Skip to main content
Chinese Journal of Contemporary Pediatrics logoLink to Chinese Journal of Contemporary Pediatrics
. 2018 Jul 25;20(7):598–603. [Article in Chinese] doi: 10.7499/j.issn.1008-8830.2018.07.017

咖啡因对早产儿支气管肺发育不良的预防作用

Preventive effect of caffeine on bronchopulmonary dysplasia in preterm infants

刘 洋 1, 董 文斌 1
PMCID: PMC7389204  PMID: 30022766

Abstract

随着危重早产儿及极早早产儿的抢救成功率不断增高,新生儿支气管肺发育不良(BPD)的发生率呈逐年增加的趋势。该病病死率高、遗留后遗症可能性大,严重影响存活早产儿的生存质量,并给患儿家庭带来严重负担,因此BPD的治疗至关重要。国内外学者对BPD治疗措施的意见尚不统一,但在近年来的研究中已证实咖啡因的早期使用具有预防BPD的作用。笔者查阅国内外对咖啡因预防BPD的最新研究,就咖啡因减少肺部炎症、改善肺损伤的形态学异常、减少氧化应激损伤、改善肺功能等方面,对咖啡因预防BPD的机制进行综述。

Keywords: 咖啡因, 支气管肺发育不良, 预防, 早产儿


随着新生儿医学的进步,危重早产儿及极早早产儿存活率不断提高的同时,早产儿支气管肺发育不良(bronchopulmonary dysplasia, BPD)的发生率也随之增加。研究表明,重度BPD的病死率高达25%,存活早产儿中第1年内的再入院率高达50%,神经系统发育障碍高于正常儿的2~3倍,成为影响存活早产儿生活质量的重要原因之一,因此,BPD的预防显得尤为重要[1-2]

1. 概述

BPD是早产儿常见的慢性呼吸系统疾病之一,随着研究的深入,其定义也在不断更新。目前大多数学者认为,生后28 d仍需用氧的新生儿即可诊断BPD[3]。关于BPD的预防及治疗方案尚未统一,包括产前预防(产前使用激素)、给予肺泡表面活性物质、静脉使用咖啡因、静脉及雾化使用糖皮质激素、吸入NO、移植间充质干细胞、给予维生素A/D及利尿剂等[4-9]。阿奇霉素治疗解脲支原体感染[10]、坚持母乳喂养[11]和预防院内感染[12]是另一种预防BPD的方法。这些治疗措施中仍然存在争议,但是咖啡因对BPD的预防作用得到越来越多的重视与肯定。

甲基黄嘌呤类药物,包括茶碱、氨茶碱以及咖啡因,该类药物用于预防和治疗早产儿呼吸暂停已数十载,其中咖啡因属三甲基黄嘌呤类药物,通过非特异性阻断腺苷受体,导致去甲肾上腺素、多巴胺、5-羟色胺、乙酰胆碱及谷氨酸等神经递质释放, 从而减弱其对呼吸运动的抑制作用[13],学者发现使用咖啡因较使用氨茶碱安全性更高[14],已成为呼吸暂停的一线用药,且逐渐发现咖啡因具有预防BPD的作用。有研究发现咖啡因除具有降低BPD发生率外,还能降低早产儿常见并发症的发生率,如降低脑室内出血、脑室周围白质软化、早产儿视网膜病、需要手术治疗的动脉导管未闭等[15-17]

2. 咖啡因预防BPD的机制

2.1. 咖啡因可以减轻肺部炎症损伤、改善肺组织结构

肺部炎症与BPD的发生高度相关,生后早期的高氧暴露及机械损伤可以造成细胞凋亡的增加和肺部上皮细胞增殖的减少,从而影响肺上皮细胞、内皮细胞和间充质细胞的生存和分化,进一步导致肺泡和毛细血管发育中断[18]。将小鼠置于高氧环境中,从出生后0~28 d天动态观察高氧条件下肺组织的变化情况,结果显示随着氧暴露时间的延长,逐渐出现肺泡的结构简化、数量减少、肺泡扩大、肺微血管减少[19-20]。当肺泡毛细血管屏障受损时,损伤的肺泡组织很快就可释放中性粒细胞趋化因子,包括单核细胞趋化蛋白-1(MCP-1)、巨噬细胞移动抑制因子(MIF)、α-肿瘤坏死因子(TNF-α)、β1-转化生长因子(TGF-β1),以及炎症细胞因子,如白介素(IL)-1、IL-8、IL-6,中性粒细胞在趋化因子作用下发生趋化作用,并促使其他炎症细胞产生更多的促炎症因子,而抗炎细胞因子IL-10的增长速度较促炎细胞因子慢,促炎细胞因子与抗炎细胞因子的失衡,造成炎性损伤,这与BPD的发生密切相关[21]。这些生物标志物都可以通过对BPD患儿的气道吸出物、血液、尿液标本进行检测得以证实[22-25]

Weichelt等[26]的实验中发现咖啡因可减少肺组织中中性粒细胞浸润,降低中性粒细胞化学趋化因子1(CINC-1)、人巨噬细胞炎症蛋白2(MIP-2)、MCP-1、TNF-α、IL-6水平,并能减少这些趋化因子和促炎细胞因子的mRNA表达。Nagatomo等[27]将早产家兔暴露于高氧环境中模拟BPD急性期的肺组织特征,发现高氧+咖啡因处理组肺泡大小较高氧组小,放射状肺泡计数(RAC)增加;采用组织学评分评估肺部炎症情况,提示高氧组家兔的肺部炎症明显高于对照组,但在高氧+咖啡因组中炎症减轻,因此,咖啡因可减轻早产家兔的高氧肺损伤,即咖啡因使用后可以改善高氧造成的肺泡简化,并能促进肺泡发育、减少肺部炎症。在急性肺损伤的成年鼠中,咖啡因组支气管肺泡灌洗液中总细胞数、蛋白质浓度、炎症介质(TNF-1β, MIP-2)和肺髓过氧物酶均显著低于对照组,这些数据清楚地表明,咖啡因可以减轻肺部炎症反应[28]

甲基黄嘌呤可以通过抑制磷酸二酯酶(PDE)增加cAMP水平和拮抗腺苷受体(AR)来发挥作用[29]。Chavez-Valdez等[30]的进一步研究表明,在咖啡因与AR的作用中,低浓度咖啡因优先阻断A1R,可能使腺苷与A2aR结合,增加cAMP的产生,从而调节转录因子及其最终产物、细胞因子、趋化因子的表达,但任何浓度的咖啡因对细胞因子的作用不涉及A3R和PDE拮抗剂;咖啡因在50~100 μmol/L浓度时对Toll样受体(TLR)中TLR1和TLR2表达呈抑制作用,进而通过TLR-NFκB和cAMP-PKA途径降低单核细胞内TNF-α的产生。同样的,Köroğlu等[31]学者在孕鼠羊膜内注入脂多糖(LPS)或生理盐水,将出生的幼鼠从第1天到第14天予以咖啡因治疗(每日10 mg/kg),与生理盐水对照相比,产前暴露LPS的幼鼠IL-1和CD68细胞计数在第8天时增加、呼吸系统抗性显著增加,但经咖啡因治疗后这些促炎症标志物不再增加,且呼吸系统抗性均有所改善,因此咖啡因的使用可以促进产前LPS暴露的幼鼠未成熟肺组织的抗炎作用,与呼吸系统抗性的改善相关,提示咖啡因通过抗炎机制对呼吸功能有保护作用。

转化生长因子家族(TGFs)在肺发育中起着关键作用,其中,TGF-β可促进重组人结缔组织生长因子(CTGF)和转凝蛋白(transgelin)表达,这可能导致气道或血管重塑,而咖啡因能够抑制TGF-β1对transgelin基因的表达调控,进而可以改善BPD中肺泡的病理变化[32]。咖啡因可以增加TGF-β1受体、TGF-β3受体及第二信使Smad2的mRNA在小鼠肺成纤维细胞及Ⅱ型肺泡上皮细胞中的表达[33]。咖啡因在肝脏中可以通过减少胶原蛋白的表达和沉积,并减少TGF-β的表达而达到抗纤维化的作用,同样的,咖啡因在肺上皮细胞和成纤维细胞中仍被发现具有抗纤维化的作用[34]

2.2. 减轻氧化应激损伤

早产儿抗氧化应激能力弱,当机体处于高氧刺激下,活性氧(ROS)大量产生,超过了机体抗氧化能力,就可引起氧化应激损伤,ROS增多引发的一系列病理损害包括脂质膜过氧化、增殖受抑、凋亡过度等,可抑制肺泡上皮细胞的增殖分化,阻碍出生后肺分隔的发育和肺泡形成,最终发展为BPD[35],因此,减少氧化应激损伤可以预防BPD的发生。实验已证实,剂量为10 mg/kg的咖啡因可减少暴露于高氧状态下的新生小鼠氧化应激所致的DNA损伤[36]。同样在人肺泡上皮细胞(A549)以及大鼠肺泡上皮细胞(MLE12)的研究中发现, 咖啡因使用剂量处于早产儿临床使用剂量(负荷20 mg/kg,维持5~10 mg/kg)时,咖啡因可以通过减少ROS的产生从而减少高氧肺损伤[37]

Choo-Wing等[38]证实高氧可以通过环氧化酶-2(Cox2)和内质网应激依赖性途径诱导肺发育损伤,导致肺组织中肺泡化受损。Galán等[39]得出结论,内质网应激通过p38 MAPK依赖机制和氧化应激机制可以导致血管内皮功能障碍。Teng等[40]的实验中发现高氧可以增加内质网应激标记物和下游效应物的表达,但咖啡因治疗以后可以减轻上述指标的这些变化,也减弱了Cox2和细胞凋亡标志物的表达,即早期咖啡因的治疗通过减轻内质网应激途径来减轻高氧造成的肺损伤。未折叠蛋白质的积累可能导致内质网应激,而内质网应激后可引发细胞蛋白质的聚集,导致内质网应激通路相关蛋白(如PERK、IRE1)的激活,Hosoi等[41]发现咖啡因可以表现出分子伴侣活性,从而减弱蛋白质的聚集,也抑制内质网应激通路相关蛋白的激活,从而减弱内质网应激。

Ullah等[42]发现咖啡因的使用可以抑制应激激酶p-JNK,降低COX-2、NOS-2、TNF-α、IL-1β、caspase-9、caspase-3的水平,提示咖啡因具有抗氧化作用。此外,学者们在探究咖啡因对新生鼠高氧脑损伤的研究中发现,咖啡因的使用可以降低氧化应激反应中一些关键因子的敏感性,如血红素加氧酶-1(HO-1)、核转录因子E2相关因子2(Nrf2),并可以增强过氧化物酶1(Prx1)、硫氧还蛋白1(Srx1)表达,二者均为硫氧还蛋白家族的重要成员,也是抗氧化系统的重要调节者,这些结论均表明咖啡因具有抗氧化作用[43]

2.3. 咖啡因改善肺功能

高氧肺损伤是BPD发生的原因之一,在高氧条件下,气道平滑肌细胞和肺上皮细胞增生,发生气道重塑,加之早期的支气管及肺部炎症,造成气道高反应性,导致肺功能损害[18]。对2岁内再入院的121例BPD患儿完善肺功能检测,检查结果示小气道阻塞,与同期患儿比较呼气流速降低、呼吸频率增快,低肺容量时明显,且更容易发生喘息及气道高反应性[44]。Saarenpää等[45]对年龄为18~27岁的162名出生时为极低出生体重儿(VLBW)的受试者(其中29名曾诊断BPD)和162名同年龄段出生时正常的健康成人肺功能进行比较,诊断为VLBW的受试者中1秒用力呼气量、1秒用力呼气量/用力肺活量与对照组比较有明显差异,且出生时诊断为BPD的VLBW这一差异更为明显,这一发现提示在VLBW、尤其是有BPD基础的VLBW成年后患慢性阻塞性气道疾病的风险增加[45]。随访BPD患儿呼吸系统情况,可知这种肺功能的损害可能持续到青春期,甚至到成年时期,随着时间的推移,在生后的第1年中肺功能有进一步恶化的可能,而且增加了呼吸道病毒(如呼吸道合胞病毒)的易感性,可能长期伴随呼吸障碍,如反复喘息、哮喘等[21, 46-47]

为确定咖啡因对早产儿膈肌活动、潮气量(tidal volume, Vt)、呼气末肺容量的影响, 采用膈肌肌电图观察咖啡因使用前30 min及使用后3 h膈肌的活动情况,发现咖啡因使用后膈肌活动越明显,Vt越能得到快速持久的增加[48]。Kassim等[49]在探讨咖啡因对新生儿呼吸窘迫综合征患儿肺功能的影响时,发现肺泡表面活性物质与咖啡因联合使用后可以减少气道阻力,改善肺部顺应性,增加肺容积,并能够增强早产儿呼吸肌力量、缩短经鼻持续气道正压通气的治疗时间。另外,咖啡因能透过血脑屏障,增加肺通气动力、每分钟通气量,提高化学感受器对二氧化碳的敏感性、膈肌和呼吸肌收缩及儿茶酚胺诱导的反应。在咖啡因预防呼吸暂停的研究中发现,咖啡因治疗组的潮气量、每分通气量、达峰时间比、达峰容积比、呼气峰流速及75%、50%、25%潮气量时的呼吸流速均高于对照组[50]。咖啡因也可以扩张支气管,减少周期性呼吸,增加膈肌活动,减少呼吸暂停,增加尿量[16]。以上可能也是咖啡因能促进患儿从有创到无创呼吸支持的过渡及缩短用氧时间的原因[51]

3. 展望及存在的问题

咖啡因除具有预防BPD的作用外,还被发现具有机体脏器的保护作用。Katheria等[52]发现在早期静脉使用咖啡因可以改善新生儿早期的血液动力学和脑氧合情况[52]。钱瑞英等[53]对49例早产儿分别在纠正胎龄33周、34周、35周时完善振幅整合脑电图检测,发现枸橼酸咖啡因可以缩短暴发间期,得出咖啡因的使用对早产儿生后脑功能的发育具有促进作用。有学者在随访纠正胎龄18~22月的VLBW时发现48 h内使用咖啡因的VLBW较晚期使用咖啡因及未使用咖啡因的患儿在语言、认知及婴幼儿发育量表评分上均有明显的提高[54],因此,咖啡因应被广泛推广至早产儿中应用。但咖啡因使用后的不良反应仍需注意,如早期大剂量咖啡因治疗会增加癫癎[55]及心动过速[56]发生等。解决咖啡因使用后的不良反应,更加深入的研究咖啡因对BPD的治疗机制,提高BPD患儿的生活质量是每一位新生儿医生共同努力的方向。

Biography

刘洋, 女, 硕士研究生。Email:dongwenbin2000@163.com

Funding Statement

国家自然科学基金(81571480);四川省科技厅科研项目资金(2014NZ0014);泸州市科技局(泸州市政府-泸州医学院联合专项资金)(2013LZLY-J08)

References

  • 1.Islam JY, Keller RL, Aschner JL, et al. Understanding the short-and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192(2):134–156. doi: 10.1164/rccm.201412-2142PP. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Gibson AM, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;19(2):105–111. doi: 10.1016/j.siny.2013.10.006. [DOI] [PubMed] [Google Scholar]
  • 3.常立文. 支气管肺发育不良[M]//邵肖梅, 叶鸿瑁, 邱小汕. 实用新生儿学. 第4版, 北京: 人民卫生出版社, 2011: 416-422.
  • 4.Ogawa R, Mori R, Sako M, et al. Drug treatment for bronchopulmonary dysplasia in Japan:questionnaire survey. Pediatr Int. 2015;57(1):189–192. doi: 10.1111/ped.12584. [DOI] [PubMed] [Google Scholar]
  • 5.Jarreau PH, Zana-Taïeb E, Maillard A. Bronchopulmonary dysplasia in the newborn:physiopathology, treatment and prevention. http://www.ncbi.nlm.nih.gov/pubmed/26112543. Arch Pediatr. 2015;22(5 Suppl 1):103–104. doi: 10.1016/S0929-693X(15)30052-X. [DOI] [PubMed] [Google Scholar]
  • 6.Laube M, Amann E, Uhlig U, et al. Inflammatory mediators in tracheal aspirates of preterm infants participating in a randomized trial of inhaled nitric oxide. PLoS One. 2017;12(1):e0169352. doi: 10.1371/journal.pone.0169352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Venkataraman R, Kamaluddeen M, Hasan SU, et al. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants:a systematic review and meta-analysis. Pediatr Pulmonol. 2017;52(7):968–975. doi: 10.1002/ppul.v52.7. [DOI] [PubMed] [Google Scholar]
  • 8.Mueller M, Kramer BW. Stem cells and bronchopulmonary dysplasia-the fve questions:Which cells, when, in which dose, to which patients via which route? http://cn.bing.com/academic/profile?id=e5d49cbbf2b4e4ab74952a639d31dc06&encoded=0&v=paper_preview&mkt=zh-cn. Paediatr Respir Rev. 2017;24:54–59. doi: 10.1016/j.prrv.2016.12.003. [DOI] [PubMed] [Google Scholar]
  • 9.Yao L, Shi Y, Zhao X, et al. Vitamin D attenuates hyperoxiainduced lung injury through downregulation of Toll-like receptor 4. Int J Mol Med. 2017;39(6):1403–1408. doi: 10.3892/ijmm.2017.2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Nair V, Loganathan P, Soraisham AS. Azithromycin and other macrolides for prevention of bronchopulmonary dysplasia:a systematic review and meta-analysis. Neonatology. 2014;106(4):337–347. doi: 10.1159/000363493. [DOI] [PubMed] [Google Scholar]
  • 11.Spiegler J, Preuß M, Gebauer C, et al. Does breastmilk influence the development of bronchopulmonary dysplasia? J Pediatr. 2016;169:76–80. doi: 10.1016/j.jpeds.2015.10.080. [DOI] [PubMed] [Google Scholar]
  • 12.Lapcharoensap W, Kan P, Powers RJ, et al. The relationship of nosocomial infection reduction to changes in neonatal intensive care unit rates of bronchopulmonary dysplasia. J Pediatr. 2017;180:105–109. doi: 10.1016/j.jpeds.2016.09.030. [DOI] [PubMed] [Google Scholar]
  • 13.唐 晓艳, 王 丹华. 咖啡因在新生儿中的应用进展. http://d.old.wanfangdata.com.cn/Periodical/xsekzz201405017 中国新生儿科杂志. 2014;29(5):343–346. [Google Scholar]
  • 14.Nagasato A, Nakamura M, Kamimura H. Comparative study of the effcacy and safety of caffeine and aminophylline for the treatment of apnea in preterm infants. Yakugaku Zasshi. 2018;138(2):237–242. doi: 10.1248/yakushi.17-00144. [DOI] [PubMed] [Google Scholar]
  • 15.Taha D, Kirkby S, Nawab U, et al. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. J Matern Fetal Neonatal Med. 2014;27(16):1698–1702. doi: 10.3109/14767058.2014.885941. [DOI] [PubMed] [Google Scholar]
  • 16.Lodha A, Seshia M, McMillan DD, et al. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr. 2015;169(1):33–38. doi: 10.1001/jamapediatrics.2014.2223. [DOI] [PubMed] [Google Scholar]
  • 17.Park HW, Lim G, Chung SH, et al. Early caffeine use in very low birth weight infants and neonateal outcomes:a systematic review and Meta-analysis. J Korean Med Sci. 2015;30(12):1828–1835. doi: 10.3346/jkms.2015.30.12.1828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Niedermaier S, Hilgendorff A. Bronchopulmonary dysplasia-an overview about pathophysiologic concepts. Mol Cell Pediatr. 2015;2(1):2. doi: 10.1186/s40348-015-0013-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Cox AM, Gao Y, Perl AT, et al. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function. Pediatr Pulmonol. 2017;52(5):616–624. doi: 10.1002/ppul.v52.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.熊 曾, 周 霞, 岳 少杰. 支气管肺发育不良的动物模型造模方法及其评价. http://www.zgddek.com/CN/abstract/abstract14156.shtml. 中国当代儿科杂志. 2017;19(1):121–125. doi: 10.7499/j.issn.1008-8830.2017.01.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Schneibel KR, Fitzpatrick AM, Ping XD, et al. Inflammatory mediator patterns in tracheal aspirate and their association with bronchopulmonary dysplasia in very low birth weight neonates. J Perinatol. 2013;33(5):383–387. doi: 10.1038/jp.2012.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kumar VH, Lakshminrusimha S, Kishkurno S, et al. Neonatal hyperoxia increases airway reactivity and inflammation in adult mice. Pediatr Pulmonol. 2016;51(11):1131–1141. doi: 10.1002/ppul.v51.11. [DOI] [PubMed] [Google Scholar]
  • 23.D'Angio CT, Ambalavanan N, Carlo WA, et al. Blood cytokine profles associated with distinct patterns of bronchopulmonary dysplasia among extremely low birth weight infants. J Pediatr. 2016;174:45–51.e5. doi: 10.1016/j.jpeds.2016.03.058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Schneibel KR, Fitzpatrick AM, Ping XD, et al. Inflammatory mediator patterns in tracheal aspirate and their association with bronchopulmonary dysplasia in very low birth weight neonates. J Perinatol. 2013;33(5):383–387. doi: 10.1038/jp.2012.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. https://www.researchgate.net/profile/Vineet_Bhandari/publication/289524572_Understanding_the_Impact_of_Infection_Inflammation_and_Their_Persistence_in_the_Pathogenesis_of_Bronchopulmonary_Dysplasia/links/56a8bc0908ae997e22bdf92c.pdf?origin=publication_detail. Front Med (Lausanne) 2015;2:90. doi: 10.3389/fmed.2015.00090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Weichelt U, Cay R, Schmitz T, et al. Prevention of hyperoxiamediated pulmonary inflammation in neonatal rats by caffeine. Eur Respir J. 2013;41(4):966–973. doi: 10.1183/09031936.00012412. [DOI] [PubMed] [Google Scholar]
  • 27.Nagatomo T, Jiménez J, Richter J, et al. Caffeine prevents hyperoxia-induced functional and structural lung damage in preterm rabbits. Neonatology. 2016;109(4):274–281. doi: 10.1159/000442937. [DOI] [PubMed] [Google Scholar]
  • 28.Chou WC, Kao MC, Yue CT, et al. Caffeine mitigates lung inflammation induced by ischemia-reperfusion of lower limbs in rats. http://cn.bing.com/academic/profile?id=92319943ead0ea05c5cfe36cccab5669&encoded=0&v=paper_preview&mkt=zh-cn. Mediators Inflamm. 2015;2015:361638. doi: 10.1155/2015/361638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Oñatibia-Astibia A, Martínez-Pinilla E, Franco R. The potential of methylxanthine-based therapies in pediatric respiratory tract diseases. Respir Med. 2016;112:1–9. doi: 10.1016/j.rmed.2016.01.022. [DOI] [PubMed] [Google Scholar]
  • 30.Chavez-Valdez R, Ahlawat R, Wills-Karp M, et al. Mechanisms of modulation of cytokine release by human cord blood monocytes exposed to high concentrations of caffeine. Pediatr Res. 2016;80(1):101–109. doi: 10.1038/pr.2016.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Köroğlu OA, MacFarlane PM, Balan KV, et al. AntiInflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology. 2014;106(3):235–240. doi: 10.1159/000363217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Fehrholz M, Speer CP, Kunzmann S. Caffeine and rolipram affect Smad signalling and TGF-β1 stimulated CTGF and transgelin expression in lung epithelial cells. PLoS One. 2014;9(5):e97357. doi: 10.1371/journal.pone.0097357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Rath P, Nardiello C, Surate Solaligue DE, et al. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia. Pediatr Res. 2017;81(5):795–805. doi: 10.1038/pr.2017.21. [DOI] [PubMed] [Google Scholar]
  • 34.Tatler AL, Barnes J, Habgood A, et al. Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fbrosis in ex vivo precision-cut lung slices. Thorax. 2016;71(6):565–567. doi: 10.1136/thoraxjnl-2015-208215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kondrikov D, Caldwell RB, Dong Z, et al. Reactive oxygen species-dependent RhoA activation mediates collagen synthesis in hyperoxic lung fibrosis. Free Radic Biol Med. 2011;50(11):1689–1698. doi: 10.1016/j.freeradbiomed.2011.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Endesfelder S, Zaak I, Weichelt U, et al. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radic Biol Med. 2014;67:221–234. doi: 10.1016/j.freeradbiomed.2013.09.026. [DOI] [PubMed] [Google Scholar]
  • 37.Tiwari KK, Chu C, Couroucli X, et al. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro. Biochem Biophys Res Commun. 2014;450(4):1345–1350. doi: 10.1016/j.bbrc.2014.06.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Choo-Wing R, Syed MA, Harijith A, et al. Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stressdependent pathway. Am J Respir Cell Mol Biol. 2013;48(6):749–757. doi: 10.1165/rcmb.2012-0381OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Galán M, Kassan M, Kadowitz PJ, et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim Biophys Acta. 2014;1843(6):1063–1075. doi: 10.1016/j.bbamcr.2014.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Teng RJ, Jing X, Michalkiewicz T, et al. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxiainduced lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L586–L598. doi: 10.1152/ajplung.00405.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Hosoi T, Toyoda K, Nakatsu K, et al. Caffeine attenuated ER stress-induced leptin resistance in neurons. Neurosci Lett. 2014;569:23–26. doi: 10.1016/j.neulet.2014.03.053. [DOI] [PubMed] [Google Scholar]
  • 42.Ullah F, Ali T, Ullah N, et al. Caffeine prevents d-galactoseinduced cognitive defcits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int. 2015;90:114–124. doi: 10.1016/j.neuint.2015.07.001. [DOI] [PubMed] [Google Scholar]
  • 43.Stefannie E, Ulrike W. Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury. Int J Mol Sci. 2017;18(1):E187. doi: 10.3390/ijms18010187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.犹 景贻, 舒 畅, 龚 财惠, et al. 121例支气管肺发育不良患儿2岁内再入院的临床分析. http://www.zgddek.com/CN/abstract/abstract14381.shtml. 中国当代儿科杂志. 2017;19(10):1056–1060. doi: 10.7499/j.issn.1008-8830.2017.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Saarenpää HK, Tikanmäki M, Sipola-Leppänen M, et al. Lung function in very low birth weight adults. Pediatrics. 2015;136(4):642–650. doi: 10.1542/peds.2014-2651. [DOI] [PubMed] [Google Scholar]
  • 46.Segerer FJ, Speer CP. Lung function in childhood and adolescence:influence of prematurity and bronchopulmonary dysplasia. Z Geburtshilfe Neonatol. 2016;220(4):147–154. doi: 10.1055/s-0042-101798. [DOI] [PubMed] [Google Scholar]
  • 47.Landry JS, Tremblay GM, Li PZ, et al. Lung function and bronchial hyperresponsiveness in adults born prematurely. a cohort study. Ann Am Thorac Soc. 2016;13(1):17–24. doi: 10.1513/AnnalsATS.201508-553OC. [DOI] [PubMed] [Google Scholar]
  • 48.Kraaijenga JV, Hutten GJ, de Jongh FH, et al. The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants. J Pediatr. 2015;167(1):70–75. doi: 10.1016/j.jpeds.2015.04.040. [DOI] [PubMed] [Google Scholar]
  • 49.Kassim Z, Greenough A, Rafferty GF. Effect of caffeine on respiratory muscle strength and lung function in prematurely born, ventilated infants. Eur J Pediatr. 2009;168(12):1491–1495. doi: 10.1007/s00431-009-0961-9. [DOI] [PubMed] [Google Scholar]
  • 50.于 梅, 黄 金华, 朱 蓉, et al. 枸橼酸咖啡因治疗对呼吸暂停早产儿早期肺功能的影响. http://www.zgddek.com/CN/abstract/abstract13865.shtml. 中国当代儿科杂志. 2016;18(3):206–210. doi: 10.7499/j.issn.1008-8830.2016.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Dobson NR, Patel RM. The role of caffeine in noninvasive respiratory support. Clin Perinatol. 2016;43(4):773–782. doi: 10.1016/j.clp.2016.07.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Katheria AC, Sauberan JB, Akotia D, et al. A pilot randomized controlled trial of early versus routine caffeine in extremely premature infants. Am J Perinatol. 2015;32(9):879–886. doi: 10.1055/s-00000009. [DOI] [PubMed] [Google Scholar]
  • 53.钱 瑞英, 孙 建华. 枸橼酸咖啡因对早产儿早期脑电活动的影响. http://d.old.wanfangdata.com.cn/Periodical/lcekzz201706011 临床儿科杂志. 2017;35(6):435–440. [Google Scholar]
  • 54.Gupte AS, Gupta D, Ravichandran S, et al. Effect of early caffeine on neurodevelopmental outcome of very low-birth weight newborns. J Matern Fetal Neonatal Med. 2016;29(8):1233–1237. doi: 10.3109/14767058.2015.1041493. [DOI] [PubMed] [Google Scholar]
  • 55.Vesoulis ZA, McPherson C, Neil JJ, et al. Early high-dose caffeine increases seizure burden in extremely preterm neonates:a preliminary study. J Caffeine Res. 2016;6(3):101–107. doi: 10.1089/jcr.2016.0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Yu T, Balch AH, Ward RM, et al. Incorporating pharmacodynamic considerations into caffeine therapeutic drug monitoring in preterm neonates. BMC Pharmacol Toxicol. 2016;17(1):22. doi: 10.1186/s40360-016-0065-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Contemporary Pediatrics are provided here courtesy of Xiangya Hospital, Central South University

RESOURCES