Skip to main content
Cancer Genomics & Proteomics logoLink to Cancer Genomics & Proteomics
. 2020 Jul 3;17(4):351–358. doi: 10.21873/cgp.20194

Eribulin Regresses a Doxorubicin-resistant Dedifferentiated Liposarcoma in a Patient-derived Orthotopic Xenograft Mouse Model

KENTARO IGARASHI 1,2,3, KEI KAWAGUCHI 1,2, TASUKU KIYUNA 1,2, KENTARO MIYAKE 1,2, TAKASHI HIGUCHI 1,2,3, NORIO YAMAMOTO 3, KATSUHIRO HAYASHI 3, HIROAKI KIMURA 3, SHINJI MIWA 3, SHREE RAM SINGH 4, HIROYUKI TSUCHIYA 3, ROBERT M HOFFMAN 1,2
PMCID: PMC7367606  PMID: 32576580

Abstract

Background/Aim: Dedifferentiated liposarcoma (DDLPS) is recalcitrant type of sarcoma. DDLPS has a low survival rate with high recurrence and metastasis. In the present study, we evaluated the efficacy of several drugs against doxorubicin-resistant DDLPS in a patient-derived orthotopic xenograft (PDOX) model for precision oncology. To establish the PDOX model, a tumor from a patient who had recurrent high-grade DDLPS from the retroperitoneum was previously grown orthotopically in the retroperitoneum of nude mice. Materials and Methods: We randomized DDLPS PDOX models into 8 treatment groups when tumor volume became approximately 100 mm3: control, no treatment; G2, doxorubicin (DOX); G3, pazopanib (PAZ); G4, gemcitabine (GEM) combined with docetaxel (DOC); G5, trabectedin (YON); G6, temozolomide (TEM); G7, palbociclib (PAL); G8, eribulin (ERB). Tumor length and width were measured both at the beginning and at the end of treatment. Results: At the end of treatment (day 14), all treatments significantly inhibited DDLPS PDOX tumor growth compared to the untreated control, except DOX. ERB was significantly more effective and regressed tumor volume compared to other treatments on day 14 after initiation of treatment. No significant differences were found in the relative body weight on day 14 compared to day 0 in any group. Conclusion: The clinical potential of ERB against DDLPS is herein presented in a PDOX model.

Keywords: Patient-derived orthotopic xenograft, PDOX, eribulin, regression, doxorubicin resistance, dedifferentiated liposarcoma


Liposarcoma is a soft tissue sarcoma (STS). Among STS, dedifferentiated liposarcoma (DDLPS) has the lowest survival rate (1) with high recurrence and metastasis rates even after treatment with first-line therapies (2,3). Novel more effective therapies are needed. We have previously established a patient-derived orthotopic xenograft (PDOX) nude-mouse model for all major cancers (4-15) including DDLPS (16).

Pazopanib is a tyrosine kinase inhibitor (TKI) that blocks tumor growth and inhibits angiogenesis (17). It was highly efficacious in a Phase 3 study in patients with STS (18). Gemcitabine is a cytidine analog that is extensively used in anti-cancer therapy. Gemcitabine is easily incorporated into DNA and causes cytotoxicity by inhibiting DNA replication (19-22). Docetaxel is a cytotoxic taxane that blocks mitosis (23,24). The combination of gemcitabine and docetaxel has shown synergism (25) both in vitro (26) and in vivo (27). Recent studies demonstrated that the combination of gemcitabine and docetaxel was highly effective in patients with STS (28-30). Trabectedin is a synthetic, marine-derived alkylating agent derived from the Caribbean tunicate, Ecteinascidia turbinate (31). Trabectedin is active in patients with liposarcoma (32) and has multiple mechanisms of action (33). Temozolomide is a cytotoxic prodrug which exerts cytotoxicity mainly by methylating nucleotide bases (34). Temozolomide has shown clinical activity against high-grade brain cancer (35), melanoma (36), and pediatric rhabdomyosarcomas (37-38). A Phase II clinical trial of temozolomide on advanced STS showed an increase in progression-free survival (39).

Cyclin-dependent kinase 4 (CDK4), is amplified in more than 90% of well-differentiated liposarcomas (WDLS)/ dedifferentiated liposarcomas (DDLS) (40-42). It has been demonstrated that inhibiting the expression of CDK4 with short hairpin RNA (shRNA) inhibits growth of STS cells in vitro (43).

Eribulin, synthesized from a marine sponge Halichondria okadai (44,45), is a non-taxane microtubule-dynamics inhibitor (46,47). Eribulin has been approved by the Food and Drug Administration (FDA) for aggressive breast cancer patients (48). In the United States, Eribulin has been used for the treatment of patients with inoperable or metastatic liposarcoma since 2016 (49).

The present report demonstrates that a DDLPS PDOX model identified eribulin as a highly effective drug that regresses tumor volume indicating its clinical potential.

