Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2020 Jul 23;9(30):e00724-20. doi: 10.1128/MRA.00724-20

Genome Sequences and Metagenome-Assembled Genome Sequences of Microbial Communities Enriched on Phytoplankton Exometabolites

He Fu a,, Christa B Smith a, Shalabh Sharma a,*, Mary Ann Moran a
Editor: J Cameron Thrashb
PMCID: PMC7378039  PMID: 32703840

We report 11 bacterial draft genome sequences and 38 metagenome-assembled genomes (MAGs) from marine phytoplankton exometabolite enrichments. The genomes and MAGs represent marine bacteria adapted to the metabolite environment of phycospheres, organic matter-rich regions surrounding phytoplankton cells, and are useful for exploring functional and taxonomic attributes of phytoplankton-associated bacterial communities.

ABSTRACT

We report 11 bacterial draft genome sequences and 38 metagenome-assembled genomes (MAGs) from marine phytoplankton exometabolite enrichments. The genomes and MAGs represent marine bacteria adapted to the metabolite environment of phycospheres, organic matter-rich regions surrounding phytoplankton cells, and are useful for exploring functional and taxonomic attributes of phytoplankton-associated bacterial communities.

ANNOUNCEMENT

Bacteria associated with marine phytoplankton play essential roles in global carbon and nutrient cycles (1, 2). In the nutrient-rich phycosphere surrounding phytoplankton cells, the interactions among cooccurring bacteria and between bacteria and their hosts determine community composition. The phycosphere therefore represents a unique microcosm in which ecological principles of microbial community assembly can be examined (3, 4). A high-throughput synthetic phycosphere system was established (5) in which a natural coastal seawater bacterial assemblage was passaged through 8 serial transfers in a 96-well format culture system containing different mixtures of metabolites known to be released preferentially by diatoms (6, 7) or dinoflagellates (7). Here, we report the genomes and metagenome-assembled genomes (MAGs) enriched in those synthetic phycospheres, providing a resource for understanding the functional potentials of, and ecological interactions occurring in, ocean microbial communities.

The 11 bacterial strains were isolated from 2 microbial communities, 1 supplied with a mixture of 5 diatom exometabolites (xylose, glutamate, glycolate, ectoine, and dihydroxypropanesulfonate) and the other with 5 dinoflagellate exometabolites (ribose, spermidine, trimethylamine, isethionate, and dimethylsulfoniopropionate) (5). Enrichments were serially diluted, plated onto solid marine basal medium containing each of the individual metabolites, and grown at 24°C in the dark for 1 week. Single colonies were isolated to uniform morphology on half-strength yeast extract-tryptone sea salt medium. DNA extraction was carried out using the ZymoBIOMICS DNA miniprep kit, and libraries were prepared using the KAPA Hyper prep kit (Kapa Biosystems, Wilmington, MA). Illumina MiSeq (2 × 150 bp) reads were trimmed using Trimmomatic v0.38 (8), quality was assessed using QUAST (9), and de novo assembly was performed using SPAdes v3.12.0 (10). The 16S rRNA genes were amplified using the 27F and 1492R primers (11). Sanger sequencing performed at Genewiz (South Plainfield, NJ) confirmed the purity of the amplicons.

Metagenome sequencing (Illumina NextSeq; 1 × 150 bp) was carried out on enrichment cultures representing six diatom and six dinoflagellate exometabolite treatments. As described previously (5), reads from the six diatom or the six dinoflagellate exometabolite treatments were separately coassembled using MEGAHIT v1.1.3 (12, 13). Default parameters were used for all software unless otherwise specified. Reads were mapped to the assembly with Bowtie v2.2.9 (14) and binned into MAGs using Anvi’o v4 (15, 16) and CONCOCT (17) following published protocols (18) (http://merenlab.org/data/tara-oceans-mags/). The completeness and redundancy of bins were assessed using CheckM v1.0.12 (19). Only bins with >80% completeness and <10% redundancy are reported here (Table 1). The taxonomic classifications of the MAGs were inferred using the Microbial Genome Atlas (MiGA) (http://microbial-genomes.org/) using the TypeMat database (20).

