Skip to main content
Chinese Journal of Contemporary Pediatrics logoLink to Chinese Journal of Contemporary Pediatrics
. 2017 Nov 25;19(11):1213–1218. [Article in Chinese] doi: 10.7499/j.issn.1008-8830.2017.11.017

儿童Ph-like急性淋巴细胞白血病的研究进展

Research progress in Ph-like childhood acute lymphoblastic leukemia

唐 雪 1, 郭 霞 1
PMCID: PMC7389333  PMID: 29132472

Abstract

费城染色体样急性淋巴细胞白血病(Ph-like ALL)是一组基因表达谱与费城染色体阳性ALL(Ph+ALL)相似的B-ALL(B-lineage ALL)亚群,涉及一系列细胞因子受体基因及激酶信号通路异常活化的相关基因改变,并常伴淋系发育相关转录因子异常。Ph-like ALL在高危组儿童B-ALL的比例高达15%,其临床特征与不良预后相一致。酪氨酸激酶抑制剂(TKIs)联合化疗显著改善儿童Ph+ALL预后提示基于Ph-like ALL分子遗传学异常的精准靶向治疗具有良好的研究前景。该文结合近年Ph-like ALL的相关研究进展,对儿童Ph-like ALL的基因改变及发病机制、临床特征、诊断及治疗进行综述。

Keywords: Ph-like急性淋巴细胞白血病, 基因, 诊断, 酪氨酸激酶抑制剂, 儿童


近年来,随着分子生物学技术的发展,靶向化疗药物的不断出现,联合化疗以及造血干细胞移植的不断改进,儿童急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL)的疗效显著提高,其长期生存率可达90%[1]。尽管如此,仍有15%~20%儿童ALL出现复发,并成为ALL患儿获得长期生存的主要障碍和死亡的重要原因。因此,进一步寻找与复发ALL预后相关的分子遗传学异常是未来的研究方向。2009年,Den Boer等[2]和Mullighan等[3]首次发现约有15%~19%遗传学分型不明的B-ALL患儿基因表达谱与BCR-ABL1阳性ALL患儿相似,预后也与其相似,将其称为Ph-like ALL,其基因组学改变的共同特征为存在细胞因子受体基因突变和激酶信号通路异常活化,针对这些信号通路的激酶抑制剂已经使部分患者获得了更好疗效[4]。本文就近年来儿童Ph-like ALL的研究进展作一综述。

1. Ph-like ALL的基因改变与发病机制

1.1. JAK激酶通路基因异常

1.1.1. CRLF2基因重排与过表达

CRLF2(cytokine receptor-like factor 2)基因位于性染色体Xp22.3或Yp11.3,编码细胞因子受体样因子-2,也称胸腺基质淋巴细胞生成素受体(thymic stromal lymphopoietin receptor, TSLPR)。TSLPR是一种I型细胞因子受体,与配体TSLP结合后可与白介素7受体(IL-7R)的α链形成异源二聚物,启动下游的JAK-STAT信号通路,参与淋巴细胞增殖的调控[2, 5]。42%的儿童Ph-like ALL存在CRLF2基因异常,以易位最常见,主要形成IGH-CRLF2和P2RY8-CRLF2两种重排基因,导致CRLF2过表达[6]。部分Ph-like ALL存在其他未知因素导致CRLF2过表达[7]。而CRLF2过表达将持续活化下游JAK-STAT信号通路,导致白血病细胞持续增殖。此外,CRLF2的F232C点突变(第232位氨基酸由半胱氨酸代替苯丙氨酸)可促使非配体依赖性的同源二聚体形成而异常活化下游信号通路参与白血病发生[8]。值得注意的是,CRLF2-IL7R-JAK-STAT通路激活并非仅存在于Ph-like ALL,约60%唐氏综合征ALL患儿也存在此通路异常活化[9]

1.1.2. JAK基因突变与重排

CRLF2过表达的Ph-like ALL中,约50%伴有JAK基因突变,以JAK2 R683突变最多见[8, 10]。JAK基因突变一方面导致CRLF2或IL-7R发生激活突变,另一方面使编码抑制JAK的接头蛋白LNK的SH2B3基因发生失活性突变,从而活化JAK-STAT信号通路,这亦提示CRLF2的过表达和JAK基因突变在活化JAK-STAT信号通路中有协同作用[4]。在儿童Ph-like ALL中,JAK基因家族除发生突变,约5%存在JAK2基因重排。目前文献报道共计10种基因与JAK2形成融合基因,包括PAX5-JAK2、BCR-JAK2、ETV6-JAK2、SSBP2-JAK2、ATF7IP-JAK2、EBF1-JAK2、PPFIBP1-JAK2、STRN3-JAK2、TERF2-JAK2和TPR-JAK2,其产生的融合蛋白保留JAK2的激酶区域并持续激活,导致JAK-STAT信号通路持续活化[11]

1.1.3. 红细胞生成素受体基因重排

红细胞生成素受体(erythropoietin receptor, EPOR)基因重排见于4%的儿童Ph-like ALL,主要形成EPOR-IGH、EPOR-IGK和EPOR-LAIR1融合基因,即EPOR基因易位到免疫球蛋白重链(IgH)或轻链(IgK)的增强子区和LAIR1的上游区域,这一改变导致截短型EPOR过度表达,对EPO呈高敏感,激活JAK-STAT信号通路,早期参与白血病的形成[12]

1.2. ABL激酶通路基因异常

不同于JAK通路基因的异常,ABL基因异常只涉及重排。约14%的儿童Ph-like ALL存在ABL家族基因重排,包括ABL1、ABL2、PDGFRB及CSF1R基因,这些基因虽然存在众多且不确定的伙伴基因(见表 1),但其转录产物的结构与功能均与BCR-ABL融合蛋白类似,可使酪氨酸激酶异常活化,导致细胞持续增殖[13]

1.

Ph-like ALL中ABL家族基因及其伙伴基因

ABL 家族基因 伙伴基因
ABL1 ETV6、NUP214、RCSD1、SFPQ、SNX2、ZMIZ1、FOXP1、RANBP2
ABL2 PAG1、RCSD1、ZC3HAV1
PDGFRB EBF1、SSBP2、ATF7IP、TNIP1、ZEB2
CSF1R SSBP2

PDGFRB(platelet-derived growth factor receptor β)基因编码血小板衍生生长因子受体β,其为Ⅲ型受体酪氨酸激酶家族的一员[14]。PDGFRB重排最早在骨髓增殖性肿瘤中发现,但目前发现ALL中也有PDGFRB特征性重排,以EBF1(early B-cell factor 1)-PDGFRB融合基因最常见。EBF1是B系淋巴细胞分化必需的转录因子,EBF1的编码区与PDGFRB的羧基端融合,一方面影响EBF1的正常功能,使细胞分化停滞于淋系B前体细胞阶段,另一方面致PDGFRB过表达,导致细胞持续增殖[13]。集落刺激因子1受体(colony stimulating factor 1 receptor, CSF1R)基因是巨噬细胞集落刺激因子(macrophage colony stimulating factor, M-CSF)受体的编码基因,其激活见于粒单核细胞白血病,而在Ph-like ALL中CSF1R可与单链DNA结合蛋白基因SSBP2形成SSBP2-CSF1R融合基因,持续的细胞因子受体信号可使SSBP2被ABL1磷酸化而参与肿瘤形成[15]

1.3. 淋系转录因子基因异常

淋系转录因子基因主要包括EBF1、PAX5和IKZF1[11]。IKZF1编码的锌指转录因子IKAROS是淋巴细胞发育、分化过程中的一种重要转录因子。50%~70%的Ph+和Ph like B-ALL存在IKZF1的遗传学改变[16],主要为IKZF1的单等位基因丢失、内部外显子缺失和移码、错义突变,导致IKROS剂量不足或产生突变型IKROS,从而使B细胞发育停滞,同时增强激酶依赖的细胞增殖和更新[17]。此外,突变型IKROS自身蛋白功能受损的同时还可以显性失活的方式影响正常IKAROS。Witkowski等[18]研究发现IKZF1基因突变可激活B-ALL中大量与细胞增殖和耐药相关的基因,但具体机制仍不明确。PAX5和EBF1基因也是B细胞发育早期所需的转录因子,其与激酶基因易位形成融合基因如PAX5-JAK2、EBF1-JAK2、EBF1-PDGFRB,不仅阻滞细胞分化,同时亦促进细胞增殖[19]

1.4. 其他基因异常

在Ph-like ALL中,SH2B3基因的失活性突变导致衔接蛋白LNK量减少,刺激IL7激活JAK-STAT信号通路,导致细胞持续增殖[20]。IL-7R、FLT3和IL2RB基因的突变也可激活细胞因子受体参与Ph-like ALL的形成。Ras信号通路突变包括NRAS、KRAS、PTPN11和NF1突变,发生在4%的儿童Ph-like ALL[5]。GATA3蛋白是一种具有结合GATA序列高度保守锌指结构的转录因子。全基因组关联分析研究(genome-wide association study, GWAS)发现儿童Ph-like ALL中GATA3 rs3824662单核苷酸多态性(SNP)明显不平衡,其中A等位基因表达率更高[21]。rs3824662 A等位基因不仅致GATA3 mRNA表达更高,且多伴随CRLF2异常、JAK突变及IKZF1缺失,但导致Ph-like ALL发生的具体机制目前仍不明确。

2. Ph-like ALL的临床特征

不同年龄阶段Ph-like ALL的发生率不同,在儿童、青少年、年轻成人、成年人及老年人ALL的发生率分别为10%~15%,21%,27%、20.4%和24%[5, 22]。在儿童Ph-like ALL人群中,大年龄组患儿所占比例更高,男:女之比为1.5 : 1,而且西班牙裔发病率更高[2, 5, 21]。儿童Ph-like ALL初诊时外周血白细胞总数偏高,多超过100×109/L [5];早期治疗反应不佳,诱导化疗第19天及诱导结束时MRD水平均较非Ph-like ALL组更高[23]。有研究发现,存在EBF1-PDGFRB重排的ALL患儿更易发生诱导化疗失败[24]。多项研究证实,儿童Ph-like ALL具有高复发率和不良预后的特点[5, 25]。Roberts等[5]以1 725名ALL患者为研究对象,发现各年龄段的Ph-like ALL患儿5年无事件生存(event-free survival, EFS)率显著低于非Ph-like ALL组。美国儿童肿瘤协作组(Children's Oncology Group, COG)对772例高危组儿童ALL进行随访,Ph-like ALL组5年EFS明显低于非Ph-like ALL组[10]。此外,各种基因改变类型的Ph-like ALL的预后也不同,以发生JAK2和EPOR重排的生存率更低,伴随IKZF1异常的Ph-like ALL预后更差[5]。美国St. Jude儿童医院随访344例儿童ALL,依据诱导化疗第19天和46天MRD水平调整危险度,高危组患儿优先接受造血干细胞移植治疗,虽然结果显示Ph-like ALL组与非Ph-like ALL组的EFS差异无统计学意义,但是Ph-like ALL患儿进入高危组以及接受造血干细胞移植患儿的比例较高[23]

3. Ph-like ALL的诊断

儿童Ph-like ALL的分子生物学改变呈现高度异质性使其诊断充满挑战,目前尚无统一的诊断标准。美国St. Jude儿童医院对所有新诊断的ALL采用二代测序方法筛选Ph-like ALL,英国研究中心对于早期化疗效果差的ALL进行ABL相关重排基因检测,COG利用良好验证性的基因芯片对所有新诊断的高危组ALL进行初步筛选,阳性者在诱导化疗中进行基因检测验证。

最早Ph-like ALL的诊断是通过分析基因表达谱与Ph+ ALL的相似性来确定,但这较大程度依赖基因芯片的选择,而选择不同基因组分析表达谱的结果将会不一致,使其临床应用受到限制。高通量新一代测序虽可检测出完整的基因突变,展示基因表达谱,但其昂贵的费用及高度依赖生物信息技术使其不能广泛推广。而核型分析、FISH、多重PCR等技术只能检测到部分异常基因。Yap等[25]针对一些常见的靶向融合转录子测序有效检测到Ph-like ALL众多异常基因。在Ph-like ALL的诊断中明确异常活化的激酶信号通路有助于靶向药物的选择。采用流式细胞术分析JAK2下游的STAT5和ABL下游的CRKL磷酸化水平不仅可明确异常激活信号通路,还能绕过特定遗传学病变的诊断困境,同时分析酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)治疗前后的相关下游分子磷酸化水平可预测TKIs治疗反应能力。此外,儿童Ph-like ALL最常见的分子遗传学改变为CRLF2的异常表达。正常情况下CRLF2蛋白不会在B细胞中表达,因此可将CRLF2抗体加入到ALL免疫表型的分析中,并且通过FISH、多重PCR、多重交联探针扩增以及基因组芯片等验证其基因改变类型。

4. Ph-like ALL的治疗

Ph-like ALL中约90%存在激酶异常激活,主要为ABL和JAK激酶通路基因异常,因此TKIs治疗Ph-like ALL有较好的前景[5, 26-28]。ABL抑制剂伊马替尼(imatinib)、达沙替尼(dasatinib)适用于发生ABL1、ABL2、PDGFRB或CSF1R重排者,JAK抑制剂鲁索利替尼(ruxolitinib)可有效抑制JAK-STAT信号通路的异常激活,存在ETV6-NTRK3融合基因者对ALK抑制剂克里唑替尼(Crizotinib)敏感[5, 13, 29]。Weston等[28]报道1例伴EBF1-PDGRFB易位的10岁男性ALL患儿在常规化疗效果不佳后加用伊马替尼,骨髓迅速缓解并持续完全缓解超过1年。Kobayashi等[30]报道1例达沙替尼单药成功治疗儿童Ph-like ALL。Roberts等[5]对12例接受TKIs治疗的Ph-like ALL随访,11例获良好疗效。但TKIs治疗Ph-like ALL的有效性及安全性还需进一步研究。COG正在进行两项临床试验以检验BFM方案巩固治疗阶段加入达沙替尼治疗ABL重排Ph-like ALL的疗效,并评估鲁索利替尼联合化疗治疗JAK-STAT通路异常激活的Ph-like ALL的疗效,以寻找鲁索利替尼最佳剂量。2015年中国儿童癌症协作组(Chinese Children Cancer Group, CCCG)启动ALL 2015研究方案(CCCG-ALL-2015),亦将TKIs治疗Ph-like ALL纳入临床试验中。

Ph-like ALL中CRLF2重排除涉及JAK-STAT外,还有PI3K、mTOR和BCL2信号通路的异常激活,针对这些信号通路的抑制剂正在进行相关的临床前和临床研究[29, 31-32]。也有针对Ras信号通路抑制剂治疗Ph-like ALL的早期临床试验[33]。Tasian等[34]对Ph-like ALL小鼠模型进行研究,发现PI3K/mTOR(phosphoinosmde-3-kinase/the mammalian target of rapamycin)抑制剂gedatolisib联合鲁索利替尼或达沙替尼的治疗效果优于单药治疗,能更大程度抑制白血病细胞增殖。

虽然TKIs治疗Ph-like ALL显示良好的研究前景,但接受TKIs治疗后仍可能复发或死亡[35]。在细胞株和小鼠模型中发现,对于JAK抑制剂治疗效果差者使用热休克蛋白90(heat-shock protein 90, HSP 90)抑制剂可成功抑制白血病细胞增殖及下游信号通路活化[36-37]。在IKZF1突变致白血病的小鼠模型中,维A酸可改善TKIs的耐药并同时增强TKIs的活性[38]。然而,HSP 90抑制剂及维A酸能否用于临床需进一步研究。

5. 总结和展望

大部分Ph-like ALL存在激酶通路异常活化,为靶向治疗提供了新靶点。儿童高危B-ALL中15%为Ph-like ALL,TKIs联合化疗治疗成功的报道为高危B-ALL儿童带来了希望。虽然Ph-like ALL的发病率是Ph+ ALL的3~4倍,但基因改变类型繁多,难以针对每种异常基因进行随机对照研究,因此需要各个研究中心协作共同致力于更加深入的研究,但前提是实现Ph-like ALL检测方法的标准化。同时,未来随着TKIs应用于Ph-like ALL治疗,激酶结构域可能发生突变而耐药,因此对TKIs耐药机制的研究同样重要。尽管儿童Ph-like ALL的研究仍面临许多困难,但从Ph-like ALL的发现到靶向治疗的实现很好地诠释了精准医学治疗,随着研究的深入,儿童高危ALL预后能够得到进一步改善。

Biography

唐雪, 女, 硕士研究生, 住院医师

TANG Xue, Email: guoxkl@163.com

Funding Statement

自然科学基金青年基金项目(81600122)

References

  • 1.Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–1552. doi: 10.1056/NEJMra1400972. [DOI] [PubMed] [Google Scholar]
  • 2.Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome:a genome-wide classification study. Lancet Oncol. 2009;10(2):125–134. doi: 10.1016/S1470-2045(08)70339-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–480. doi: 10.1056/NEJMoa0808253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ofran Y, Izraeli S. BCR-ABL(Ph)-like acute leukemia-pathogenesis, diagnosis and therapeutic options. Blood Rev. 2017;31(2):11–16. doi: 10.1016/j.blre.2016.09.001. [DOI] [PubMed] [Google Scholar]
  • 5.Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–1015. doi: 10.1056/NEJMoa1403088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Russell LJ, Capasso M, Vater I, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–2698. doi: 10.1182/blood-2009-03-208397. [DOI] [PubMed] [Google Scholar]
  • 7.Chen IM, Harvey RC, Mulighan CG, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatirc acute lymphoblastic leukemia:a Children's Oncology Group study. Blood. 2012;119(15):3512–3522. doi: 10.1182/blood-2011-11-394221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(1):252–257. doi: 10.1073/pnas.0911726107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Buitenkamp TD, Izraeli S, Zimmermann M, et al. Acute lymphoblastic leukemia in children with Down syndrome:a retrospective analysis from the Ponte di Legno study group. Blood. 2014;123(1):70–77. doi: 10.1182/blood-2013-06-509463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Loh ML, Zhang J, Harvey RC, et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia:a report from the Children's Oncology Group TARGET Project. Blood. 2013;121(3):485–488. doi: 10.1182/blood-2012-04-422691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia:insights and treatment implications. Nat Rev Clin Oncol. 2015;12(6):344–357. doi: 10.1038/nrclinonc.2015.38. [DOI] [PubMed] [Google Scholar]
  • 12.Iacobucci I, Li Y, Roberts KG, et al. Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell. 2016;29(2):186–200. doi: 10.1016/j.ccell.2015.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Robert KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153–166. doi: 10.1016/j.ccr.2012.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Demoulin JB, Montano-Almendras CP. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res. 2012;2(1):44–56. [PMC free article] [PubMed] [Google Scholar]
  • 15.Kasyapa C, Gu TL, Nagarajan L, et al. Phosphorylation of the SSBP2 and ABL proteins by the ZNF198-FGFR1 fusion kinase seen in atypical myeloproliferative disorders as revealed by phosphopeptide-specific MS. Proteomics. 2009;9(16):3979–3988. doi: 10.1002/pmic.v9:16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Churchman ML, Low J, Qu C, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343–356. doi: 10.1016/j.ccell.2015.07.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014;15(3):294–304. doi: 10.1038/ni.2821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Witkowski MT, Hu Y, Roberts KG, et al. Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. J Exp Med. 2017;214(3):773–791. doi: 10.1084/jem.20160048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Schinnerl D, Fortschegger K, Kauer M, et al. The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia. Blood. 2015;125(8):1282–1291. doi: 10.1182/blood-2014-04-570960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Cheng Y, Chikwava K, Wu C, et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Invest. 2016;126(4):1267–1281. doi: 10.1172/JCI81468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013;45(12):1494–1498. doi: 10.1038/ng.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Roberts KG, Gu Z, Prayne-Tuner D, et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394–401. doi: 10.1200/JCO.2016.69.0073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–3020. doi: 10.1200/JCO.2014.55.4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Schwab C, Ryan SL, Chilton L, et al. EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL):genetic profile and clinical implications. Blood. 2016;127(18):2214–2218. doi: 10.1182/blood-2015-09-670166. [DOI] [PubMed] [Google Scholar]
  • 25.Yap KL, Furtado LV, Kiyotani K, et al. Diagnostic evaluation of RNA sequencing for the detection of genetic abnormalities associated with Ph-like acute lymphoblastic leukemia (ALL) Leuk Lymphoma. 2017;58(4):950–958. doi: 10.1080/10428194.2016.1219902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ishibashi T, Yaguchi A, Terada K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44(3):177–188. doi: 10.1016/j.exphem.2015.11.009. [DOI] [PubMed] [Google Scholar]
  • 27.Lengline E, Beldjord K, Dombret H, et al. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98(11):e146–e148. doi: 10.3324/haematol.2013.095372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Weston BW, Hayden MA, Roberts KG, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–e416. doi: 10.1200/JCO.2012.47.6770. [DOI] [PubMed] [Google Scholar]
  • 29.Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120(17):3510–3518. doi: 10.1182/blood-2012-03-415448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kobayashi K, Miyagawa N, Mitsui K, et al. TKI dasatinib monotherapy for a patient with Ph-like ALL bearing ATF7IP/PDGFRB translocation. Pediatr Blood Cancer. 2015;62(6):1058–1060. doi: 10.1002/pbc.v62.6. [DOI] [PubMed] [Google Scholar]
  • 31.Tasian SK, Doral MY, Borowitz MJ, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120(4):833–842. doi: 10.1182/blood-2011-12-389932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Waibel M, Solomon VS, Knight DA, et al. Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep. 2013;5(4):1047–1059. doi: 10.1016/j.celrep.2013.10.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Irving J, Matheson E, Minto L, et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124(23):3420–3430. doi: 10.1182/blood-2014-04-531871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Tasian SK, Teachey DT, Li Y, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2017;129(2):177–187. doi: 10.1182/blood-2016-05-707653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Zaliova M, Moorman AV, Cazzaniga G, et al. Characterization of leukemias with ETV6-ABL1 fusion. Haematologica. 2016;101(9):1082–1093. doi: 10.3324/haematol.2016.144345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Weigert O, Lane AA, Bird L, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209(2):259–273. doi: 10.1084/jem.20111694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Kucine N, Marubayashi S, Bhagwat N, et al. Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood. 2015;126(22):2479–2483. doi: 10.1182/blood-2015-03-635821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Churchman ML, Low J, Qu C, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343–356. doi: 10.1016/j.ccell.2015.07.016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Contemporary Pediatrics are provided here courtesy of Xiangya Hospital, Central South University

RESOURCES