Materials and Methods

Animal care. Male athymic nu/nu nude mice (AntiCancer Inc., San Diego, CA, USA), 4-6 weeks old, were used in the present study. Mouse studies were conducted with an AntiCancer Inc. Institutional Animal Care and Use Committee (IACUC)-protocol specifically approved for this study and in accordance with the principles and procedures outlined in the National Institutes of Health (NIH) Guide for the Care and Use of Animals under Assurance Number A3873-1 (16). To minimize suffering of animals during surgery, anesthesia and analgesics were provided (16).

Patient-derived tumor. A 69-year-old male patient with DDLPS of right retroperitoneum underwent radical resection with en bloc right nephrectomy (16). Two years after surgery, local recurrence resulted (16). The patient previously underwent surgical resection at the Department of Surgery, University of California, Los Angeles, USA (UCLA) (16). Written informed consent was obtained from the patient as part of a UCLA Institutional Review Board approval protocol (IRB #10-001857) (16).

Establishment of DDLPS PDOX model. A fresh specimen of the tumor of the patient was previously obtained and transported immediately to the laboratory at AntiCancer, Inc., on wet ice (16). The detailed procedure of cutting samples into small fragments and their initial implantation subcutaneously in nude mice, to subsequently establish PDOX models and wound closure has been described in our previous publication (16).

Treatment protocols for the DDLPS PDOX model. PDOX mouse models were randomly divided into 8 groups: G1, control no treatment; G2, doxorubicin (DOX) [3 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks]; G3, pazopanib (PAZ) [100 mg/kg, p.o., daily, for 2 weeks]; G4, gemcitabine (GEM) (100 mg/kg, i.p., weekly, for 2 weeks) combined with docetaxel (DOC) (20 mg/kg, i.p., once); G5, trabectedin (YON) [0.15 mg/kg, intravenous (i.v.) injection, weekly, for 2 weeks]; G6, temozolomide (TEM) (25 mg/kg, p.o., daily, for 2 weeks); G7, palbociclib (PAL) (100 mg/kg, p.o., daily, for 2 weeks); G8, eribulin (ERB) (1.5 mg/kg, i.v., weekly, for 2 weeks) (Figure 1A). Each treatment group contained 8 mice. Tumor length and width were measured both before and after treatment. Tumor volume was calculated based on our previous studies (16). The tumor volume ratio is defined at the tumor volume at a post-treatment point relative to pre-treatment tumor volume (50).

Figure 1. (A) Treatment schema for the DDLPS PDOX model. (B) Efficacy of doxorubicin (DOX), pazopanib (PAZ), gemcitabine combined with docetaxel (GEM+DOC), trabectedin (YON), temozolomide (TEM), palbociclib (PAL) and eribulin (ERB) on the DDLPS PDOX model. Tumor volume was measured pre- and post-treatment. N=8 mice/group. (C) Relative tumor volume for each mouse is presented in a waterfall plot.

Figure 1

Histological examination. Detailed protocols to fix the fresh tumor samples, embedding in paraffin, sectioning and staining were described previously (16). Hematoxylin and eosin (H&E) staining was performed according to a standard protocol (16). Histological examination was performed with a BHS system microscope and images were acquired with INFINITY ANALYZE software (Lumenera Corporation, Ottawa, Canada).

Statistical analysis. All statistical analyses were performed as previously described (50). The Student’s t-test was used to determine the significant differences for continuous variables. Data are presented as mean±standard deviation (SD). A probability value p≤0.05 was considered a statistically-significant difference.

Results

Drug efficacy. At the end of treatment (Day 14), all treatments significantly inhibited DDLPS tumor growth compared to the untreated control except DOX: (DOX: p=0.61; PAZ: p=0.17; GEM+DOC: p=0.11; YON p=0.04; TEM: p=0.04; PAL: p=0.01; ERB: p=0.001). However, ERB was significantly more effective compared to DOX (p=0.001), PAZ (p=0.001), GEM+DOC (p=0.001), YON (p=0.001), TEM (p=0.001) and PAL (p=0.01). In addition, ERB significantly regressed tumor volume by the end of treatment (day 14) compared with day 0 (p=0.001) (Figure 1 and Figure 2).

Figure 2. Representative images of DDLPS PDOX models, pre- (left panels) and post- (right panels) treatment.

Figure 2

Body weight. No significant difference was observed in the relative body weight on day 14 compared to day 0 in any treatment group (Figure 3).

Figure 3. Body weight of (DOX); pazopanib (PAZ); gemcitabine combined with docetaxel (GEM+DOC); trabectedin (YON); temozolomide (TEM); palbociclib (PAL); and eribulin (ERB). Bar graph shows body weight in each group before (day 0) and after treatment (day14). N=8 mice/group.

Figure 3

Histology. High-power photomicrographs of the untreated control PDOX tumor show spindle cells with hyperchromatic and enlarged nuclei. Mitotic figures and atypical cells are present (Figure 4A). Tumors treated with DOX and PAZ had viable cells with no obvious necrosis or inflammatory changes (Figure 4B and C). Tumors treated with GEM+DOC and YON show changes in cancer-cell shapes and few necrotic cancer cells (Figure 4D and E). Tumors treated with TEM and PAL show changes in cancer-cell shapes, few necrotic cancer cells and also fibrotic areas (Figure 4F and G). In contrast, tumors treated with ERB show decreased tumor cellularity, necrotic cancer cells and tissue fibrosis (Figure 4H).

Figure 4. Tumor histology. H&E-stained sections of the untreated PDOX tumor (A); PDOX tumor treated with doxorubicin (DOX) (B); PDOX tumor treated with pazopanib (PAZ) (C); PDOX tumor treated with gemcitabine combined with docetaxel (GEM+DOC) (D); PDOX tumor treated with trabectedin (YON) (E); PDOX tumor treated with temozolomide (TEM) (F); PDOX tumor treated with palbociclib (PAL) (G); and PDOX tumor treated with eribulin (ERB) (H). White scale bars: 50 μm.

Figure 4

Discussion

DDLPS is a recalcitrant sarcoma with the lowest survival rate among liposarcoma. DDLPS frequently recurs or metastasizes after first therapy because no current curative options are available (1,2). Therefore, transformative, personalized and effective therapy is urgently needed for DDLPS patients.

PDOX models have provided clinically-relevant individualized mouse models of cancer since PDOX models recapitulate clinical behavior, and mimic tumor-specific drug-sensitivity (51). PDOX models of sarcoma behave very similarly to patient sarcoma in terms of recurrence after surgery (15), and metastasis (52) and invasiveness to surrounding tissue (15,53).

Using PDOX models, multiple therapeutic agents can be tested (53-60), including targeted therapy in a preclinical model (61-66).

In the present study, ERB was found to regress the DDLPS PDOX tumor. The present study, using PDOX models, provides DDLPS patients with specific and personalized treatment options. Future studies will label the DDLPS PDOX tumors with fluorescent proteins by growing them in transgenic nude mice expressing fluorescent proteins, whereby the PDOX tumor acquires fluorescent stromal cells. Such labeled tumors will be used to detect metastasis in non-colored mice (52,67). Thus far, all sarcoma PDOX models have correlated with drug resistance in the patient (68).

Conflicts of Interest

KI, KK, TK, KM, TH, NY, KH, HK, SM and RMH are or were unsalaried members of AntiCancer Inc., which uses PDOX models for contract research. There are no other competing financial interests.

Authors’ Contributions

Conception and design: KI and RMH. Acquisition of data: KI, KK, TK, KM and TH. Analysis and interpretation of data: KI, KK, TK, KM, TH, NY, KH, HK, SM, SRS, HT and RMH. Writing, review, and/or revision of the manuscript: KI, RMH and SRS.

Acknowledgements

This paper is dedicated to the memory of AR Moossa, MD, Sun Lee, MD, Professor Li Jiaxi, and Masaki Kitajima, MD.

References

  • 1.Jones RL, Fisher C, Al-Muderis O, Judson IR. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur J Cancer. 2005;41:2853–2860. doi: 10.1016/j.ejca.2005.07.023. PMID: 16289617. DOI: 10.1016/j.ejca.2005.07.023. [DOI] [PubMed] [Google Scholar]
  • 2.Crago AM, Singer S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol. 2011;23:373–378. doi: 10.1097/CCO.0b013e32834796e6. PMID: 21552124. DOI: 10.1097/CCO.0b013e32834796e6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Lorigan P, Verweij J, Papai Z, Rodenhuis S, Le Cesne A, Leahy MG, Radford JA, Van Glabbeke MM, Kirkpatrick A, Hogendoorn PCW, Blay J-Y, European organisation for research and treatment of cancer soft tissue and bone sarcoma Group Study Phase III Trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma. J Clin Oncol. 2007;25:3144–3150. doi: 10.1200/JCO.2006.09.7717. PMID: 17634494. DOI: 10.1200/JCO.2006.09.7717. [DOI] [PubMed] [Google Scholar]
  • 4.Fu X, Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci. 1992;89:5645–5649. doi: 10.1073/pnas.89.12.5645. PMID: 1608975. DOI: 10.1073/pnas.89.12.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Hiroshima Y, Maawy A, Zhang Y, Murakami T, Momiyama M, Mori R, Matsuyama R, Katz MHG, Fleming JB, Chishima T, Tanaka K, Ichikawa Y, Endo I, Hoffman RM, Bouvet M. Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19-9-conjugated fluorophore. PLoS One. 2014;9:e114310. doi: 10.1371/journal.pone.0114310. PMID: 25463150. DOI: 10.1371/journal.pone.0114310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fu X, Le P, Hoffman RM. A metastatic orthotopic - transplant nude-mouse model of human patient breast cancer. Anticancer Res. 1993;13:901–904. PMID: 8352558. [PubMed] [Google Scholar]
  • 7.Fu X, Hoffman RM. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res. 1993;13:283–286. PMID: 8517640. [PubMed] [Google Scholar]
  • 8.Wang X, Fu X, Hoffman RM. A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int J Cancer. 1992;51:992–995. doi: 10.1002/ijc.2910510626. PMID: 1639545. DOI: 10.1002/ijc.2910510626. [DOI] [PubMed] [Google Scholar]
  • 9.Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, Uehara F, Miwa S, Yano S, Murakami T, Momiyama M, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Murata T, Endo I, Hoffman RM. Establishment of a patient-derived orthotopic xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One. 2015;10:e0117417. doi: 10.1371/journal.pone.0117417. PMID: 25689852. DOI: 10.1371/journal.pone.0117417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Fu X, Besterman JM, Monosov A, Hoffman RM. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci USA. 1991;88:9345–9349. doi: 10.1073/pnas.88.20.9345. PMID: 1924398. DOI: 10.1073/pnas.88.20.9345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Metildi CA, Kaushal S, Luiken GA, Talamini MA, Hoffman RM, Bouvet M. Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Surg Oncol. 2014;109:451–458. doi: 10.1002/jso.23507. PMID: 24249594. DOI: 10.1002/jso.23507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM. Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: Correlation of metastatic sites in mouse and individual patient donors. Int J Cancer. 1993;53:608–612. doi: 10.1002/ijc.2910530414. PMID: 8436434. DOI: 10.1002/ijc.2910530414. [DOI] [PubMed] [Google Scholar]
  • 13.Murakami T, DeLong J, Eilber FC, Zhao M, Zhang Y, Zhang N, Singh A, Russell T, Deng S, Reynoso J, Quan C, Hiroshima Y, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Chawla S, Endo I, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget. 2016;7:12783–12790. doi: 10.18632/oncotarget.7226. PMID: 26859573. DOI: 10.18632/oncotarget.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kiyuna T, Murakami T, Tome Y, Kawaguchi K, Igarashi K, Zhang Y, Zhao M, Li Y, Bouvet M, Kanaya F, Singh A, Dry S, Eilber FC, Hoffman RM. High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin- and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget. 2016;7:33046–33054. doi: 10.18632/oncotarget.8848. PMID: 27105519. DOI: 10.18632/oncotarget.8848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh A, Kimura H, Hayashi K, Yamamoto N, Tsuchiya H, Eilber FC, Hoffman RM. Patient-derived orthotopic xenograft (PDOX) mouse model of adult rhabdomyosarcoma invades and recurs after resection in contrast to the subcutaneous ectopic model. Cell Cycle. 2017;16:91–94. doi: 10.1080/15384101.2016.1252885. PMID: 27830986. DOI: 10.1080/15384101.2016.1252885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyaki M, Yamamoto N, Hayashi K, Kimura H, Miwa S, Higuchi T, Singh AS, Chmielowski B, Nelson SD, Russell TA, Eckardt MA, Dry SM, Li Y, Singh SR, Chawla SP, Eilber FC, Tsuchiya H, Hoffman RM. Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun. 2018;506:912–917. doi: 10.1016/j.bbrc.2018.10.119. PMID: 30392912. DOI: 10.1016/j.bbrc.2018.10.119. [DOI] [PubMed] [Google Scholar]
  • 17.Schöffski P. Pazopanib in the treatment of soft tissue sarcoma. Expert Rev Anticancer Ther. 2012;12:711–723. doi: 10.1586/era.12.41. PMID: 22716487. DOI: 10.1586/era.12.41. [DOI] [PubMed] [Google Scholar]
  • 18.Van Der Graaf WTA, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schöffski P, Aglietta M, Staddon AP, Beppu Y, Le Cesne A, Gelderblom H, Judson IR, Araki N, Ouali M, Marreaud S, Hodge R, Dewji MR, Coens C, Demetri GD, Fletcher CD, Dei Tos AP, Hohenberger P. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;79:1879–1886. doi: 10.1016/S0140-6736(12)60651-5. PMID: 22595799. DOI: 10.1016/S0140-6736(12)60651-5. [DOI] [PubMed] [Google Scholar]
  • 19.Hertel LW, Lawrence TS. Metabolism of 2’,2’-Difluoro-2’-Deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res. 1994;54:3218–3223. PMID: 8205542. [PubMed] [Google Scholar]
  • 20.Iwasaki H, Huang P, Keating MJ, Plunkett W. Differential incorporation of ara-C, gemcitabine, and fludarabine into replicating and repairing DNA in proliferating human leukemia cells. Blood. 1997;90:270–278. PMID: 9207462. [PubMed] [Google Scholar]
  • 21.Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. Action of 2’,2’-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991;51:6110–6117. PMID: 1718594. [PubMed] [Google Scholar]
  • 22.Ross DD, Cuddy DP. Molecular effects of 2,2-difluorodeoxycytidine (gemcitabine) on DNA replication in intact HL-60 cells. Biochem Pharmacol. 1994;48:1619–1630. doi: 10.1016/0006-2952(94)90207-0. PMID: 7980627. DOI: 10.1016/0006-2952(94)90207-0. [DOI] [PubMed] [Google Scholar]
  • 23.Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–667. doi: 10.1038/277665a0. PMID: 423966. DOI: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  • 24.Rowinsky EK, Onetto N, Canetta RM, Arbuck SG. Taxol: The first of the taxanes, an important new class of antitumor agents. Semin Oncol. 1992;19:646–662. PMID: 1361079. [PubMed] [Google Scholar]
  • 25.Smorenburg CH, Sparreboom A, Bontenbal M, Verweij J. Combination chemotherapy of the taxanes and antimetabolites: Its use and limitations. Eur J Cancer. 2001;37:2310–2323. doi: 10.1016/s0959-8049(01)00309-4. PMID: 11720823. DOI: 10.1016/s0959-8049(01)00309-4. [DOI] [PubMed] [Google Scholar]
  • 26.Leu KM, Ostruszka LJ, Shewach D, Zalupski M, Sondak V, Sybil Biertnann J, Lee JSJ, Couwlier C, Palazzolo K, Baker LH. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treament with gemcitabine followed by docetaxel in the treatment of sarcoma. J Clin Oncol. 2004;22:1706–1712. doi: 10.1200/JCO.2004.08.043. PMID: 15117993. DOI: 10.1200/JCO.2004.08.043. [DOI] [PubMed] [Google Scholar]
  • 27.Alexopoulos A, Tryfonopoulos D, Karamouzis MV, Gerasimidis G, Karydas I, Kandilis K, Stavrakakis J, Stavrinides H, Georganta C, Ardavanis A, Rigatos G. Evidence for in vivo synergism between docetaxel and gemcitabine in patients with metastatic breast cancer. Ann Oncol. 2004;15:95–99. doi: 10.1093/annonc/mdh028. PMID: 14679126. DOI: 10.1093/annonc/mdh028. [DOI] [PubMed] [Google Scholar]
  • 28.Hensley ML, Maki R, Venkatraman E, Geller G, Lovegren M, Aghajanian C, Sabbatini P, Tong W, Barakat R, Spriggs DR. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: Results of a phase II trial. J Clin Oncol. 2002;20:2824–2831. doi: 10.1200/JCO.2002.11.050. PMID: 12065559. DOI: 10.1200/JCO.2002.11.050. [DOI] [PubMed] [Google Scholar]
  • 29.Maki RG, Wathen JK, Patel SR, Priebat DA, Okuno SH, Samuels B, Fanucchi M, Harmon DC, Schuetze SM, Reinke D, Thall PF, Benjamin RS, Baker LH, Hensley ML. Randomized Phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: Results of sarcoma alliance for research through collaboration study 002. J Clin Oncol. 2007;25:2755–2763. doi: 10.1200/JCO.2006.10.4117. PMID: 17602081. DOI: 10.1200/JCO.2006.10.4117. [DOI] [PubMed] [Google Scholar]
  • 30.Bay JO, Ray-Coquard I, Fayette J, Leyvraz S, Cherix S, Piperno-Neumann S, Chevreau C, Isambert N, Brain E, Emile G, Le Cesne A, Cioffi A, Kwiatkowski F, Coindre JM, Bui NB, Peyrade F, Blay JY. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: A retrospective analysis. Int J Cancer. 2006;119:706–711. doi: 10.1002/ijc.21867. PMID: 16496406. DOI: 10.1002/ijc.21867. [DOI] [PubMed] [Google Scholar]
  • 31.Cuevas C, Francesch A. Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep. 2009;26:322–337. doi: 10.1039/b808331m. PMID: 19240944. DOI: 10.1039/b808331m. [DOI] [PubMed] [Google Scholar]
  • 32.Le Cesne A, Ray-Coquard I, Duffaud F, Chevreau C, Penel N, Bui Nguyen B, Piperno-Neumann S, Delcambre C, Rios M, Chaigneau L, Le Maignan C, Guillemet C, Bertucci F, Bompas E, Linassier C, Olivier T, Kurtz JE, Even C, Cousin P, Yves Blay J. Trabectedin in patients with advanced soft tissue sarcoma: A retrospective national analysis of the French Sarcoma Group. Eur J Cancer. 2015;51:742–750. doi: 10.1016/j.ejca.2015.01.006. PMID: 25727882. DOI: 10.1016/j.ejca.2015.01.006. [DOI] [PubMed] [Google Scholar]
  • 33.Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M, Allavena P. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23:249–262. doi: 10.1016/j.ccr.2013.01.008. PMID: 23410977. DOI: 10.1016/j.ccr.2013.01.008. [DOI] [PubMed] [Google Scholar]
  • 34.Tisdale MJ. Antitumour imidazotetrazines – XV. Biochem Pharmacol. 1987;36:457–462. doi: 10.1016/0006-2952(87)90351-0. DOI: 10.1016/0006-2952(87)90351-0. [DOI] [PubMed] [Google Scholar]
  • 35.Yung WKA, Prados MD, Yaya-Tur R, Rosenfeld SS, Brada M, Friedman HS, Albright R, Olson J, Chang SM, O’Neill AM, Friedman AH, Bruner J, Yue N, Dugan M, Zaknoen S, Levin VA. Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. J Clin Oncol. 1999;17:2762–2762. doi: 10.1200/JCO.1999.17.9.2762. PMID: 10561351. DOI: 10.1200/JCO.1999.17.9.2762. [DOI] [PubMed] [Google Scholar]
  • 36.Bleehen NM, Newlands ES, Lee SM, Thatcher N, Selby P, Calvert AH, Rustin GJS, Brampton M, Stevens MFG. Cancer Research Campaign phase II trial of temozolomide in metastatic melanoma. J Clin Oncol. 1995;13:910–913. doi: 10.1200/JCO.1995.13.4.910. PMID: 7707118. DOI: 10.1200/JCO.1995.13.4.910. [DOI] [PubMed] [Google Scholar]
  • 37.Middlemas DS, Stewart CF, Kirstein MN, Poquette C, Friedman HS, Houghton PJ, Brent TP. Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models. Clin Cancer Res. 2000;6:998–1007. PMID: 10741727. [PubMed] [Google Scholar]
  • 38.Houghton PJ, Stewart CF, Cheshire PJ, Richmond LB, Kirstein MN, Poquette CA, Tan M, Friedman HS, Brent TP. Antitumor activity of temozolomide combined with irinotecan is partly independent of O6-methylguanine-DNA methyltransferase and mismatch repair phenotypes in xenograft models. Clin Cancer Res. 2000;6:4110–4118. PMID: 11051264. [PubMed] [Google Scholar]
  • 39.Garcia Del Muro X, Lopez-Pousa A, Martin J, Buesa JM, Martinez-Trufero J, Casado A, Poveda A, Cruz J, Bover I, Maurel J. A phase II trial of temozolomide as a 6-week, continuous, oral schedule in patients with advanced soft tissue sarcoma: A study by the spanish group for research on sarcomas. Cancer. 2005;104:1706–1712. doi: 10.1002/cncr.21384. PMID: 16134177. DOI: 10.1002/cncr.21384. [DOI] [PubMed] [Google Scholar]
  • 40.Binh MBN, Sastre-Garau X, Guillou L, Pinieux G de, Terrier P, Lagace R, Aurias A, Hostein I, Coindre JM. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes. Am J Surg Pathol. 2005;29:1340–1347. doi: 10.1097/01.pas.0000170343.09562.39. PMID: 16160477. DOI: 10.1097/01.pas.0000170343.09562.39. [DOI] [PubMed] [Google Scholar]
  • 41.Sirvent N, Coindre J-M, Maire G, Hostein I, Keslair F, Guillou L, Ranchere-Vince D, Terrier P, Pedeutour F. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: Utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31:1476–1489. doi: 10.1097/PAS.0b013e3180581fff. PMID: 17895748. DOI: 10.1097/PAS.0b013e3180581fff. [DOI] [PubMed] [Google Scholar]
  • 42.Tap WD, Eilber FC, Ginther C, Dry SM, Reese N, Barzan-Smith K, Chen H-W, Wu H, Eilber FR, Slamon DJ, Anderson L. Evaluation of well-differentiated/de-differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosom Cancer. 2011;50:95–112. doi: 10.1002/gcc.20835. PMID: 21117066. DOI: 10.1002/gcc.20835. [DOI] [PubMed] [Google Scholar]
  • 43.Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, DeCarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42:715–721. doi: 10.1038/ng.619. PMID: 20601955. DOI: 10.1038/ng.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Bai R, Paull KD, Herald CL, Malspeis L, Pettit GR, Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin: Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem. 1991;266:15882–15889. PMID: 1874739. [PubMed] [Google Scholar]
  • 45.Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, Dipietro L V., Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ, Littlefield BA. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 2001;61:1013–1021. PMID: 11221827. [PubMed] [Google Scholar]
  • 46.Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–265. doi: 10.1038/nrc1317. PMID: 15057285. DOI: 10.1038/nrc1317. [DOI] [PubMed] [Google Scholar]
  • 47.Okouneva T, Azarenko O, Wilson L, Littlefield BA, Jordan MA. Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol Cancer Ther. 2008;7:2003–2011. doi: 10.1158/1535-7163.MCT-08-0095. PMID: 18645010. DOI: 10.1158/1535-7163.MCT-08-0095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Cigler T, Vahdat LT. Eribulin mesylate for the treatment of breast cancer. Expert Opin Pharmacother. 2010;11:1587–1593. doi: 10.1517/14656566.2010.486790. PMID: 20450446. DOI: 10.1517/14656566.2010.486790. [DOI] [PubMed] [Google Scholar]
  • 49.Emambux S, Italiano A. Clinical efficacy of eribulin mesylate for the treatment of metastatic soft tissue sarcoma. Expert Opin Pharmacother. 2017;18:819–824. doi: 10.1080/14656566.2017.1326908. PMID: 28468516. DOI: 10.1080/14656566.2017.1326908. [DOI] [PubMed] [Google Scholar]
  • 50.Kawaguchi K, Igarashi K, Murakami T, Chmielowski B, Kiyuna T, Zhao M, Zhang Y, Singh A, Unno M, Nelson SD, Russell TA, Dry SM, Li Y, Eilber FC, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget. 2016;7:85929–85936. doi: 10.18632/oncotarget.13231. PMID: 27835903. DOI: 10.18632/oncotarget.13231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hiroshima Y, Maawy A, Zhang Y, Zhang N, Murakami T, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I, Hoffman RM. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget. 2016;7:71696–71702. doi: 10.18632/oncotarget.12322. PMID: 27765934. DOI: 10.18632/oncotarget.12322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Oshiro H, Kiyuna T, Tome Y, Miyake K, Kawaguchi K, Higuchi T, Miyake M, Zhang Z, Razmjooei S, Barangi M, Wangsiricharoen S, Nelson SD, Li Y, Bouvet M, Singh SR, Kanaya F, Hoffman RM. Detection of metastasis in a patient-derived orthotopic xenograft (PDOX) model of undifferentiated pleomorphic sarcoma with red fluorescent protein. Anticancer Res. 2019;39:81–85. doi: 10.21873/anticanres.13082. PMID: 30591443. DOI: 10.21873/anticanres.13082. [DOI] [PubMed] [Google Scholar]
  • 53.Igarashi K, Murakami T, Kawaguchi K, Kiyuna T, Miyake K, Zhang Y, Nelson SD, Dry SM, Li Y, Yanagawa J, Russell TA, Singh AS, Tsuchiya H, Elliott I, Eilber FC, Hoffman RM. A patient-derived orthotopic xenograft (PDOX) mouse model of a cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: Implications for precision oncology. Oncotarget. 2017;8:62111–62119. doi: 10.18632/oncotarget.19095. PMID: 28977930. DOI: 10.18632/oncotarget.19095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Miyake K, Murakami T, Kiyuna T, Igarashi K, Kawaguchi K, Miyake M, Li Y, Nelson SD, Dry SM, Bouvet M, Elliott IA, Russell TA, Singh AS, Eckardt MA, Hiroshima Y, Momiyama M, Matsuyama R, Chishima T, Endo I, Eilber FC, Hoffman RM. The combination of temozolomide-irinotecan regresses a doxorubicin-resistant patient-derived orthotopic xenograft (PDOX) nude-mouse model of recurrent Ewing’s sarcoma with a FUS-ERG fusion and CDKN2A deletion: Direction for third-line patient therapy. Oncotarget. 2017;8:103129–103136. doi: 10.18632/oncotarget.20789. PMID: 29262551. DOI: 10.18632/oncotarget.20789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Kawaguchi K, Igarashi K, Miyake K, Kiyuna T, Miyake M, Singh AS, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Singh SR, Eilber FC, Hoffman RM. Patterns of sensitivity to a panel of drugs are highly individualised for undifferentiated/unclassified soft tissue sarcoma (USTS) in patient-derived orthotopic xenograft (PDOX) nude-mouse models. J Drug Target. 2019;27:211–216. doi: 10.1080/1061186X.2018.1499748. PMID: 30024282. DOI: 10.1080/1061186X.2018.1499748. [DOI] [PubMed] [Google Scholar]
  • 56.Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh AS, Kimura H, Hayashi K, Yamamoto N, Tsuchiya H, Eilber FC, Hoffman RM. Temozolomide combined with irinotecan caused regression in an adult pleomorphic rhabdomyosarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget. 2017;8:75874–75888. doi: 10.18632/oncotarget.16548. PMID: 29100276. DOI: 10.18632/oncotarget.16548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Li Y, Nelson SD, Dry SM, Singh AS, Elliott IA, Russell TA, Eckardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Temozolomide combined with irinotecan regresses a cisplatinumresistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) precision-oncology mouse model. Oncotarget. 2018;9:7774–7781. doi: 10.18632/oncotarget.22892. PMID: 29487690. DOI: 10.18632/oncotarget.22892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Li Y, Nelson SD, Dry SM, Singh AS, Elliott IA, Russell TA, Eckardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Temozolomide regresses a doxorubicin-resistant undifferentiated spindle-cell sarcoma patient-derived orthotopic xenograft (PDOX): precision-oncology nude-mouse model matching the patient with effective therapy. J Cell Biochem. 2018;119:6598–6603. doi: 10.1002/jcb.26792. PMID: 29737543. DOI: 10.1002/jcb.26792. [DOI] [PubMed] [Google Scholar]
  • 59.Kiyuna T, Tome Y, Murakami T, Kawaguchi K, Igarashi K, Miyake K, Miyake M, Li Y, Nelson SD, Dry SM, Singh AS, Russell TA, Elliott I, Singh SR, Kanaya F, Eilber FC, Hoffman RM. Trabectedin arrests a doxorubicin-resistant PDGFRA-activated liposarcoma patient-derived orthotopic xenograft (PDOX) nude mouse model. BMC Cancer. 2018;18:840. doi: 10.1186/s12885-018-4703-0. PMID: 29737543. DOI: 10.1002/jcb.26792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Higuchi T, Kawaguchi K, Miyake K, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Igarashi K, Yamamoto N, Hayashi K, Kimura H, Miwa S, Nelson SD, Dry SM, Li Y, Chawla SP, Eilber FC, Singh SR, Tsuchiya H, Hoffman RM. The combination of gemcitabine and nab-paclitaxel as a novel effective treatment strategy for undifferentiated soft-tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Biomed Pharmacother. 2019;111:835–840. doi: 10.1016/j.biopha.2018.12.110. PMID: 30616082. DOI: 10.1016/j.biopha.2018.12.110. [DOI] [PubMed] [Google Scholar]
  • 61.Murakami T, Singh AS, Kiyuna T, Dry SM, Li Y, James AW, Igarashi K, Kawaguchi K, DeLong JC, Zhang Y, Hiroshima Y, Russell T, Eckardt MA, Yanagawa J, Federman N, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing’s sarcoma patient-derived orthotopic xenograft (PDOX) nudemouse model. Oncotarget. 2016;7:47556–47564. doi: 10.18632/oncotarget.9879. PMID: 27286459. DOI: 10.18632/oncotarget.9879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Miyake K, Kawaguchi K, Kiyuna T, Miyake M, Igarashi K, Zhang Z, Murakami T, Li Y, Nelson SD, Elliott I, Russell T, Singh A, Hiroshima Y, Momiyama M, Matsuyama R, Chishima T, Endo I, Eilber FC, Hoffman RM. Regorafenib regresses an imatinib-resistant recurrent gastrointestinal stromal tumor (GIST) with a mutation in exons 11 and 17 of c-kit in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cell Cycle. 2018;17:722–727. doi: 10.1080/15384101.2017.1423223. PMID: 27286459. DOI: 10.18632/oncotarget.9879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Miyake K, Kiyuna T, Kawaguchi K, Higuchi T, Oshiro H, Zhang Z, Wangsiricharoen S, Razmjooei S, Li Y, Nelson SD, Murakami T, Hiroshima Y, Matsuyama R, Bouvet M, Chawla SP, Singh SR, Endo I, Hoffman RM. Regorafenib regressed a doxorubicin-resistant Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cancer Chemother Pharmacol. 2019;83:809–815. doi: 10.1007/s00280-019-03782-w. PMID: 30758647. DOI: 10.1007/s00280-019-03782-w. [DOI] [PubMed] [Google Scholar]
  • 64.Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999;17(4):343–359. doi: 10.1023/a:1006326203858. PMID: 10759402. DOI: 10.1023/a:1006326203858. [DOI] [PubMed] [Google Scholar]
  • 65.Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15(8):451–452. doi: 10.1038/nrc3972. PMID: 26422835. DOI: 10.1038/nrc3972. [DOI] [PubMed] [Google Scholar]
  • 66.Hoffman RM. Orthotopic is orthodox: why are orthotopic-transplant metastatic models different from all other models. J Cell Biochem. 1993;56(1):1–3. doi: 10.1002/jcb.240560102. PMID: 7806583. DOI: 10.1002/jcb.240560102. [DOI] [PubMed] [Google Scholar]
  • 67.Yang M, Reynoso J, Bouvet M, Hoffman RM. A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. J Cell Biochem. 2009;106(2):279–84. doi: 10.1002/jcb.21999. PMID: 19097136. DOI: 10.1002/jcb.21999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Igarashi K, Kawaguchi K, Murakami T, Miyake K, Kiyuna T, Miyake M, Hiroshima Y, Higuchi T, Oshiro H, Nelson SD, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Singh SR, Tsuchiya H, Hoffman RM. Patient-derived orthotopic xenograft models of sarcoma. Cancer Lett. 2020;469:332–339. doi: 10.1016/j.canlet.2019.10.028. PMID:31639427. DOI: 10.1016/j.canlet.2019.10.028. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Genomics & Proteomics are provided here courtesy of International Institute of Anticancer Research

RESOURCES