TABLE 1.

Characteristics of 11 isolate genomes and 38 MAGs obtained from serial enrichments of a coastal bacterial assemblage with metabolites from marine diatoms or dinoflagellates

Isolate or MAG Taxonomic classificationa Size (Mb) G+C content (%) No. of reads Coverage (×) No. of contigs N50 (bp) Compl (%)/cont (%)b SRA accession no. GenBank accession no. Closest genome (GenBank accession no.)c ANI or AAI (%)
Isolates
    HF1 Marivivens donghaensis 3.34 60.8 317,066 14.2 24 292,199 99.7/0.8 SRR11481811 JAATOP000000000 Marivivens sp. JLT3646 NZ (CP018572) 66.7f
    HF2 Thalassospira lucentensis 4.50 53.2 477,674 15.9 13 758,710 100.0/0.0 SRR11481803 JAATOV000000000 Thalassospira lucentensis MCCC 1A00383 84.4g
    HF7 Pseudooceanicola sp. 4.27 64.9 312,562 11.0 74 103,803 98.5/0.8 SRR11481802 JAATOW000000000 Pseudooceanicola antarcticus (GCA_002786285) 67.7f
    HF9A Phaeobacter sp. 4.27 62.2 256,104 9.0 262 30,359 99.3/1.5 SRR11481810 JAATOX000000000 Epibacterium scottomollicae (GCA_003003215) 79.9f
    HF9B Vibrio diazotrophicus 4.39 43.3 256,880 8.8 193 47,679 99.8/2.6 SRR11481807 JAATOR000000000 Vibrio diazotrophicus NBRC 103148 91.0g
    HF15 Thalassospira sp. 4.29 54.5 412,760 14.4 25 551,637 100.0/0.0 SRR11481809 JAAVKI000000000 Thalassospira indica NZ (CP031555) 88.0g
    HF17 Vibrio campbellii 5.66 45.5 273,858 7.3 459 21,883 99.7/1.2 SRR11481808 JAATOQ000000000 Vibrio campbellii NZ (CP019293) 97.8g
    HF18 Salipiger thiooxidans 5.26 67.5 272,102 7.8 1,007 9,637 95.4/2.8 SRR11481806 JAATOS000000000 Salipiger thiooxidans (GCA_900102075) 97.8g
    HF31 Celeribacter sp. 3.60 59.9 605,892 25.2 13 522,533 99.2/0.5 SRR11481805 JAATOT000000000 Celeribacter ethanolicus NZ (CP022196) 84.5g
    HF66 Pseudoalteromonas sp. 4.39 40.7 692,080 23.6 48 210,054 100.0/0.4 SRR11481804 JAATOU000000000 Pseudoalteromonas shioyasakiensis (GCA_001550135) 91.6g
    HF70 Vibrio hepatarius 4.71 45.9 382,864 12.2 74 168,419 100.0/0.9 SRR11481812 JAATOO000000000 Vibrio hepatarius (GCA_001274785) 92.6g
MAGsd
    HF-Dia02 Oceanospirillaceae 4.47 42.0 423,160 14.2 283 24,277 86.5/3.0 SRR11451986 JABXIF000000000 Marinomonas polaris DSM 16579 81.6g
    HF-Dia03 Rhodobacterales 3.64 53.4 1,038,613 42.8 201 31,207 95.0/0.8 SRR11451960 JABXHV000000000 Labrenzia suaedae (GCA_900142725) 64.5f
    HF-Dia04 Cryomorphaceae 3.29 45.4 302,680 13.8 182 29,213 97.9/9.7 SRR11451963 JABXHS000000000 Phaeocystidibacter luteus (GCA_008933115) 82.4g
    HF-Dia05 Flavobacteriales 2.53 40.3 1,017,060 60.3 97 147,211 93.1/2.7 SRR11451996 JABXHN000000000 Arenibacter aquaticus (GCA_003957295) 59.6f
    HF-Dia07 Alteromonadaceae 5.10 47.9 16,809,600 494.4 123 84,748 99.9/2.8 SRR11451997 JABXHM000000000 Alteromonas alba (GCA_002993365) 77.4f
    HF-Dia11 Flavobacteriales 2.94 32.3 429,240 21.9 98 76,707 98.3/1.1 SRR11451994 JABXHX000000000 Tenacibaculum sp. DSM 106434 65.1f
    HF-Dia12 Gammaproteobacteria 3.42 40.8 517,560 22.7 285 17,653 93.4/2.2 SRR11451988 JABXID000000000 Psychrosphaera saromensis (GCA_002954545) 64.2f
    HF-Dia14 Gammaproteobacteria 3.64 51.8 485,333 20.0 287 19,154 95.1/4.9 SRR11451964 JABXHR000000000 Thiohalobacter thiocyanaticus NZ (AP018052) 46.4f
    HF-Dia15 Rhizobiales 3.97 45.9 304,367 11.5 295 19,983 91.4/3.0 SRR11451989 JABXIC000000000 Terasakiella pusilla DSM 6293 (GCA_000688235) 68.8f
    HF-Dia17 Oceanospirillales 3.38 51.2 22,932,173 1,017.7 418 10,263 91.2/3.3 SRR11451974 JABXHP000000000 Marinobacterium mangrovicola (GCA_004339595) 62.1f
    HF-Dia18 Rhodobacteraceae 4.51 63.1 24,212,687 805.3 409 15,672 93.0/5.3 SRR11451991 JABXIA000000000 Leisingera daeponensis DSM 23529 86.7g
    HF-Dia21 Oceanospirillales 4.53 40.5 1,265,380 41.9 96 99,744 99.2/0.4 SRR11451993 JABXHY000000000 Pleionea mediterranea (GCA_003148745) 62.4f
    HF-Dia22 Flavobacteriia 4.70 40.8 463,733 14.8 179 42,273 98.6/1.4 SRR11451985 JABXHO000000000 Candidatus Fluviicola riflensis” (CP022585) 56.2f
    HF-Dia23 Tenacibaculum sp. 3.20 31.7 424,533 19.9 86 70,967 98.5/0.8 SRR11451962 JABXHT000000000 Tenacibaculum discolor (GCA_003664185) 97.8g
    HF-Dia27 Oceanospirillales 3.64 45.2 2,817,360 116.1 196 31,979 98.3/2.6 SRR11451965 JABXHQ000000000 Pleionea mediterranea (GCA_003148745) 64.1f
    HF-Dia28e Ruegeria pomeroyi 4.51 64.0 60,900,033 2,025.5 200 33,165 97.6/2.2 SRR9668573 JABXIZ000000000 Ruegeria pomeroyi DSS-3 100.0g
    HF-Dia32 Flavobacteriales 3.09 45.8 861,080 41.8 76 69,153 97.7/0.5 SRR11451995 JABXHW000000000 Phaeocystidibacter luteus (GCA_008933115) 67.2f
    HF-Dia38 Cyclobacteriaceae 3.39 40.8 2,743,640 121.4 460 8,688 86.7/4.1 SRR11451992 JABXHZ000000000 Algoriphagus kandeliae (GCA_004571135) 82.1g
    HF-Dia39 Marivivens sp. 2.49 56.7 7,811,960 470.6 142 23,748 95.1/1.0 SRR11451961 JABXHU000000000 Marivivens sp. JLT3646 NZ (CP018572) 97.2g
    HF-Dia40 Vibrionaceae 4.24 46.3 7,453,920 263.7 357 16,672 96.6/2.1 SRR11451990 JABXIB000000000 Vibrio hepatarius (GCA_001274785) 92.6g
    HF-Din01 Salipiger sp. 4.40 68.0 10,301,867 351.2 701 7,265 86.8/2.7 SRR11451976 JABXIO000000000 Salipiger thiooxidans (GCA_900102075) 98.0g
    HF-Din02 Methylocystaceae 4.09 48.4 13,224,333 485.0 69 276,225 100.0/1.0 SRR11451984 JABXIG000000000 Terasakiella pusilla DSM 6293 79.0f
    HF-Din03e Ruegeria pomeroyi 4.54 64.0 36,062,733 1,191.5 78 105,484 98.7/0.7 SRR9668574 JABXIY000000000 Ruegeria pomeroyi DSS-3 100.0g
    HF-Din05 Gammaproteobacteria 3.45 45.4 425,500 18.5 223 24,639 93.7/2.2 SRR11451969 JABXIU000000000 Pseudoalteromonas phenolica O-BC30 GCA 004103265 48.7f
    HF-Din08 Oceanospirillaceae 5.78 58.6 3,787,827 98.3 249 42,217 98.1/2.0 SRR11451978 JABXIM000000000 Marinobacterium rhizophilum DSM 18822 68.5g
    HF-Din09 Flammeovirgaceae 4.04 42.1 2,308,187 85.7 543 9,559 92.8/2.7 SRR11451975 JABXIP000000000 Roseivirga spongicola (GCA_004103265) 81.4f
    HF-Din10 Alphaproteobacteria 3.00 54.3 1,760,000 88.0 309 14,274 81.9/1.7 SRR11451968 JABXIV000000000 Hankyongella ginsenosidimutans W1-2-3 (CP039704) 50.2f
    HF-Din11 Vibrio campbellii 5.63 45.3 36,542,453 973.6 92 123,020 100.0/0.1 SRR11451983 JABXIH000000000 Vibrio campbellii NZ (CP019293) 97.9g
    HF-Din12 Oceanospirillales 2.58 41.6 1,683,880 97.9 62 69,368 98.1/4.1 SRR11451973 JABXIQ000000000 Kangiella profundi NZ (CP025120) 63.5f
    HF-Din13 Campylobacteraceae 2.76 28.4 1,264,080 68.7 38 142,008 99.2/1.2 SRR11451982 JABXII000000000 Halarcobacter bivalviorum strain LMG 26154 (CP031217) 85.2g
    HF-Din14 Rhodobacteraceae 3.53 59.9 13,734,053 583.6 64 109,963 98.9/0.5 SRR11451979 JABXIL000000000 Celeribacter halophilus (GCA_003254175) 82.0g
    HF-Din16 Flavobacteriia 1.81 37.0 97,740 8.1 234 9,657 83.0/2.3 SRR11451970 JABXIT000000000 Maribacter cobaltidurans NZ (CP022957) 57.8f
    HF-Din17 Gammaproteobacteria 4.03 44.2 354,640 13.2 487 12,701 85.8/4.3 SRR11451967 JABXIW000000000 Pleionea mediterranea (GCA_003148745) 49.3f
    HF-Din19 Flavobacteriales 2.37 29.8 260,700 16.5 69 52,100 97.9/1.4 SRR11451981 JABXIJ000000000 Polaribacter porphyrae (GCA_002954685) 68.7f
    HF-Din21 Kordiimonadaceae 3.62 53.6 1,908,947 79.1 96 81,569 97.1/1.8 SRR11451971 JABXIS000000000 Kordiimonas lipolytica (GCA_001550065) 76.8f
    HF-Din22 Cyclobacteriaceae 3.65 40.7 1,498,933 61.6 38 178,308 99.6/0.6 SRR11451977 JABXIN000000000 Algoriphagus kandeliae (GCA_004571135) 81.1g
    HF-Din24 Gammaproteobacteria 3.50 44.0 22,920,333 982.3 151 35,787 98.5/2.3 SRR11451980 JABXIK000000000 Oceanobacter kriegii DSM 6294 (GCA_000422845) 54.6f
    HF-Din29 Gammaproteobacteria 2.11 49.9 753,973 53.6 305 8,218 82.8/2.9 SRR11451972 JABXIR000000000 Spongiibacter marinus DSM 19753 (GCA_000422345) 51.2f
a

Taxonomic classification of isolates is based on >98% similarity of 16S rRNA genes or >98% similarity of hsp60 genes (Vibrio only). Taxonomic classification of metagenome-assembled genomes (MAGs) is based on the lowest taxonomic level with a P value of ≤0.015 as calculated in MiGA using the TypeMat database, in which average nucleotide identity (ANI) is generally reported for similarities of ≥85%, and average amino acid identity (AAI) is reported if the ANI is <85%.

b

Compl, completeness level; cont, contamination level.

c

Closest genome was determined by MiGA analysis using the TypeMat database.

d

MAGs that start with HF-Dia are assembled from the six diatom metagenomes, while MAGs that start with HF-Din are assembled from the six dinoflagellate metagenomes.

e

Previously published (5).

f

AAI.

g

ANI.

Data availability.

All data are deposited under GenBank BioProject number PRJNA553557. The raw reads of the genomic data for the isolates are deposited under SRA accession numbers SRR11481802 to SRR11481812. The original raw reads of the metagenomic data used for MAG assembly are deposited under SRA accession numbers SRR11434620 to SRR11434631. The assemblies for isolates and MAGs are deposited under the GenBank accession numbers listed in Table 1; the versions described in this paper are the first versions.

ACKNOWLEDGMENTS

We thank Julian Damashek for bioinformatic advice.

This work was supported by Simons Foundation grant 542391 to M.A.M. within the Principles of Microbial Ecosystems Collaborative. Sequencing was carried out at the Georgia Genomics and Bioinformatics Core (GGBC) (Athens, GA).

We declare no competing interests.

REFERENCES

  • 1.Amin SA, Parker MS, Armbrust EV. 2012. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684. doi: 10.1128/MMBR.00007-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. doi: 10.3354/meps010257. [DOI] [Google Scholar]
  • 3.Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791. doi: 10.1038/nrmicro1747. [DOI] [PubMed] [Google Scholar]
  • 4.Seymour JR, Amin SA, Raina J-B, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol 2:17065. doi: 10.1038/nmicrobiol.2017.65. [DOI] [PubMed] [Google Scholar]
  • 5.Fu H, Uchimiya M, Gore J, Moran MA. 2020. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci U S A 117:3656–3662. doi: 10.1073/pnas.1917265117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101. doi: 10.1038/nature14488. [DOI] [PubMed] [Google Scholar]
  • 7.Landa M, Burns AS, Roth SJ, Moran MA. 2017. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J 11:2677–2690. doi: 10.1038/ismej.2017.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470. doi: 10.1128/AEM.02272-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi: 10.1093/bioinformatics/btv033. [DOI] [PubMed] [Google Scholar]
  • 13.Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, Yamashita H, Lam TW. 2016. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11. doi: 10.1016/j.ymeth.2016.02.020. [DOI] [PubMed] [Google Scholar]
  • 14.Langmead B, Salzberg S. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ 3:e1319. doi: 10.7717/peerj.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Delmont TO, Eren AM. 2016. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies. PeerJ 4:e1839. doi: 10.7717/peerj.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. doi: 10.1038/nmeth.3103. [DOI] [PubMed] [Google Scholar]
  • 18.Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, McLellan SL, Lücker S, Eren AM. 2018. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol 3:804–813. doi: 10.1038/s41564-018-0176-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi: 10.1101/gr.186072.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. 2018. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 46:W282–W288. doi: 10.1093/nar/gky467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data are deposited under GenBank BioProject number PRJNA553557. The raw reads of the genomic data for the isolates are deposited under SRA accession numbers SRR11481802 to SRR11481812. The original raw reads of the metagenomic data used for MAG assembly are deposited under SRA accession numbers SRR11434620 to SRR11434631. The assemblies for isolates and MAGs are deposited under the GenBank accession numbers listed in Table 1; the versions described in this paper are the first versions.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES