa A A, Mabuchi Y, Adhikari S, Ichimura S, Soga T, Umeno M. Direct synthesis of large-area graphene on insulating substrates at low temperature using microwave plasma CVD. ACS Omega. 2019;4(6):11263–11270. doi: 10.1021/acsomega.9b00988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Park B J, Choi J S, Eom J H, Ha H, Kim H Y, Lee S, Shin H, Yoon S G. Defect-free graphene synthesized directly at 150°C via chemical vapor deposition with no transfer. ACS Nano. 2018;12(2):2008–2016. doi: 10.1021/acsnano.8b00015. [DOI] [PubMed] [Google Scholar]
  • 138.Tran V D, Pammi S V N, Park B J, Han Y, Jeon C, Yoon S G. Transfer-free graphene electrodes for super-flexible and semitransparent perovskite solar cells fabricated under ambient air. Nano Energy. 2019;65:104018. [Google Scholar]
  • 139.Kwon K C, Kim B J, Lee J L, Kim S Y. Effect of anions in Au complexes on doping and degradation of graphene. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices. 2013;1(13):2463–2469. [Google Scholar]
  • 140.Jang C W, Kim J M, Kim J H, Shin D H, Kim S, Choi S H. Degradation reduction and stability enhancement of p-type graphene by RhCl3 doping. Journal of Alloys and Compounds. 2015;621:1–6. [Google Scholar]
  • 141.Bult J B, Crisp R, Perkins C L, Blackburn J L. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano. 2013;7(8):7251–7261. doi: 10.1021/nn402673z. [DOI] [PubMed] [Google Scholar]
  • 142.Liu H, Liu Y, Zhu D. Chemical doping of graphene. Journal of Materials Chemistry. 2011;21(10):3335–3345. [Google Scholar]
  • 143.Chae M S, Lee T H, Son K R, Kim Y W, Hwang K S, Kim T G. Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons. 2019;4(3):610–618. [Google Scholar]
  • 144.Zhang X, Hsu A, Wang H, Song Y, Kong J, Dresselhaus M S, Palacios T. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano. 2013;7(8):7262–7270. doi: 10.1021/nn4026756. [DOI] [PubMed] [Google Scholar]
  • 145.Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 2010;4(5):2865–2873. doi: 10.1021/nn901587x. [DOI] [PubMed] [Google Scholar]
  • 146.Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters. 2009;9(1):30–35. doi: 10.1021/nl801827v. [DOI] [PubMed] [Google Scholar]
  • 147.Zan R, Altuntepe A. Nitrogen doping of graphene by CVD. Journal of Molecular Structure. 2020;1199:127026. [Google Scholar]
  • 148.Kim K K, Reina A, Shi Y, Park H, Li L J, Lee Y H, Kong J. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology. 2010;21(28):285205. doi: 10.1088/0957-4484/21/28/285205. [DOI] [PubMed] [Google Scholar]
  • 149.Bi H, Huang F, Liang J, Xie X, Jiang M. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced Materials. 2011;23(28):3202–3206. doi: 10.1002/adma.201100645. [DOI] [PubMed] [Google Scholar]
  • 150.Guo C, Kong X, Ji H. Hot-roll-pressing mediated transfer of chemical vapor deposition graphene for transparent and flexible touch screen with low sheet-resistance. Journal of Nanoscience and Nanotechnology. 2018;18(6):4337–4342. doi: 10.1166/jnn.2018.15195. [DOI] [PubMed] [Google Scholar]
  • 151.Chang J H, Lin W H, Wang P C, Taur J I, Ku T A, Chen W T, Yan S J, Wu C I. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific Reports. 2015;5(1):9693. doi: 10.1038/srep09693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner D B, Hebard A F, Appleton B R. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology. 2011;22(42):425701. doi: 10.1088/0957-4484/22/42/425701. [DOI] [PubMed] [Google Scholar]
  • 153.Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C. Flexible and transparent graphene-based loudspeakers. Applied Physics Letters. 2013;102(15):151902. [Google Scholar]
  • 154.Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology. 2010;21(50):505204. doi: 10.1088/0957-4484/21/50/505204. [DOI] [PubMed] [Google Scholar]
  • 155.Galagan Y, Mescheloff A, Veenstra S C, Andriessen R, Katz E A. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics. 2015;17(5):3891–3897. doi: 10.1039/c4cp05571c. [DOI] [PubMed] [Google Scholar]
  • 156.Chochos C L, Spanos M, Katsouras A, Tatsi E, Drakopoulou S, Gregoriou V G, Avgeropoulos A. Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science. 2019;91:51–79. [Google Scholar]
  • 157.Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy. 2016;1(2):15027. [Google Scholar]
  • 158.Zhao W, Li S, Zhang S, Liu X, Hou J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Advanced Materials. 2017;29(2):1604059. doi: 10.1002/adma.201604059. [DOI] [PubMed] [Google Scholar]
  • 159.Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications. 2018;9(1):743. doi: 10.1038/s41467-018-03207-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters. 2019;4(4):844–845. [Google Scholar]
  • 161.La Notte L, Bianco G V, Palma A L, Di Carlo A, Bruno G, Reale A. Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon. 2018;129:878–883. [Google Scholar]
  • 162.Park H, Chang S, Zhou X, Kong J, Palacios T, Gradečak S. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters. 2014;14(9):5148–5154. doi: 10.1021/nl501981f. [DOI] [PubMed] [Google Scholar]
  • 163.Liu J, Durstock M, Dai L. Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy & Environmental Science. 2014;7(4):1297–1306. [Google Scholar]
  • 164.Capasso A, Salamandra L, Faggio G, Dikonimos T, Buonocore F, Morandi V, Ortolani L, Lisi N. Chemical vapor deposited graphene-based derivative as high-performance hole transport material for organic photovoltaics. ACS Applied Materials & Interfaces. 2016;8(36):23844–23853. doi: 10.1021/acsami.6b06749. [DOI] [PubMed] [Google Scholar]
  • 165.Mackenzie D M A, Buron J D, Whelan P R, Jessen B S, Silajdźić A, Pesquera A, Centeno A, Zurutuza A, Bøggild P, Petersen D H. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Materials. 2015;2(4):045003. [Google Scholar]
  • 166.La Notte L, Villari E, Palma A L, Sacchetti A, Michela Giangregorio M, Bruno G, Di Carlo A, Bianco G V, Reale A. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale. 2017;9(1):62–69. doi: 10.1039/c6nr06156g. [DOI] [PubMed] [Google Scholar]
  • 167.Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 2010;4(5):2865–2873. doi: 10.1021/nn901587x. [DOI] [PubMed] [Google Scholar]
  • 168.Park H, Howden R M, Barr M C, Bulovic V, Gleason K, Kong J. Organic solar cells with graphene electrodes and vapor printed poly (3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano. 2012;6(7):6370–6377. doi: 10.1021/nn301901v. [DOI] [PubMed] [Google Scholar]
  • 169.Lee B H, Lee J H, Kahng Y H, Kim N, Kim Y J, Lee J, Lee T, Lee K. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Advanced Functional Materials. 2014;24(13):1847–1856. [Google Scholar]
  • 170.La Notte L, Cataldi P, Ceseracciu L, Bayer I S, Athanassiou A, Marras S, Villari E, Brunetti F, Reale A. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy. 2018;7:105–112. [Google Scholar]
  • 171.Rezaei B, Afshar-Taromi F, Ahmadi Z, Amiri Rigi S, Yousefi N. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Materials Chemistry and Physics. 2019;228:325–335. [Google Scholar]
  • 172.Mahakul P C, Sa K, Das B, Subramaniam B V R S, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J, Mahanandia P. Preparation and characterization of PEDOT:PSS/reduced graphene oxide-carbon nanotubes hybrid composites for transparent electrode applications. Journal of Materials Science. 2017;52(10):5696–5707. [Google Scholar]
  • 173.Ricciardulli A G, Yang S, Wetzelaer G J A H, Feng X, Blom P W M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Advanced Functional Materials. 2018;28(14):1706010. [Google Scholar]
  • 174.Wang M, Yu H, Ma X, Yao Y, Wang L, Liu L, Cao K, Liu S, Dong C, Zhao B, Song C, Chen S, Huang W. Copper oxide-modified graphene anode and its application in organic photovoltaic cells. Optics Express. 2018;26(18):A769–A776. doi: 10.1364/OE.26.00A769. [DOI] [PubMed] [Google Scholar]
  • 175.Nan H, Han J, Luo Q, Yin X, Zhou Y, Yao Z, Zhao X, Li X, Lin H. Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science. 2018;437:227–232. [Google Scholar]
  • 176.Sankar Ganesh R, Silambarasan K, Durgadevi E, Navaneethan M, Ponnusamy S, Kong C Y, Muthamizhchelvan C, Shimura Y, Hayakawa Y. Metal sulfide nanosheet-nitrogen-doped graphene hybrids as low-cost counter electrodes for dye-sensitized solar cells. Applied Surface Science. 2019;480:177–185. [Google Scholar]
  • 177.Silambarasan K, Archana J, Athithya S, Harish S, Sankar Ganesh R, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Hara K, Hayakawa Y. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Applied Surface Science. 2020;501:144010. [Google Scholar]
  • 178.Murugadoss V, Panneerselvam P, Yan C, Guo Z, Angaiah S. A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta. 2019;312:157–167. [Google Scholar]
  • 179.Rehman S, Noman M, Khan A D, Saboor A, Ahmad M S, Khan H U. Synthesis of polyvinyl acetate/graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik (Stuttgart) 2020;202:163591. [Google Scholar]
  • 180.Chong S W, Lai C W, Juan J C, Leo B F. An investigation on surface modified TiO2 incorporated with graphene oxide for dye-sensitized solar cell. Solar Energy. 2019;191:663–671. [Google Scholar]
  • 181.Wei L, Wang P, Yang Y, Zhan Z, Dong Y, Song W, Fan R. Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode. Inorganic Chemistry Frontiers. 2018;5(1):54–62. [Google Scholar]
  • 182.Sasikumar R, Chen T W, Chen S M, Rwei S P, Ramaraj S K. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode. Optical Materials. 2018;79:345–352. [Google Scholar]
  • 183.Sadikin S N, Rahman M Y A, Umar A A, Aziz T H T. Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode. Superlattices and Microstructures. 2019;128:92–98. [Google Scholar]
  • 184.NREL . Best research-cell efficiencies. Golden, Colorado: National Renewable Energy Laboratory; 2019. [Google Scholar]
  • 185.Bag M, Renna L A, Adhikari R Y, Karak S, Liu F, Lahti P M, Russell T P, Tuominen M T, Venkataraman D. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. Journal of the American Chemical Society. 2015;137(40):13130–13137. doi: 10.1021/jacs.5b08535. [DOI] [PubMed] [Google Scholar]
  • 186.Bastos J P, Paetzold U W, Gehlhaar R, Qiu W, Cheyns D, Surana S, Spampinato V, Aernouts T, Poortmans J. Light-induced degradation of perovskite solar cells: the influence of 4-tert-butyl pyridine and gold. Advanced Energy Materials. 2018;8(23):1800554. [Google Scholar]
  • 187.Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y. Influence of air annealing on high efficiency planar structure perovskite solar cells. Chemistry of Materials. 2015;27(5):1597–1603. [Google Scholar]
  • 188.Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society. 2015;137(4):1530–1538. doi: 10.1021/ja511132a. [DOI] [PubMed] [Google Scholar]
  • 189.Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Grätzel M. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano. 2016;10(6):6306–6314. doi: 10.1021/acsnano.6b02613. [DOI] [PubMed] [Google Scholar]
  • 190.Guerrero A, You J, Aranda C, Kang Y S, Garcia-Belmonte G, Zhou H, Bisquert J, Yang Y. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano. 2016;10(1):218–224. doi: 10.1021/acsnano.5b03687. [DOI] [PubMed] [Google Scholar]
  • 191.Wang R, Mujahid M, Duan Y, Wang Z, Xue J, Yang Y. A review of perovskites solar cell stability. Advanced Functional Materials. 2019;29(47):1808843. [Google Scholar]
  • 192.Jeong G, Koo D, Seo J, Jung S, Choi Y, Lee J, Park H. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Letters. 2020;20(5):3718–3727. doi: 10.1021/acs.nanolett.0c00663. [DOI] [PubMed] [Google Scholar]
  • 193.Tavakoli M M, Tavakoli R, Yadav P, Kong J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability. 2019;7(2):679–686. [Google Scholar]
  • 194.Kim J M, Jang C W, Kim J H, Kim S, Choi S H. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells. Applied Surface Science. 2018;455:1131–1136. [Google Scholar]
  • 195.Jokar E, Huang Z Y, Narra S, Wang C Y, Kattoor V, Chung C C, Diau E W G. Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Advanced Energy Materials. 2018;8(3):1701640. [Google Scholar]
  • 196.Cogal S, Calio L, Celik Cogal G, Salado M, Kazim S, Oksuz L, Ahmad S, Uygun Oksuz A. RF plasma-enhanced graphene-polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin. 2018;75(10):4531–4545. [Google Scholar]
  • 197.Nouri E, Mohammadi M R, Lianos P. Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon. 2018;126:208–214. [Google Scholar]
  • 198.Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y, Wang M. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Letters. 2018;18(4):2442–2449. doi: 10.1021/acs.nanolett.8b00025. [DOI] [PubMed] [Google Scholar]
  • 199.O’Keeffe P, Catone D, Paladini A, Toschi F, Turchini S, Avaldi L, Martelli F, Agresti A, Pescetelli S, Del Rio Castillo A E, Bonaccorso F, Di Carlo A. Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers. Nano Letters. 2019;19(2):684–691. doi: 10.1021/acs.nanolett.8b03685. [DOI] [PubMed] [Google Scholar]
  • 200.Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & Environmental Science. 2017;10(1):337–345. [Google Scholar]
  • 201.Heo J H, Shin D H, Song D H, Kim D H, Lee S J, Im S H. Superflexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability. 2018;6(18):8251–8258. [Google Scholar]
  • 202.Zhang C, Wang S, Zhang H, Feng Y, Tian W, Yan Y, Bian J, Wang Y, Jin S, Zakeeruddin S M, Grätzel M, Shi Y. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science. 2019;12(12):3585–3594. [Google Scholar]
  • 203.Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Advanced Energy Materials. 2016;6(3):1501873. [Google Scholar]
  • 204.Fu W, Jiang L, van Geest E P, Lima L M C, Schneider G F. Sensing at the surface of graphene field-effect transistors. Advanced Materials. 2017;29(6):1603610. doi: 10.1002/adma.201603610. [DOI] [PubMed] [Google Scholar]
  • 205.Afsahi S, Lerner M B, Goldstein J M, Lee J, Tang X, Bagarozzi D A, Jr, Pan D, Locascio L, Walker A, Barron F, Goldsmith B R. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics. 2018;100:85–88. doi: 10.1016/j.bios.2017.08.051. [DOI] [PubMed] [Google Scholar]
  • 206.Chen S, Sun Y, Xia Y, Lv K, Man B, Yang C. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors & Bioelectronics. 2020;156:112128. doi: 10.1016/j.bios.2020.112128. [DOI] [PubMed] [Google Scholar]
  • 207.Hwang M T, Heiranian M, Kim Y, You S, Leem J, Taqieddin A, Faramarzi V, Jing Y, Park I, van der Zande A M, Nam S, Aluru N R, Bashir R. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications. 2020;11(1):1543. doi: 10.1038/s41467-020-15330-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Kim S, Xing L, Islam A E, Hsiao M S, Ngo Y, Pavlyuk O M, Martineau R L, Hampton C M, Crasto C, Slocik J, Kadakia M P, Hagen J A, Kelley-Loughnane N, Naik R R, Drummy L F. In operando observation of neuropeptide capture and release on graphene field-effect transistor biosensors with picomolar sensitivity. ACS Applied Materials & Interfaces. 2019;11(15):13927–13934. doi: 10.1021/acsami.8b20498. [DOI] [PubMed] [Google Scholar]
  • 209.Seo G, Lee G, Kim M J, Baek S H, Choi M, Ku K B, Lee C S, Jun S, Park D, Kim H G, Kim S J, Lee J O, Kim B T, Park E C, Kim S I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–5142. doi: 10.1021/acsnano.0c02823. [DOI] [PubMed] [Google Scholar]
  • 210.Loan P T K, Wu D, Ye C, Li X, Tra V T, Wei Q, Fu L, Yu A, Li L J, Lin C T. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors & Bioelectronics. 2018;99:85–91. doi: 10.1016/j.bios.2017.07.045. [DOI] [PubMed] [Google Scholar]
  • 211.Zhan H, Cervenka J, Prawer S, Garrett D J. Molecular detection by liquid gated Hall effect measurements of graphene. Nanoscale. 2018;10(3):930–935. doi: 10.1039/c7nr06330j. [DOI] [PubMed] [Google Scholar]
  • 212.Li N, Tang T, Li J, Luo L, Li C, Shen J, Yao J. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. Journal of Magnetism and Magnetic Materials. 2019;484:445–450. [Google Scholar]
  • 213.Zhou X, Sheng L, Ling X. Photonic spin Hall effect enabled refractive index sensor using weak measurements. Scientific Reports. 2018;8(1):1221. doi: 10.1038/s41598-018-19713-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, Materials for Biology and Medicine. 2020;8(16):3623–3630. doi: 10.1039/c9tb02388g. [DOI] [PubMed] [Google Scholar]
  • 215.Xie K X, Cao S H, Wang Z C, Weng Y H, Huo S X, Zhai Y Y, Chen M, Pan X H, Li Y Q. Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay. Sensors and Actuators B, Chemical. 2017;253:804–808. [Google Scholar]
  • 216.Sun L, Zhang Y, Wang Y, Yang Y, Zhang C, Weng X, Zhu S, Yuan X. Real-time subcellular imaging based on graphene biosensors. Nanoscale. 2018;10(4):1759–1765. doi: 10.1039/c7nr07479d. [DOI] [PubMed] [Google Scholar]
  • 217.Xu Y, Zhuang R, Zhang Z, Yi R, Guo X, Qi Z. Single-layer graphene-based surface plasmon resonance biosensors for immunization study. In: Proceedings of the 8th Applied Optics and Photonics China (AOPC 2019), Optical Spectroscopy Imaging, 2019, 11337
  • 218.Rahman M S, Anower M S, Hasan M R, Hossain M B, Haque M I. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications. 2017;396:36–43. [Google Scholar]
  • 219.Gopalan K K, Paulillo B, Mackenzie D M A, Rodrigo D, Bareza N, Whelan P R, Shivayogimath A, Pruneri V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters. 2018;18(9):5913–5918. doi: 10.1021/acs.nanolett.8b02613. [DOI] [PubMed] [Google Scholar]
  • 220.Siegel P H. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques. 2004;52(10):2438–2447. [Google Scholar]
  • 221.Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews. 2011;5(1):124–166. [Google Scholar]
  • 222.Sengupta K. Integrated circuits for terahertz communication beyond 100 GHz: are we there yet? In: Proceedings of IEEE International Conference on Communications, Workshop ICC Workshop, 2019
  • 223.Ajito K, Ueno Y. THz chemical imaging for biological applications. IEEE Transactions on Terahertz Science and Technology. 2011;1(1):293–300. [Google Scholar]
  • 224.Auton G, But D B, Zhang J, Hill E, Coquillat D, Consejo C, Nouvel P, Knap W, Varani L, Teppe F, Torres J, Song A. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Letters. 2017;17(11):7015–7020. doi: 10.1021/acs.nanolett.7b03625. [DOI] [PubMed] [Google Scholar]
  • 225.Yang X, Vorobiev A, Generalov A, Andersson M A, Stake J. A flexible graphene terahertz detector. Applied Physics Letters. 2017;111(2):021102. [Google Scholar]
  • 226.Yang X X, Sun J D, Qin H, Lv L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y. Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B. 2015;24(4):047206. [Google Scholar]
  • 227.Valmorra F, Scalari G, Maissen C, Fu W, Schönenberger C, Choi J W, Park H G, Beck M, Faist J. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Letters. 2013;13(7):3193–3198. doi: 10.1021/nl4012547. [DOI] [PubMed] [Google Scholar]
  • 228.Generalov A A, Andersson M A, Yang X, Vorobiev A, Stake J A. 400-GHz graphene FET detector. IEEE Transactions on Terahertz Science and Technology. 2017;7(5):614–616. [Google Scholar]
  • 229.Kakenov N, Ergoktas M S, Balci O, Kocabas C. Graphene based terahertz phase modulators. 2D Materials. 2018;5(3):035018. [Google Scholar]
  • 230.Shin J W, Cho H, Lee J, Moon J, Han J H, Kim K, Cho S, Lee J I, Kwon B H, Cho D H, Lee K M, Suemitsu M, Cho N S. Overcoming the efficiency limit of organic light-emitting diodes using ultra-thin and transparent graphene electrodes. Optics Express. 2018;26(2):617–626. doi: 10.1364/OE.26.000617. [DOI] [PubMed] [Google Scholar]
  • 231.Shin J W, Han J H, Cho H, Moon J, Kwon B H, Cho S, Yoon T, Kim T S, Suemitsu M, Lee J I, Cho N S. Display process compatible accurate graphene patterning for OLED applications. 2D Materials. 2017;5(1):014003. [Google Scholar]
  • 232.Lee J, Han T H, Park M H, Jung D Y, Seo J, Seo H K, Cho H, Kim E, Chung J, Choi S Y, Kim T S, Lee T W, Yoo S. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications. 2016;7(1):11791. doi: 10.1038/ncomms11791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Kwon O E, Shin J W, Oh H, Kang C, Cho H, Kwon B H, Byun C W, Yang J H, Lee K M, Han J H, Sung Cho N, Hyuk Yoon J, Jin Chae S, Sung Park J, Lee H, Hwang C S, Moon J, Lee J I. A prototype active-matrix OLED using graphene anode for flexible display application. Journal of Information Display. 2020;21(1):49–56. [Google Scholar]
  • 234.Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications. 2017;8(1):14560. doi: 10.1038/ncomms14560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Torres Alonso E, Karkera G, Jones G F, Craciun M F, Russo S. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Applied Materials & Interfaces. 2016;8(26):16541–16545. doi: 10.1021/acsami.6b04042. [DOI] [PubMed] [Google Scholar]
  • 236.Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R. Flexible graphene-based electroluminescent devices. ACS Nano. 2011;5(9):7149–7154. doi: 10.1021/nn2018649. [DOI] [PubMed] [Google Scholar]
  • 237.Shin H, Sharma B K, Lee S W, Lee J B, Choi M, Hu L, Park C, Choi J H, Kim T W, Ahn J H. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Applied Materials & Interfaces. 2019;11(15):14222–14228. doi: 10.1021/acsami.8b22135. [DOI] [PubMed] [Google Scholar]
  • 238.Chandran A, Joshi T, Sharma I, Subhedar K M, Mehta D S, Biradar A M. Monolayer graphene electrodes as alignment layer for ferroelectric liquid crystal devices. Journal of Molecular Liquids. 2019;279:294–298. [Google Scholar]
  • 239.Hu T, Wang H, Shao Y, Zhang X, Liu G, Li M, Chen H, Lee Y. 663: a high reliability PEDOT:PSS/graphene transparent electrode for liquid crystal displays. SID Symposium Digest of Technical Papers. 2017;48(1):972–975. [Google Scholar]
  • 240.Petrov S, Marinova V, Lin S H, Chang C M, Lin Y H, Hsu K Y. Large scale liquid crystal device with graphene-based electrodes. Optical Data Processing and Storage. 2017;3(1):114–118. [Google Scholar]
  • 241.Mustapha N, Fekkai Z, Ibnaouf K H. Improved performance of organic light-emitting diodes based on oligomer thin films with graphene. Journal of Electronic Materials. 2020;49(3):2203–2210. [Google Scholar]
  • 242.Fu Y, Sun J, Du Z, Guo W, Yan C, Xiong F, Wang L, Dong Y, Xu C, Deng J, Guo T, Yan Q F. Monolithic integrated device of GaN micro-LED with graphene transparent electrode and graphene active-matrix driving transistor. Materials (Basel) 2019;12(3):428. doi: 10.3390/ma12030428. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES